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A New Method for the Design of FIR [l. DESIGN METHOD
Quadrature Mirror-Image Filter Banks
A. Generalized FIR QMF Banks

Wu-Sheng Lu, Hua Xu, and Andreas Antoniou an5|der the two-channel filter bapk shown in Fig. 1. The output
and input of the system are related in terms of
1 .
X(z)= 5[H0(:)G0(2) + Hi(2)G1(2)] X (2)
Abstract—A new algebraic method for the design of two-channel finite- - 1
duration impulse response quadrature mirror-image filter (FIR QMF) + 5[50(—2)@)(2) + Hi(=2)G1(2)]X (=2) (€Y}
banks is proposed. The method uses a self-convolution technique to
reformulate a fourth-order objective function whose minimization leadsto  where the second term in the right-hand side represents aliasing.
the design of QMF banks. It is shown that the reformulated optimization By assuming thatil;(:) = Ho(—=z),G1(z) = —Ho(—z) and

problem can be solved by an iterative technique in which the major part N L .
of each iteration is carried out in terms of a closed-form formula. This G0(2) = Ho(z), the aliasing term is canceled and (1) becomes

leads to improved computational efficiency relative to that in several R 1. . ,
existing design methods. The method is then extended to the design of X(z)== [I—Iﬁ(:) — Hy(—2)]X (2).
QMF banks with low reconstruction delay. Two examples are included 2

which show that the proposed design method leads to filter banks with Tq reconstruct the input signal at the output, it is required that
improved performance.

Hi(z)— Hy(—2)=z""4 )

wherek, is the system delay. Note that if filtéf, has a linear phase
|. INTRODUCTION response an#, = N — 1 where N — 1 is the order ofH,(z), then
the filter bank is a conventional QMF bank; #; < N — 1 and

one does not assume that the fil#gs has a linear phase response,

(angh_/ld;;ra;:nnk;n;?:ls\ﬁ d:j;pl?sn:: ;nudai:zt:;emgggégr?;?z Elé%rrv]sn the filter bank has a low reconstruction delay. In effect, (2) can

developed for their design [1]-[12]. Some of the design metho{ﬁgrﬁj;netrit::c:rv;?ggﬂ“onal and low-delay QMF bank_s depending on
- . « and whether or noH, has a linear phase

lead to near-perfect reconstruction QMF banks [1]-[5], [12] Wh”(reesponse
others lead to perfect-reconstruction QMF banks [6]-[11]. ’

A time-domain iterative algorithm for the design of QMF banks )
was proposed in [2]. The method involves calculating the eigenvalu@s A Closed-Form Formula for the Gradient of
and eigenvectors of a matrix in each iteration. Another iteratiid Least-Squares Objective Function
algorithm which uses a linearization of the error function in the Let
frequency domain was proposed in [5]. This algorithm needs less
computation than other QMF design methods [1]-[3] and produces
improved filter banks. Furthermore, improvements in the COMpUt@nt N an even number. and
tional efficiency over that of the method in [5] have been a(:hievedI ’
by deriving explicit and precise expressions for the objective function h=[ho h1 --- hN_l]T
[12]. gy =[1 =1 ... zfz(Nfl)]T

In this paper, a new algebraic method for the design of QMF . . Zo(N—1)T
banks with near-perfect reconstruction is proposed. The method uses zon =1 (=2) e (=2) I
a Self-convolution technique tg reformulate.a. fqurth-order objecti\(ﬁle can write
function as a quadratic function whose minimization leads to the
design of QMF banks. It is shown that the reformulated optimization Hi(z) = g zon
problem can be solved by an iterative technique in which the major
part of each iteration is carried out in terms of a closed-form formula.
This leads to improved computational efficiency relative to that iwhere
several existing design methods. The method is then extended to the
design of QMF banks with low reconstruction delay. Two examples g=hxh ©)
are included which show that the proposed design method Ieadsz‘.I
filter banks with improved performance.

Ho(z) = ho + 11,1271 + -+ hN_lz*(N*l)

Hi(—z) =g 22N

th « denoting the convolution operation. Therefore,
Hg(f) - Hg(—?-’) = gT(ZzN —ZyN) = gTizN

wherezon = 2[0 27 0 27 0 ... 272V 017 0f we let

L= pdw
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Fig. 1. A two-band filter bank.

Now if a QMF bank with near-perfect reconstruction is designedhere J, is the N/2 x N Toeplitz matrix ~whose
by minimizing the objective function first column and first row are[2ho 0 0" and
2. [h[) hi 4 hl\r/g_l ]7,‘,\'/2_1 - ho], Jnis theJ\T/Q x N

E= / |HS () = Hi(—e™) — e77<Fa|* du
Q

+a</ [Ho(e’)|* dw

wherew; is the stopband edge of the lowpass filfés and « is a
weight, then the linearization of (2), namely (4), implies that

E= / |2ch0(w) - 1’2dw—|—(}'/ |Ho(e’*)|* dw.  (5)
0

It follows that E can be expressed asgaadratic functionof h and
g, namely,

E=4g"Q,g - 4g"b+ ahTQ.h+ = (6)

whereQ, = =« - diag{0,1,0,...,1,0},
T — Ws 01 d2 ON-1
o1 T — W, o1 ON—2
Qa = .
ON—1 ON—2 ON-3 T — Ws
with ¢, = —%sinkws, andb = [0 0x 0 --- O]T where

only the (k4 + 1)th entry is nonzero.
The gradient vector of with respect tah is given by

VhE = 2[(4JQ,H + aQ,)h — 2Jb] @)

wherelJ is the N x (2N — 1) Jacobian ofg with respect tdh, i.e.,
y_ 08 _0(hxh) 9(Hh)
“oh  Oh  Oh
Matrix H is the (2N — 1) x N Toeplitz matrix whose
first row and first column arefho 0 --- 0] and
[ho h1 vy O 0]“. It can be shown that is

Hankel matrix whose first column is a zero vector and last row is
[0 --- 0 2ho 2R 2hnja—1], and fliplr (Jo1(:,1 0 N = 1))

is the N/2 x (N — 1) matrix generated by flipping the firsf — 1
columns of matrixJ.; from left to right; H. is given by

_ Hsl
He =l fipud [Ho (1: N = 1,1)]

whereH,, is the N x N/2 Toeplitz matrix whose first column and
first row are

[ho hi -+ hyjo1 2hnjo—q --+ 2l QII,O]T

and[ho 0 --- 0], and flipud[H.:(1 : N — 1,:)] denotes the matrix
generated by flipping the firs¥ — 1 rows of H,; upside down; and
Q. assumes the form

Qas = K’IQaK
K= Inye
In/2

where I/, is the N/2 x N/2 identity matrix, and iN/g =
flipud (In/2).

From the above analysis, we see that the linearization through the
self-convolution technique described in conjunction with the simple
expression for the Jacobiahhas led to analytic expressions for the
gradient for the linear-phase case given by (8) as well as for the
general case given by (7). These equations are of critical importance
for design efficiency and system performance. By letihg F = 0,
we obtain

h, = 2(43,Q,H, + aQ..)”'I,b. )

Equation (9) suggests an iterative algorithm for the design problem.
One starts by designing a half-band, linear-phase, lowpass FIR filter
of length N and uses its firsiV/2 coefficients to construct an initial

the N x (2]\7 _ 1) Toep"tz matrix Whose first row and first VeCtOrh(]. Th|s h() iS then Used to eValuate matrlCéS anng. A

column are2[ho hy
and [2ho 0 0.

hnja—1 havye hn_i 0 «+- 0]

C. Design of Linear-Phase QMF Banks

If ks = N — 1 andh is symmetrical with respect to its midpoint,
then the filterH, has a linear phase response. In this case the number

of design variables is reduced 16/2 and (7) is replaced by

Vi, E = 2[(43.Q,H. + aQ..)h, — 2J.b]. )

In (8), hy = [ho M1 hnyo—1]"s I is the N/2 x (2N = 1)

Jacobian matrix given by
Og

J. = oh. = [Jaafliplr (Js1(:,1: N = 1))]
with

Ja=J.+3

new coefficient vector, denoted hs, is calculated by using (9), and

h, is updated as a linear combination of the previbysandh,. The

iteration continues untilhy —h,|| is less than a prescribed tolerance.

A step-by-step description of the algorithm is as follows.
Algorithm 1

Step 1: Design a half-band linear-phase lowpass FIR filter of even

length V, and use the firslV/2 of its coefficients to form

a vector denoted aB.

Step 2: Calculatel, and H,.

Step 3: Evaluatéh, using (9).

Step 4: Updatéh, as

ho = Sh, + (1 — F)hy

where the weight3 € (0,1) usually assumes a value
between 0.3 and 0.8.

liplr and flipud are MATLAB commands for the matrix operations
described here.
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Step 5: If||ho — hs|]2 < = wheree is a prescribed tolerance, TABLE |
useh, as the firstN/2 of the coefficients of filterH, COMPARISONS OF THEPROPOSEDMETHOD WITH THE METHOD OF [5]
and constructzo(z) = Ho(z), Hi(z) = Ho(-z), and Proposed Method of [5] Method of [12]
Gi(z) = —Ho(-=z). Otherwise repeat from Step 2. MFLOPS 0.20 1.18 0.45
The proposed algorithm differs from the existing iterative A, (dB) 34.70 35.27 34.77
algorithms proposed in [5] and [12] in several respects. The Ay (dB) 0.0114 0.0131 0.0124
. [ PRE (dB) 0.0140 0.0152 0.0147
approaches in [5] and [12{ransform the fourth-order objective SNR, (dB) 819 83.4 82.2
function into a quadratic function by replacing the integrand SNR: (dB) 70.6 67.8 69.5
|HG (') — Hg(e’@T™) — e /5“2 by |Ho(e?)Fo(e’™) — CPU time (s)  0.39 2.42 2.13
Hy (! T Fy(e?@T™) — ¢77%e¢%|2 The proposed approach does
not modify the objective functionE. Instead it utilizes a self-
convolution technique to expreds as aformal quadratic function for ¢,j = 1,..., N, and
as in (6). Here the term “formal” is used to stress that vegtan do
(6) depends orh nonlinearly as can been seen in (3). This leads q

to different formulas that can be used to compute the intermediate :
impulse response ofy in each iteration. For example, in [12] the dn—1
impulse response is evaluated using [12, egs. (10), (5), and (mth 4 =
while the proposed method compuths using (9). Note thath,

in (9) can be evaluated more efficiently than its counterpart in [1
since the matrices used in (9) are simple Hankel matrices while h=(4JQ.H+aQ. +a1Q:)" ' (2Ib + a1d). (12)

matricesU and U. used in [12] involve more computations anquuation (12) can now replace (10) to provide effective control on

many logical decisions. In Section lll, design examples will b . . . . i
presented to demonstrate the efficiency of the proposed methoaﬁ}:'lssampIItUdes of artifacts in the design of low-delay QMF banks.

compared to the methods of [5] and [12].

[sin(piwi2) — sin(p;wi)]/p: and p; = —i + kq/2. By
E]etting VwE = 0, we obtain

Ill. DESIGN EXAMPLES

D. Design of Low-Delay QMF Banks In this section, two design examples are given to illustrate the

In a linear-phase FIR QMF bank, the reconstruction delay psroposed method. The performance of the designs is evaluated in

N -1, i.e., the order of the analysis and synthesis filters. In sorﬁ%rms of:

applications, QMF banks with reconstruction delays less thian 1 * floating-point operations in millions (MFLOPS) used;
are desired. In these applications, Algorithm 1 needs to be modified Minimum stopband attenuation
accordingly as shown below. A, = min [~20log,, |H0(€jw)|]
Algorithm 2 weSwsm
Step 1: Design a half-band, lowpass FIR filter of lengthwith » peak-to-peak passband ripple
group delayk,/2. The coefficients of the filter designed A . " jw
are then used as an initihl,. Ap = oéli?lp[m logyo [Ho(e™ )]
Step 2: Calculatel aqd H. — min [20log,, |Ho(e’)]]
Step 3: Evaluatéh using 0<w<wy
h=2(4JQ,H + aQ.)"'Jb. (10) wherew, is the passband edge;

* peak reconstruction error

Step 4: Updateh, using PRE= max |2010g10 [|H§(w) - Hi(w+ 7T)|] |
hy = fh+ (1 — §)hy. (11) “

 signal-to-noise ratio (SNR)
Step 5: If||h — hy||2 < =, useh as the impulse response ),

energy of the signal
AN o (2 T L (o) and SNR= 10logo <ener of tﬁz reconstrgction nOi;e
G1(z) = —Ho(—z). Otherwise, repeat from Step 2. 9y )
It has been observed from experiments that undesirable artifacts = 10log,, { E'f”ﬁ(”) . }
may occur in the transition region of filtéf, when the reconstruction Ela(n) = &(n + ka)]?

delay k4 is significantly smaller thadv’ — 1. A possible approachto  As Example 1, a linear-phase QMF bank was designed on the

reduce the amplitudes of these artifacts is to modify the objectiygisis of the following specificationshV = 32, o = 1, w, =
function in (6) by including an additional term 0.2, ws = 03,3 = 0.6, ande = 5x10~*. The initial h was
w2 i k)22 obtained by using the window method. For comparison purposes, the
a1 / |Ho(e™) —e | dw method of Chen and Lee [5] and the method in [12] were applied to
Wil

design QMF banks with the same design parameters. These methods
where [wi1,wee] is an interval in the transition region where thewere programmed using MATLAB and run on a Pentium PC/100.
artifacts occur. It can be shown that The number of frequency sampling points was set3f6 when
T 4T T, implementing the method of [5], wher® is the filter length. The
E=1g Qg—dg b+h (aQ.+ Qb results are summarized in Table | where SN&d SNR denote
the SNR with a step input and a random input, respectively. The
amplitude responses of the analysis filters and the reconstruction error
o of the QMF bank designed are depicted in Figs. 2 and 3, respectively.
G = {wﬂ T wn t=1J The amplitude responses of the filters designed by the method in [5]

—200d b4 7+ i (wi — wn)

whereQ: = {q;;} is a symmetric matrix with

L (i — s — (i — Al SN i
i1 [sin(|¢ = jlewez) = sin(|i = jlwa)] @ # are also shown in Fig. 2. As can be observed from the comparisons,
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Fig. 2.  Amplitude responses of the analysis filters of Example 1: solid line;
the proposed method; dotted line: the method of [5].
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Fig. 4. (a)A, versusa, (b) A, versusa, and (c) PRE versus for N =
32, wp = 0.2, andw, = 0.3.
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0.015 TABLE I
COMPARISONS OF THEPROPOSEDMETHOD WITH THE METHOD OF [4] AND [12]
0.01 Proposed Method of [4] Method of [12]
: MFLOPS 1.44 — 1.81
g A, (dB) 53.15 36.96 52.66
5 Ay (dB) 0.0036 0.0237 0.0030
5 1 : ] : PRE (dB) 1.2x107%  1.2x107% 1.2 x 1073
§ o é : : SNR, (dB) 82.6 75.8 82.9
'g : : : : SNR, (dB) 81.7 77.4 80.2
= CPU time (s) 0.44 - 2.01
§-o00s | A\
o : : : :
20 T T T T T T T T T
-0.01 i e ?
0,015 i i i 1 i i i i L =
0O 005 01 015 02 025 03 035 04 045 05 m
Normalized frequency §,
Fig. 3. Reconstruction error for Example 1. g_
(4
®
TABLE I 3
COEFFICIENTS OF THELOWPASS ANALYSIS FILTER IN EXAMPLE 1 'g.
i b ; hi <
0 0.00129077162668 [ 8 —0.00575709539395
1 -—0.00229138388989 | 9 —0.03301353302975
2 —0.00164465165080 | 10 0.01672138265228
3 0.00579583179341 | 11 0.05390461015107 o o7 095 D02 oo o3 om o7 oa os
4 0.00131634631555 | 12 —0.04168419440744 Normalized frequency
5 —0.01150641455856 | 13 —0.09966338208708
6 0.00067347241838 | 14 0.13056029831012 Fig. 5. Amplitude responses of the analysis filters for Example 2: solid line:
7 0.02013693728515 | 15 0.46517801436741 our design; dotted line: from [4].

A
the proposed method can achieve almost the same design asﬁﬁg

, While a smalloe improves PRE andl, but tends to reducel,.
variation ofd,, A,, and PRE withx for 0.005< o < 1, N =

methods of [5] and [12] but with much less computation than thgtz, w, = 0.2, andw, = 0.3 is illustrated in Fig. 4. Note that a very

of [5] and less CPU time than that of [5] and [12]. The coefficientsma]| o, say less than 0.005, should be avoided to prevent matrix
of the lowpass analysis filter obtained by the proposed method atg,Q, H, + aQ.. in (9) from becoming ill-conditioned.

listed in Table II.

It follows from (5) that the weightx provides a useful tradeoff was designed. The design parameters wdre= 32, k; = 15,
among the parameters,, PRE, and4,,. In general, with fixedV, w,,
andw,, a largen leads to improved stopband attenuation but degraded. = 0.225,3 = 0.5, ands

As Example 2, an FIR QMF bank with low reconstruction delay

a =030 = 4x107°, w,

= 0.175,ws = 0.345, wyy = 0.175
= 10~*. The initial hy was obtaine

’

d
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Fig. 6. Reconstruction error for Example 2.
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Fig. 7. Group delay of filterHy
transition band.

by first designing a linear-phase filter using the window method’]

and then truncating its impulse response to the lerdgf+ floor
(ka/2) + 1 and padding it withN/2— floor (ks/2) — 1 zeros.

for Example 2: (a) passband and (b) (6]
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somewhat in the transition band but since the signal is significantly
attenuated at these frequencies, the delay distortion introduced is
less important. As can be observed from Table Ill and Fig. 5, the
proposed method improves the stopband attenuation by more than
14 dB relative to that in the example from [4]. In addition, the
guadrature mirror-image structure of the proposed design is amenable
to efficient polyphase-type implementation which needs only half of
the computation required by the low-delay filter banks of [4].

MATLAB codes for the design of conventional and low delay QMF
banks using the proposed method are available from the authors upon
request.

IV. CONCLUSION

A new algebraic method for the design of two-channel QMF banks
has been proposed. The new method is efficient and can be used to
design both linear-phase and low-delay QMF banks. From the design
examples, it is observed that the proposed method leads to filter banks
with improved performance in terms of increased minimum stopband
attenuation.
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