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A New Method for the Design of FIR
Quadrature Mirror-Image Filter Banks

Wu-Sheng Lu, Hua Xu, and Andreas Antoniou

Abstract—A new algebraic method for the design of two-channel finite-
duration impulse response quadrature mirror-image filter (FIR QMF)
banks is proposed. The method uses a self-convolution technique to
reformulate a fourth-order objective function whose minimization leads to
the design of QMF banks. It is shown that the reformulated optimization
problem can be solved by an iterative technique in which the major part
of each iteration is carried out in terms of a closed-form formula. This
leads to improved computational efficiency relative to that in several
existing design methods. The method is then extended to the design of
QMF banks with low reconstruction delay. Two examples are included
which show that the proposed design method leads to filter banks with
improved performance.

I. INTRODUCTION

Finite-duration impulse response quadrature mirror-image filter
(FIR QMF) banks are widely used and many methods have been
developed for their design [1]–[12]. Some of the design methods
lead to near-perfect reconstruction QMF banks [1]–[5], [12] while
others lead to perfect-reconstruction QMF banks [6]–[11].

A time-domain iterative algorithm for the design of QMF banks
was proposed in [2]. The method involves calculating the eigenvalues
and eigenvectors of a matrix in each iteration. Another iterative
algorithm which uses a linearization of the error function in the
frequency domain was proposed in [5]. This algorithm needs less
computation than other QMF design methods [1]–[3] and produces
improved filter banks. Furthermore, improvements in the computa-
tional efficiency over that of the method in [5] have been achieved
by deriving explicit and precise expressions for the objective function
[12].

In this paper, a new algebraic method for the design of QMF
banks with near-perfect reconstruction is proposed. The method uses
a self-convolution technique to reformulate a fourth-order objective
function as a quadratic function whose minimization leads to the
design of QMF banks. It is shown that the reformulated optimization
problem can be solved by an iterative technique in which the major
part of each iteration is carried out in terms of a closed-form formula.
This leads to improved computational efficiency relative to that in
several existing design methods. The method is then extended to the
design of QMF banks with low reconstruction delay. Two examples
are included which show that the proposed design method leads to
filter banks with improved performance.
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II. DESIGN METHOD

A. Generalized FIR QMF Banks

Consider the two-channel filter bank shown in Fig. 1. The output
and input of the system are related in terms of

X̂(z) =
1

2
[H0(z)G0(z) +H1(z)G1(z)]X(z)

+
1

2
[H0(�z)G0(z) +H1(�z)G1(z)]X(�z) (1)

where the second term in the right-hand side represents aliasing.
By assuming thatH1(z) = H0(�z); G1(z) = �H0(�z) and

G0(z) = H0(z), the aliasing term is canceled and (1) becomes

X̂(z) =
1

2
H

2
0 (z)�H

2
0 (�z) X(z):

To reconstruct the input signal at the output, it is required that

H
2
0 (z)�H

2
0 (�z) = z

�k (2)

wherekd is the system delay. Note that if filterH0 has a linear phase
response andkd = N � 1 whereN � 1 is the order ofH0(z), then
the filter bank is a conventional QMF bank; ifkd < N � 1 and
one does not assume that the filterH0 has a linear phase response,
then the filter bank has a low reconstruction delay. In effect, (2) can
represent both conventional and low-delay QMF banks depending on
the numerical value ofkd and whether or notH0 has a linear phase
response.

B. A Closed-Form Formula for the Gradient of
a Least-Squares Objective Function

Let

H0(z) = h0 + h1z
�1 + � � �+ hN�1z

�(N�1)

with N an even number, and

h = [h0 h1 � � � hN�1]
T

z2N = [1 z
�1

� � � z
�2(N�1)]T

ẑ2N = [1 (�z)�1 � � � (�z)�2(N�1)]T :

We can write

H
2
0 (z) = g

T
z2N

H
2
0 (�z) = g

T
ẑ2N

where

g = h � h (3)

with � denoting the convolution operation. Therefore,

H
2
0 (z)�H

2
0 (�z) = g

T (z2N � ẑ2N ) � g
T ~z2N

where ~z2N = 2[0 z�1 0 z�3 0 � � � z�2N+3 0]T . If we let
z = ej!, we have

H
2
0 (e

j!)�H
2
0 (�e

j!) = 2gT c0(!)e
�jk !

wherec0(!) = [0 ej(k �1)! � � � 0 1 0 � � � ej(k �2N+3)! 0]T

and (2) becomes

2gT c0(!) = 1: (4)
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Fig. 1. A two-band filter bank.

Now if a QMF bank with near-perfect reconstruction is designed
by minimizing the objective function

E =
�

0

H2

0 (e
j!)�H2

0 (�e
j!)� e�j!k

2

d!

+ �
�

!

jH0(e
j!)j2 d!

where!s is the stopband edge of the lowpass filterH0 and� is a
weight, then the linearization of (2), namely (4), implies that

E =
�

0

2gT c0(!)� 1
2

d! + �
�

!

jH0(e
j!)j2 d!: (5)

It follows thatE can be expressed as aquadratic functionof h and
g, namely,

E = 4gTQrg� 4gTb+ �hTQah+ � (6)

whereQr = � � diagf0; 1; 0; . . . ; 1; 0g;

Qa =

� � !s �1 �2 � � � �N�1
�1 � � !s �1 � � � �N�2
...

...
...

. . .
...

�N�1 �N�2 �N�3 � � � � � !s

with �k = � 1

k sin k!s, andb = [0 � � � 0 � 0 � � � 0]T where
only the (kd + 1)th entry is nonzero.

The gradient vector ofE with respect toh is given by

rhE = 2[(4JQrH+ �Qa)h� 2Jb] (7)

whereJ is theN � (2N � 1) Jacobian ofg with respect toh, i.e.,

J =
@g

@h
=

@(h � h)

@h
=

@(Hh)

@h
:

Matrix H is the (2N � 1) � N Toeplitz matrix whose
first row and first column are [h0 0 � � � 0] and
[h0 h1 � � � hN�1 0 � � � 0]T . It can be shown thatJ is
the N � (2N � 1) Toeplitz matrix whose first row and first
column are2[h0 h1 � � � hN=2�1 hN=2 � � � hN�1 0 � � � 0]

and [2h0 0 � � � 0]T .

C. Design of Linear-Phase QMF Banks

If kd = N � 1 andh is symmetrical with respect to its midpoint,
then the filterH0 has a linear phase response. In this case the number
of design variables is reduced toN=2 and (7) is replaced by

rh E = 2[(4JsQrHs + �Qas)hs � 2Jsb]: (8)

In (8), hs = [h0 h1 � � � hN=2�1]
T ; Js is theN=2 � (2N � 1)

Jacobian matrix given by

Js =
@g

@hs
= [Js1fliplr(Js1(:; 1 : N � 1))]

with

Js1 = Jt + Jh

where Jt is the N=2 � N Toeplitz matrix whose
first column and first row are [2h0 0 � � � 0]T and
2 � [h0 h1 � � � hN=2�1 hN=2�1 � � � h1 h0]; Jh is theN=2�N
Hankel matrix whose first column is a zero vector and last row is
[0 � � � 0 2h0 2h1 � � � 2hN=2�1], and fliplr (Js1(:; 1 : N � 1))
is theN=2 � (N � 1) matrix generated by flipping the firstN � 1
columns of matrixJs1 from left to right1; Hs is given by

Hs =
Hs1

flipud [Hs1(1 : N � 1; :)]

whereHs1 is theN �N=2 Toeplitz matrix whose first column and
first row are

[h0 h1 � � � hN=2�1 2hN=2�1 � � � 2h1 2h0]
T

and [h0 0 � � � 0], and flipud[Hs1(1 : N � 1; :)] denotes the matrix
generated by flipping the firstN � 1 rows ofHs1 upside down; and
Qas assumes the form

Qas = K
T
QaK

K =
IN=2

ÎN=2

where IN=2 is the N=2 � N=2 identity matrix, and ÎN=2 =
flipud (IN=2).

From the above analysis, we see that the linearization through the
self-convolution technique described in conjunction with the simple
expression for the JacobianJ has led to analytic expressions for the
gradient for the linear-phase case given by (8) as well as for the
general case given by (7). These equations are of critical importance
for design efficiency and system performance. By lettingrh E = 0,
we obtain

hs = 2(4JsQrHs + �Qas)
�1
Jsb: (9)

Equation (9) suggests an iterative algorithm for the design problem.
One starts by designing a half-band, linear-phase, lowpass FIR filter
of lengthN and uses its firstN=2 coefficients to construct an initial
vectorh0. This h0 is then used to evaluate matricesJs andHs. A
new coefficient vector, denoted ashs, is calculated by using (9), and
h0 is updated as a linear combination of the previoush0 andhs. The
iteration continues untilkh0�hsk is less than a prescribed tolerance.
A step-by-step description of the algorithm is as follows.

Algorithm 1

Step 1: Design a half-band linear-phase lowpass FIR filter of even
lengthN , and use the firstN=2 of its coefficients to form
a vector denoted ash0.

Step 2: CalculateJs andHs.
Step 3: Evaluatehs using (9).
Step 4: Updateh0 as

h0 = �hs + (1� �)h0

where the weight� 2 (0; 1) usually assumes a value
between 0.3 and 0.8.

1fliplr and flipud are MATLAB commands for the matrix operations
described here.
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Step 5: If kh0 � hsk2 < " where " is a prescribed tolerance,
usehs as the firstN=2 of the coefficients of filterH0

and constructG0(z) = H0(z); H1(z) = H0(�z), and
G1(z) = �H0(�z). Otherwise repeat from Step 2.

The proposed algorithm differs from the existing iterative
algorithms proposed in [5] and [12] in several respects. The
approaches in [5] and [12]transform the fourth-order objective
function into a quadratic function by replacing the integrand
jH2

0 (e
j!) � H2

0 (e
j(!+�)) � e�jk !j2 by jH0(e

j!)F0(e
j!) �

H0(e
j(!+�))F0(e

j(!+�)) � e�jk !j2. The proposed approach does
not modify the objective functionE. Instead it utilizes a self-
convolution technique to expressE as a formal quadratic function
as in (6). Here the term “formal” is used to stress that vectorg in
(6) depends onh nonlinearly as can been seen in (3). This leads
to different formulas that can be used to compute the intermediate
impulse response ofH0 in each iteration. For example, in [12] the
impulse response is evaluated using [12, eqs. (10), (5), and (7)],
while the proposed method computeshs using (9). Note thaths
in (9) can be evaluated more efficiently than its counterpart in [12]
since the matrices used in (9) are simple Hankel matrices while
matricesU and Us used in [12] involve more computations and
many logical decisions. In Section III, design examples will be
presented to demonstrate the efficiency of the proposed method as
compared to the methods of [5] and [12].

D. Design of Low-Delay QMF Banks

In a linear-phase FIR QMF bank, the reconstruction delay is
N � 1, i.e., the order of the analysis and synthesis filters. In some
applications, QMF banks with reconstruction delays less thanN � 1
are desired. In these applications, Algorithm 1 needs to be modified
accordingly as shown below.

Algorithm 2

Step 1: Design a half-band, lowpass FIR filter of lengthN with
group delaykd=2. The coefficients of the filter designed
are then used as an initialh0.

Step 2: CalculateJ andH.
Step 3: Evaluateh using

h = 2(4JQrH+ �Qa)
�1
Jb: (10)

Step 4: Updateh0 using

h0 = �h+ (1� �)h0: (11)

Step 5: Ifkh� h0k2 < ", useh as the impulse response ofH0,
and constructG0(z) = H0(z); H1(z) = H0(�z), and
G1(z) = �H0(�z). Otherwise, repeat from Step 2.

It has been observed from experiments that undesirable artifacts
may occur in the transition region of filterH0 when the reconstruction
delaykd is significantly smaller thanN � 1. A possible approach to
reduce the amplitudes of these artifacts is to modify the objective
function in (6) by including an additional term

�1
!

!

jH0(e
j!)� e�j!k =2j2d!

where [!t1; !t2] is an interval in the transition region where the
artifacts occur. It can be shown that

E = 4gTQrg� 4gTb+ h
T (�Qa + �1Qt)h

� 2�1d
T
h+ � + �1(!t2 � !t1)

whereQt = fqijg is a symmetric matrix with

qij =
!t2 � !t1 i = j

1
ji�jj [sin(ji� jj!t2)� sin(ji� jj!t1)] i 6= j

TABLE I
COMPARISONS OF THEPROPOSEDMETHOD WITH THE METHOD OF [5]

for i; j = 1; . . . ; N , and

d =

d0
...

dN�1

with di = [sin(�i!t2) � sin(�i!t1)]=�i and �i = �i + kd=2. By
settingrhE = 0, we obtain

h = (4JQrH+ �Qa + �1Qt)
�1(2Jb+ �1d): (12)

Equation (12) can now replace (10) to provide effective control on
the amplitudes of artifacts in the design of low-delay QMF banks.

III. D ESIGN EXAMPLES

In this section, two design examples are given to illustrate the
proposed method. The performance of the designs is evaluated in
terms of:

• floating-point operations in millions (MFLOPS) used;
• minimum stopband attenuation

Aa = min
! �!��

[�20 log10 jH0(e
j!)j]

• peak-to-peak passband ripple

Ap = max
0�!�!

[20 log10 jH0(e
j!)j]

� min
0�!�!

[20 log10 jH0(e
j!)j]

where!p is the passband edge;
• peak reconstruction error

PRE= max
!

20 log10 H2
0 (!)�H2

0 (! + �)

• signal-to-noise ratio (SNR)

SNR= 10 log10
energy of the signal

energy of the reconstruction noise

= 10 log10
�x2(n)

�[x(n)� x̂(n+ kd)]2
:

As Example 1, a linear-phase QMF bank was designed on the
basis of the following specifications:N = 32, � = 1, !p =
0.2, !s = 0.3, � = 0.6, and" = 5�10�4. The initial h was
obtained by using the window method. For comparison purposes, the
method of Chen and Lee [5] and the method in [12] were applied to
design QMF banks with the same design parameters. These methods
were programmed using MATLAB and run on a Pentium PC/100.
The number of frequency sampling points was set to8N when
implementing the method of [5], whereN is the filter length. The
results are summarized in Table I where SNRs and SNRr denote
the SNR with a step input and a random input, respectively. The
amplitude responses of the analysis filters and the reconstruction error
of the QMF bank designed are depicted in Figs. 2 and 3, respectively.
The amplitude responses of the filters designed by the method in [5]
are also shown in Fig. 2. As can be observed from the comparisons,
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Fig. 2. Amplitude responses of the analysis filters of Example 1: solid line:
the proposed method; dotted line: the method of [5].

Fig. 3. Reconstruction error for Example 1.

TABLE II
COEFFICIENTS OF THELOWPASSANALYSIS FILTER IN EXAMPLE 1

the proposed method can achieve almost the same design as the
methods of [5] and [12] but with much less computation than that
of [5] and less CPU time than that of [5] and [12]. The coefficients
of the lowpass analysis filter obtained by the proposed method are
listed in Table II.

It follows from (5) that the weight� provides a useful tradeoff
among the parametersAa, PRE, andAp. In general, with fixedN;!p,
and!s, a large� leads to improved stopband attenuation but degraded

Fig. 4. (a)Ap versus�, (b) Aa versus�, and (c) PRE versus� for N =

32, !p = 0.2, and!s = 0.3.

TABLE III
COMPARISONS OF THEPROPOSEDMETHOD WITH THE METHOD OF [4] AND [12]

Fig. 5. Amplitude responses of the analysis filters for Example 2: solid line:
our design; dotted line: from [4].

Ap, while a small� improves PRE andAp but tends to reduceAa.
The variation ofAa; Ap, and PRE with� for 0.005� � � 1, N =

32, !p = 0.2, and!s = 0.3 is illustrated in Fig. 4. Note that a very
small �, say less than 0.005, should be avoided to prevent matrix
4JsQrHs + �Qas in (9) from becoming ill-conditioned.

As Example 2, an FIR QMF bank with low reconstruction delay
was designed. The design parameters wereN = 32, kd = 15,
� = 0.3, �1 = 4�10�5; !p = 0.175,!s = 0:345; !t1 = 0.175,
!t2 = 0.225,� = 0.5, and" = 10�4. The initial h0 was obtained
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Fig. 6. Reconstruction error for Example 2.

Fig. 7. Group delay of filterH0 for Example 2: (a) passband and (b)
transition band.

by first designing a linear-phase filter using the window method
and then truncating its impulse response to the lengthN=2+ floor
(kd=2) + 1 and padding it withN=2� floor (kd=2) � 1 zeros.
To identify the interval[!t1; !t2], we first designed a filter bank
with Algorithm 2 in which h is computed by using (10). The
amplitude response ofH0 showed a region in the transition band
with undesirable artifacts. Based on this,[!t1; !t2] was identified
as [0.175, 0.225]. For comparison purposes, we refer to [4, Example
6.6.1] which was designed with a time-domain approach. The method
proposed in [12] was also applied to design the same filter bank.
The results are summarized in Table III. The amplitude responses
of the lowpass analysis filters designed with the proposed method
and the method of [4] are depicted in Fig. 5. The reconstruction
error of the filter bank designed is shown in Fig. 6. The group delay
characteristic of the designed filterH0 is shown in Fig. 7(a) and (b).
In Fig. 7(a) we note that the filter designed has approximate linear
phase in the passband. Fig. 7(b) shows that the group delay varies

somewhat in the transition band but since the signal is significantly
attenuated at these frequencies, the delay distortion introduced is
less important. As can be observed from Table III and Fig. 5, the
proposed method improves the stopband attenuation by more than
14 dB relative to that in the example from [4]. In addition, the
quadrature mirror-image structure of the proposed design is amenable
to efficient polyphase-type implementation which needs only half of
the computation required by the low-delay filter banks of [4].

MATLAB codes for the design of conventional and low delay QMF
banks using the proposed method are available from the authors upon
request.

IV. CONCLUSION

A new algebraic method for the design of two-channel QMF banks
has been proposed. The new method is efficient and can be used to
design both linear-phase and low-delay QMF banks. From the design
examples, it is observed that the proposed method leads to filter banks
with improved performance in terms of increased minimum stopband
attenuation.
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