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On Optimal Low-Rank Approximation

120 ‘ NAND2 Fanout=3 0.35 um CMOS of Multidimensional Discrete Signals
= VT=VT(T0)-0.15V VDD=2.5V
+—VT=VT(T0)+0.15V VDD=2.5V Wu-Sheng Lu and S.-C. Pei

100

~ o VT=VT(To0)-0.15V VDD=1.2V
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= Abstract—This brief describes an algorithmic development of the op-
= 80 — timal low-rank approximation (LRA) of multidimensional (M-D) signals
= with M > 3. The algorithms developed can be regarded as a dimensional
w generalization of the singular value decomposition (SVD) which is of
> 60 fundamental importance for analyzing signals that can be represented
° in a matrix form. In particular, iterative algorithms for optimal and
o suboptimal LRA of three-dimensional (3-D) arrays are presented in detail.
Application of the 3-D LRA to the compression of image sequences is
40 — discussed.
20 — ‘ I. INTRODUCTION
! Data array representation and approximation are of practical impor-
0 ) | tance as they are closely related to the problem of data compression
0.0 0.2 0.4 0.8 0.8 ‘ 1.0 as well as many decomposition-based digital signal processing tech-
niques [1]-[8]. There are two distinct classes of transform techniques
VT/vDD that have proven useful for signal representation and approximation.
Fig. 4. Delay shift versus’ /Vp > at 27C for 2-input NAND with fanout  One is the class of “interdomain” transform techniques that transform
= 3, 0.35um CMOS andAVr = +0.15 V. the signals at hand from the spatial (or time) domain to the frequency

domain or vice versa. The discrete Fourier transform (DFT) and
discrete cosine transform (DCT) are well known representatives
IV. CONnCLUSION in this class. The other is the class of “intradomain” transform
As a result of our study outlined herein, a CMOS supply voltagechniques that transform the signals within the same domain. The
of around 1 V is expected to be widely accepted as a standard in #xegular value decomposition (SVD) is a typical example belonging
design of the next generation bulk-CMOS and SOI VLSI, offeringp the second class. In [8] a multidimension#-D) outer product
a temperature insensitive operation. Thus the transition from todagspansion (OPE) algorithm was proposed and applied to several
3.3 V supply voltage standard to the temperature insensitive supgbmple images. Although the algorithm developed in [8] does not
voltage of around 1 V could happen sooner than most designers hpweduce optimal LRA in general, the results reported there have
predicted. demonstrated that lower bit rate can be achieved by considering the
problem in a higher dimension. Mathematically a discht® signal
can be treated as an'th-order tensor, and the approximationhfD
signals can be considered in tensor spaces. Reference [9] presents an
[1] R. Brodersen, A. Chandrakasan, and S. Sheng, “Design techniques d@proximation theory in tensor product spaces.
portable systems,ISSCC'93 Tech. Dig.pp. 168-169, 1993. This brief describes an algorithmic development of the optimal
[2] M. Kakumu, “Process atnd device technologies of CMOS devices fohy-rank approximation (LRA) oM-D discrete arrays withd > 3.
g’%ﬁ'ggggiﬂ;firggghs' IEICE Trans. Electronics vol. E76-C, PP. 1he M.p LRA also belongs to the class of intradomain methods
3] S. W. Sun and P. G. Y. Tsui, “Limitation of CMOS supply-voltage@nd can be viewed as a dimensional generalization of the SVD.
scaling by MOSFET threshold voltage variatiod?EE J. Solid-State The dimensions of arrays considered here are higher than two,
Circuits, vol. 30, no. 8, pp. 947-949, Aug. 1995. and emphasis will be given to the three-dimensional (3-D) case.
Application of the proposed LRA algorithms to the approximation
of image sequences is presented in Section lll.
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Il. OpTIMAL LRA oOF 3-D ARRAYS

A. A Brief Overview of the SVD

Let A be anm x n real-valued matrix of rank, the SVD of 4
is the decompositiont = UXV? whereU andV arem x m and
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n x n orthogonal matrices, and where| J denotes union of sets. Moreover, we can computeRhe
- norm of D in terms of theF-norms of D. i, Dy ;, and D. i,
_ ie.,
Y= B 0 m n p
or DI =Y D2 ille = > 1Dy il = D I1D- kll7- (4)
0 0 i=1 =1 k=1
with o1 > o2 > -+~ > o, > 0. The column vectors oU(V) A 3-D arrayD. is said to be elementary if it can be expressed as an
are called the left (right) singular vectors, afigh, - --, o, } are the outer product of three vectors € R, v € R", w € R”, namely,
nonzero singular values of. If we denotel’ = [dy -~ @m] and D, = {d,;;} with di;i = u(i)v(j)w(k). In this brief, an elementary
V = [1 -+ 9], then the SVD of4 can be written as array is expressed d@. = u - v - w. Obviously, any finite array can
r r be decomposed into a sum of finitely many elementary arrays. An
A= Z oRligdE = Z wpvl (1) important structural parameter &f is the rank ofD that tells us the
k=1 k=1 minimum number of elementary arrays needed to consttuct

12 12 _ Definition: The rank of anm xn x p array D is the smallest integer
whereu,, = o,/ 4, andv, = o,/ 9, are called the weighted left . g ,ch thatD = S ug - v - wi, whereu, € R™, vy € R,

and right singular vectors, respectively. Fir < r, we construct gng ., ¢ RP.

matrix Ar of rank K as Note that this definition is consistent with the concept of rank for
K - K ordinary matrices. The optimal LRA problem to be investigated in
A = Z oripdr = Z upvr . (2) this section can now be formulated as follows. Given a 3-D array
k=1 k=1 D={dijr,1<i<m,1<j<n 1<k<p}ofrankr, find a
The following properties are of crucial importance in many applf(-ank K approximationDy such that
cations of the SVD, and will be frequently cited in the rest of the ID - Dxllr = min D - Drcllp. (5)
paper. ranl((l:)K):I\'

Property 1: Each pair of singular vectorsi, 75} satisfies . .
perty P g Bt O} Using the definition of rank, the above problem can be reformulated

orly = Ady (3a) as to find for a givenD vectorsuy € R", vy € R™, andw; € R”
L T for k = 1, ---, K such that the error function
ortr = A Uyg. (3b)
) o . . K 2
We ghall_ call a pair of vectors satls_fylng_(s) a _Schmldt pair. Thus a T = % D— Z T 6)
matrix with rankr possesses Schmidt pairs which can be obtained — »
by the SVD of the matrix. _ o
Property 2: [10]: The matrix A defined by (2) is an optimal is minimized.
rank-K’ approximation of4 in the 2-norm andF’-norm. Namely,
. . C. An Optimal Solution to the 3-D LRA Problem
A—Agllz,r = min A— Ak|l2, #- )
rank(A )=~ Define
Property 3: The SVD of A — 37 _ vy is given by}, _ | L v W
urvf for any integerp between 0 tor. u=|: |, v= [ |, w= | :
From Property 3 it follows that the SVD ofi can be obtained 7 UK | e WK | o
by recursivelycomputing the first Schmidt pair and the associated
(|argest) Singu|ar value of where Uk, Vk, andw;, themselves are vectors denoted by
» Ui Vi wi |
p ; ,T
A - ,; UV up = , v = , wp =
Umk Unk Wpk
forp =0,1,---,r — 1. -
If we temporarily fixu,, - - -, ux in (6) and use (4), the error function
B. Notation and Problem Formulation can be computed as follows:
A 3-D real-valued discrete array with finite region of support can m K e
be denoted byD = {d;;, 1 <i<m,1 < j<n 1<k<p} Jr(u, v, w) Z% Z D, ;- Z Uik(vkwl%)
and the FrobeniusF’) norm of D is defined as i=1 k=1 F

™m K

m np 1/2 . o .
”D”F: <Zzzd?ﬂ”> . Ztr{;[ x, i ;Uk(ul‘bk):|

i=1 j=1 k=1 K
.
With the index: fixed, arrayD induces a matrixD,. ; = {dij, i '[D”v" =D wik(vwy )} }
fixed,1 < j < n,1 <k < p}. Similarly, matricesD, ; andD.. [ =t
can be induced fronD by fixing indicesj andk. respectively. Note _1 Z Z dpibricr:
that D can be expressed in terms of these matrix slices as et IR

m g P K
D= U D, = U Dy, ;= U D. — Z vp 8o kwi + ¢y 7
i=1 j=1 k=1 k=1
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where case is treated in Section IlI-D where a suboptimal solution to the
v edTu b e e — wT (82) problem will be deduced. _
T Ak e ke Bk B kR T From (8a) it follows that bothC' and B are symmetric and
Sy k= Z wirDy i (8b) nonsingular, hence (10) can be written as
’71,7 v =[C""(w)® ]S, w (13a)
co =1 Z 1D, il w=[B™"(v)® L,]S] v (13b)
=t where the property that for invertibl® and Q, (P ® Q)™ =
Hence,0.J /Ovi. = 0 andd.Jx /0wy, =0 for k =1,---, K yield P! @ Q7' has been used and !, B! have been written
K as C*(w), B~'(v) to emphasize their dependence @nand v.
Z arjCriv; = S LWk (9a) Equation (13) suggests the following iterative scheme for solving
j=1 (10):
K iy () _ o1 (0 o 0!
Z ax;brjw; =S vk (9b) f(.) [C_1 (wm )( In]STxu('v) (14)
= W' =[BT (vV) @ I,)5; v (14b)
By using the Kronecker product notation, the abdvesets of equa- and
tions can be combined into the following pair of matrix equations: RCES RO (1- @yl (140)
(C @ Lo =Sw (10a) wt Y =i (1- (}’,)H,'(i) (14d)
(BoIL)w=Slv (10b) _ _
fori = 0,1,---, where0) < « < 1 is a scalar weight. Our
where numerical study of the algorithm indicates that a valuexdfetween
raiiciy -+  QKCLK ] 0.4 and 0.8 often leads to a satisfactory convergence rate. The
A21Co1 Aok Cak initial vectors v® andw® in (14) can be chosen arbitrarily, but
¢= : ; a better choice is to form'® and w® using the firstk pairs
drrer e e of weighted singular vectors of.. The iteration continues until
FLERL RIS loCFY — @) 4[| *Y —w || is less than a prescribed tolerance,
[anbie o arkhir ] and at that timev = +“*" andw = w*" are claimed to be
B = azbar e aaxchax (11a) the solution of (10). Although a mathematical convergence proof of
: : scheme (14) has not been available, in our simulation study scheme
laxibrr ++ axrbrr (14) works well for arrays of various sizes.
S, =diag{S..1, -+ Su. x }. (11b) Now recall that the above solution vectarsand w are obtained

with a fixed «, hence the triple{u, v, w} is unlikely to be the one
that minimizes/x in (6). However, since a quasioptimal pdir, w }
I, and I, aren x n andp x p identity matrices, respectively, andhas been obtained, the pair can be used to obtain an improwsd
@ denotes the Kronecker product [10]. minimizing Jx in (6) with respect tou, with v andw fixed. From
Equations (10a) and (10b) are two key equations in our study k&) we have
cause they not only characterize the vectoamdw that minimize the K
error functionJx (with a fixedw!), but also exhibit a structure similar OJx _ Z beor s — 1
. . . y — kjCkjUy la, k (15)
to (3a) and (3b), from which the consistency of our development with Quy,
the conventional SVD can be appreciated. As a matter of fact, if array{.| i .
D is degenerated to a matrix and thus vectprs. 1 <i < K} and Wherebx; andc;; are defined in (8a), and
{ax;} are eliminated in (8)—(10), then matri., . defined by (8b) vi D,
becomes matrixD itself, and (9a) and (9b) become

J=1

hl,’ E = Wk. (16)
i vi D,
Z ckjvj = Dwyg (12a) kZem
=1 Hence,dJx /Ou, = 0 for k = 1, ---, K is the linear system of
K - equation given by
Z brjw; =D" vy (12b) (B.© Ln)u = h,
j=1
Note that although (12a) and (12b) are still nonlineawimnd w, Where
they are readily solvable: the SVD dP provides a solution to biieir o+ bhikcik ho s
(12). In fact, if {vg, 1 < k¥ < K} and{wi, 1 < k < K} are barcar -+ boxcox o
the first K pairs of the singular vectors, (12a) and (12b) become Be = : : o he = : : a7
orve = Dwy, opwr = D%, which are satisfied by, and w : ) o i

automatically since{vy,ws} is the kth Schmidt pair of D. On Kick1 KKCKK

comparing (12) to (9), we see a substantial difference between hidce B. is symmetric and nonsingular, we obtain
two-dimensional (2-D) and 3-D cases: as fards> 1, vectors w=(B=1 & L) (18)
v and wy in (9) cannot be obtained by the SVD since matrix c
S, 1/|lux||* depends on inde, and the Schmidt pairs obtainedWith the new vectoru from (18), matricesS.., B, and C in (11)
from that matrix with different index: are not orthogonal to each are updated, and an improved pdir, w} can be computed using
other in general. In what follows, we shall focus on (10) and develaeration (14). This procedure repeats until the difference between
an iterative method to solve the problem with > 1. The K’ = 1 the new triple{u, v, w} and the preceding triple is less than a given
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(16), (17), and (18) Fig. 2. Algorithm 2—the iterative approach to solving the 3-D optimal LRA

problem with k' = 1.

Tt T m ey, rnitialul

initial u

! Tteration II } : compute v;and w

' ! by the SVD of § 1

. Iteration I: find v, w by ‘

, using (8), (11), and (14) }

I I

| !

! ‘ difference between the yes "
! ! new and the preceding output the solution
' ' triple < £7 and stop
' difference between the yes! -

! new and the preceding ! output the solution no

t triple < 7 ' and stop

I !

| ‘ fix uy fix vy and wy

1 no 1

1 I

! I

E fix u fixvand w E find ) by using

‘ ' (22) or (23)

E find u by using i

i :

' t

1 !

1 Ll

1 !

Fig. 1. Algorithm 1—the two-level iteration approach to solving the 3-CSimilarly, denotingB.* = {g;}, (18) then implies that, fok =

optimal LRA problem. 1, .-, K,

K
tolerance. In the rest of the brief, the above solution procedure will g = Z Grjhe. ;. (20)
be referred to as Algorithm 1, and a diagrammatic explanation of the =

algorithm is shown in Fig. 1. , ,

Two remarks about the algorithm are now in order. First, a solutidrrom (19) we see that each vectﬁil)(zﬁil)‘) can be evaluated
obtained from Algorithm 1 is only #ocal minimum of Jx in (6). by summing upk vectors, each of which is a result of a matrix
By (6) we see thafl is a highly nonlinear function of the unknown multiplication of sizen x p by p x 1 (p x n by n x 1), followed
vectors—if we collect alk, v, andw and definer = [« T wT]T, by a scalar multiplication. As compared to (14), (19) considerably
thenJx is a 6th-order polynomial of. Note also that Algorithm 1 reduces the data memory required. Similarly, compared to (18), the
starts with an initiak., consequently the solution so obtained dependaaluation ofu, using (20) requires a much-reduced data memory.
on the initialu. A possible way to obtain an improved local minimumSo for algorithm implementation, (14) and (18) in Fig. 1 should be
is to set up an additional optimization process at a level higher thegplaced by (19) and (20), respectively.
the optimization sketched in Fig. 1 as a supervisory mechanism which
feeds an initiak: into the optimization process in Fig. 1, compares its. TheK = 1 Case and a Suboptimal Solution
output t.o_t_he outputs obtained from different initial and_generates The K = 1 case corresponds to the problem of finding vectors
a new initial » that would lead to a better local solution. Second&1 € R™, v, € R", andw, € R? suchthatl, = ||D—uy-v1-w: ||%

the ux's (and ve's and w’s) obtained from Algorithm 1 are not i minimized. with i’ = 1, (9a) and (9b) are reduced to
orthogonal in general. Although similarity between the key equations

(3) (for matrices) and (10) (for the 3-D arrays) exists, the crucial lud |l [wi|*or = So, 1wy (21a)
difference between them is that (3) impliegir, = AATu, and llwd|)? [Jor ||Pw: = S) 1oy (21b)
ot = AT Ady, thus the orthogonality of @;’s} (and i;'s) is . o
an immediate consequence from the theory of symmetric matricé§» o1v° = S,w” and oyw” = S;v. where o1 =
however, even for a fixed, the matrices involved in (10), namely |71l llwill; v* = vi/[or]], w* = wi/[jw:]], and
S., B, and C, are dependent nonlinearly on vectarsaand w, and ) ‘ 1 m
therefore the orthogonality ofux’s} (and {vi's} and {w.’s}) do Se = Se/llaall* = Tarl? > unDa.
not hold for M = 3 and beyond. =

. , , On comparing (21) to (3), we conclude that and «w* can be
D. Evaluation ofu, v“"", and w+" obtained as the first Schmidt pair & 1. and o is the largest

The dimensions ofo+Y, w(*Y in (14) and« in (18) are singular value of5, ;. Having obtainedr,, v*, andw*, v; andw,
Kn, Kp, and Km, which could be fairly high for a large size can be obtained as, = o/*v* andw, = o./?w". Evidently, this
array. Consequently, the matrices involved in (14) and (18) may cau®¢D approach greatly reduces the computation complexity that the
storage difficulties for the computer. The problem can be consideralily > 1 case requires. Again we recall that the abeyeandw, are
eased off by taking the advantage of the special structure of themputed to a fixed;, hence the second-level iteration is still needed
Kronecker products involved as well as the block diagonal structuhere to update;. Taking &' = 1 in (15) and setting.J; /du1 = 0,

of S,. As a matter of fact, if we denoté'~!(wV) = {f,&?} and we obtain
B '[v] = {e)}, then (14) implies that, fok = 1,---, K, 1 22)

U] = ————— h,.
T TPl

K
'17,(“1) = Z f,&;)sx,j'wgl) (19a) i.e.,

=1 'U*TDa.ql

K 1
~ (i (i) «T (i = : w®. 2
) =3 s ol (190) “=o s 23)

c A
j=1 v Da:,m
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Fig. 3. Even number of frames. The two upper rows are original images, and the two lower rows are optimal rank-20 approximations.

Equation (23) provides a formula for the evaluatior:efin terms of We now conclude this section with two remarks. First, we em-
o1,v", andw™. The vectoru; so obtained is in turn used to updatephasize that the solution obtained by the above approach is a local
matrix 5. whose SVD yields an improved Schmidt pdir*, w*} one, and that the rank: approximationDy is only suboptimal
ando;. Like the general case, this iteration continues until the neexcept thel’ = 1 case. This is to say that for a giveid > 1, the
triple {u1, v1, wy } shows no difference from the preceding one up tapproximation made using this method yields larger error as opposed
a prescribed tolerance. The above solution procedure will be refertecthat of Algorithm 1. This is another important difference between
to as Algorithm 2, and a diagram that summarizes the algorithmtlse processing of 3-D and 2-D arrays. As was noted at the end of
shown in Fig. 2. Section II-A, for a 2-D array these two solutions are identical. We

Motivated by its reduced computation complexity, a suboptimahall touch upon this issue again in Section Ill. Second, it is noted
solution to the LRA problem may be obtained by applying Algorithnthat the suboptimal solution was also proposed in [8]. However, the
2K times. That is, once the first optimal tripfe(, v, w: } is found, analytic method used there to compute the solution is different from
the residual array ours.

Ri=D—uy-vy-w;
I1l. A PPROXIMATION OF AN IMAGE SEQUENCE

In this section, we describe an example in which the algorithms
developed in Section Il are applied to an image sequence in order
to obtain its approximations that are close enough to the original

k! sequence with substantially reduced data storage. The sequence at
Re—r =D — Z i Ui hand contains sixteen frames 8t x 81 images that describes a
=t circular object with 256 gray levels (8 bits) rotating aba&f with
is constructed, to which Algorithm 2 is applied to obtain thke triple  respect its center. This image sequence is selected for testing the
{u, vk, wi }. As far as the rank oD is greater tharik, applying algorithms for two reasons: 1) each image has edges (one line segment

is evaluated, to which the same algorithm is applied to obtain the
second triple{uz, v2, w2} that best approximateB;. In general, at
the kth step of the procedure, thé — 1)th residual array

Algorithm 2 K times generates a residual sequeRgeR-,---, Rk and one circle) as well as smooth areas where the gray levels are
whoseF-norm is strictly monotonically decreasing, and efiéh.||» linearly distributed; and 2) a large portion of the object, i.e., the disk,

can be viewed as the error of the approximationidfby D, = is moving throughout the sequence. The even number of images of the
Zle u;-v;-w;. We shall callDx so obtained a suboptimal solutionsequence are shown in the two upper rows in Fig. 3. Algorithms 1 and

to the LRA problem. 2 with o = 0.5 were applied to the sequence wif varying from
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TABLE |
APPROXIMATION ERRORS OFALGORITHMS 1 AND 2 IN ExAmMPLE 1

Algorithm 1 Algorithm 2

rank K | appr. error Mflops || appr. error |  Mflops 2]
2 54.6972 2.7105 54.6972 | 46.6412
4 37.3053 2.3816K 40.9826 | 143.1240 3]
6 30.5844 4.0426K 33.7879 | 322.8889 [4]
8 26.3313 5.6774K 29.6992 | 500.5248
10 23.4154 | 15.7483K 25.7247 | 603.3538 [5]
12 21.1695 | 21.5096K 23.2810 | 739.7914
14 19.7351 | 27.9546K 21.6194 | 897.4940 [6]
16 18.1256 | 42.8397K 19.8908 | 1.1770K
18 16.3969 | 301.6440K 18.9858 | 1.3349K 71
20 15.1310 | 1270.37K 17.7717 | 1.4397K
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A Noise-Exclusive Adaptive Filtering Framework
for Removing Impulse Noise in Digital Images

H. Kong and L. Guan

Abstract—A class of noise-exclusive adaptive filters for removing

It is important to stress that by using the proposed approximatiénpulse noise from digital images is developed and analyzed in this brief.
method combined with the coding techniques similar to [4] or [11][he filtering scheme is based on noise detection using a self-organizing

where statistical properties of the singular vectors are taken i
account, substantially higher compression ratio can be achieved.

IV. CONCLUDING REMARKS

it ural network and noise excluding estimation. These filters suppress

impulse noise effectively while preserving fine image details. Applications
of the filters to several images show that their properties of efficient
impulse noise suppression, edges and fine details preservation, minimum
signal distortion, or minimum mean square error are better than those
of the traditional median-type filters.

We have described two algorithms for LRA of 3-D signals.

Extension of the algorithms to the four-dimensional (4-D) case

IS |. INTRODUCTION

straightforward, and omitted here. It is interesting to note that the ) ) . )
problem of approximating a 2-D array can also be tackled in a 4.pWhen an image is coded and transmitted over a noisy channel

framework. Indeed, using the one-to-one mapping
D@, 4,1, k)= A[({ = D)Na+ 7, I = 1)Na + k]
wherel < i, 1 < Ny, 1< j, k < Ny, with Ny and N» being the

positive integers satisfying = N1 N, the 2-D arrayA is converted
into the 4-D array D of sizeéVy x Na x Ny x Na.
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or degraded by electrical sensor noise, degradation appears as salt-
and-pepper noise (i.e., positive and negative impulses) [1]. Removal
of such impulse noise while preserving the integrity of the image
is an essential issue in image processing. The well-known median
filter has been recognized as an effective technique for impulse
noise suppression due to its edge preserving characteristic and its
computational simplicity [2], [3].
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