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Fig. 4. Delay shift versusVT =VDD at 27�C for 2-input NAND with fanout
= 3, 0.35�m CMOS and�VT = �0:15 V.

IV. CONCLUSION

As a result of our study outlined herein, a CMOS supply voltage
of around 1 V is expected to be widely accepted as a standard in the
design of the next generation bulk-CMOS and SOI VLSI, offering
a temperature insensitive operation. Thus the transition from today’s
3.3 V supply voltage standard to the temperature insensitive supply
voltage of around 1 V could happen sooner than most designers have
predicted.
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On Optimal Low-Rank Approximation
of Multidimensional Discrete Signals

Wu-Sheng Lu and S.-C. Pei

Abstract—This brief describes an algorithmic development of the op-
timal low-rank approximation (LRA) of multidimensional (M-D) signals
with MMM���3. The algorithms developed can be regarded as a dimensional
generalization of the singular value decomposition (SVD) which is of
fundamental importance for analyzing signals that can be represented
in a matrix form. In particular, iterative algorithms for optimal and
suboptimal LRA of three-dimensional (3-D) arrays are presented in detail.
Application of the 3-D LRA to the compression of image sequences is
discussed.

I. INTRODUCTION

Data array representation and approximation are of practical impor-
tance as they are closely related to the problem of data compression
as well as many decomposition-based digital signal processing tech-
niques [1]–[8]. There are two distinct classes of transform techniques
that have proven useful for signal representation and approximation.
One is the class of “interdomain” transform techniques that transform
the signals at hand from the spatial (or time) domain to the frequency
domain or vice versa. The discrete Fourier transform (DFT) and
discrete cosine transform (DCT) are well known representatives
in this class. The other is the class of “intradomain” transform
techniques that transform the signals within the same domain. The
singular value decomposition (SVD) is a typical example belonging
to the second class. In [8] a multidimensional (M-D) outer product
expansion (OPE) algorithm was proposed and applied to several
sample images. Although the algorithm developed in [8] does not
produce optimal LRA in general, the results reported there have
demonstrated that lower bit rate can be achieved by considering the
problem in a higher dimension. Mathematically a discreteM-D signal
can be treated as anM th-order tensor, and the approximation ofM-D
signals can be considered in tensor spaces. Reference [9] presents an
approximation theory in tensor product spaces.

This brief describes an algorithmic development of the optimal
low-rank approximation (LRA) ofM-D discrete arrays withM � 3:

The M-D LRA also belongs to the class of intradomain methods
and can be viewed as a dimensional generalization of the SVD.
The dimensions of arrays considered here are higher than two,
and emphasis will be given to the three-dimensional (3-D) case.
Application of the proposed LRA algorithms to the approximation
of image sequences is presented in Section III.

II. OPTIMAL LRA OF 3-D ARRAYS

A. A Brief Overview of the SVD

Let A be anm � n real-valued matrix of rankr; the SVD ofA
is the decompositionA = U�V

T whereU andV arem �m and
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n � n orthogonal matrices, and

� =

�1
. .. 0

�r

0 0

with �1 � �2 � � � � � �r > 0: The column vectors ofU(V )

are called the left (right) singular vectors, andf�1; � � � ; �rg are the
nonzero singular values ofA: If we denoteU = [û1 � � � ûm] and
V = [v̂1 � � � v̂n]; then the SVD ofA can be written as

A =

r

k=1

�kûkv̂
T
k =

r

k=1

ukv
T
k (1)

whereuk = �
1=2
k ûk and vk = �

1=2
k v̂k are called the weighted left

and right singular vectors, respectively. ForK � r; we construct
matrix AK of rank K as

AK =

K

k=1

�kûkv̂
T
k =

K

k=1

ukv
T
k : (2)

The following properties are of crucial importance in many appli-
cations of the SVD, and will be frequently cited in the rest of the
paper.

Property 1: Each pair of singular vectorsfûk; v̂kg satisfies

�kûk =Av̂k (3a)

�kv̂k =A
T
ûk: (3b)

We shall call a pair of vectors satisfying (3) a Schmidt pair. Thus a
matrix with rankr possessesr Schmidt pairs which can be obtained
by the SVD of the matrix.

Property 2: [10]: The matrixAK defined by (2) is an optimal
rank-K approximation ofA in the 2-norm andF -norm. Namely,

kA�AKk2; F = min
rank(Â )=K

kA� ÂKk2; F :

Property 3: The SVD ofA � p
k=1 ukv

T
k is given by r

k=p+1

ukv
T
k for any integerp between 0 tor:

From Property 3 it follows that the SVD ofA can be obtained
by recursivelycomputing the first Schmidt pair and the associated
(largest) singular value of

A�

p

k=1

ukv
T
k

for p = 0; 1; � � � ; r � 1:

B. Notation and Problem Formulation

A 3-D real-valued discrete array with finite region of support can
be denoted byD = fdijk; 1 � i � m; 1 � j � n; 1 � k � pg;
and the Frobenius(F ) norm ofD is defined as

kDkF =

m

i=1

n

j=1

p

k=1

d
2
ijk

1=2

:

With the indexi fixed, arrayD induces a matrixDx; i = fdijk; i
fixed, 1 � j � n; 1 � k � pg: Similarly, matricesDy; j andDz; k

can be induced fromD by fixing indicesj andk; respectively. Note
thatD can be expressed in terms of these matrix slices as

D =

m

i=1

Dx; i =

n

j=1

Dy; j =

p

k=1

Dz; k

where denotes union of sets. Moreover, we can compute theF -
norm of D in terms of theF -norms of Dx; i; Dy; j ; and Dz; k;

i.e.,

kDk2F =

m

i=1

kDx; ik
2

F =

n

j=1

kDy; jk
2

F =

p

k=1

kDz; kk
2

F : (4)

A 3-D arrayDe is said to be elementary if it can be expressed as an
outer product of three vectorsu 2 Rm; v 2 Rn; w 2 Rp; namely,
De = fdijkg with dijk = u(i)v(j)w(k): In this brief, an elementary
array is expressed asDe = u � v �w: Obviously, any finite array can
be decomposed into a sum of finitely many elementary arrays. An
important structural parameter ofD is the rank ofD that tells us the
minimum number of elementary arrays needed to constructD:

Definition: The rank of anm�n�p arrayD is the smallest integer
r such thatD =

r
k=1 uk � vk � wk; whereuk 2 Rm; vk 2 Rn;

and wk 2 Rp:

Note that this definition is consistent with the concept of rank for
ordinary matrices. The optimal LRA problem to be investigated in
this section can now be formulated as follows. Given a 3-D array
D = fdijk; 1 � i � m; 1 � j � n; 1 � k � pg of rank r; find a
rank K approximationDK such that

kD�DKkF = min
rank(D̂ )=K

kD � D̂KkF : (5)

Using the definition of rank, the above problem can be reformulated
as to find for a givenD vectorsuk 2 Rn; vk 2 Rm; andwk 2 Rp

for k = 1; � � � ; K such that the error function

JK = 1

2
D �

K

k=1

uk � vk � wk

2

F

(6)

is minimized.

C. An Optimal Solution to the 3-D LRA Problem

Define

u =

u1
...
uK Kn�1

; v =

v1
...
vK Km�1

; w =

w1

...
wK Kp�1

whereuk; vk; andwk themselves are vectors denoted by

uk =

u1k
...

umk

; vk =

v1k
...

vnk

; wk =

w1k

...
wpk

:

If we temporarily fixu1; � � � ; uK in (6) and use (4), the error function
can be computed as follows:

JK(u; v; w) = 1

2

m

i=1

Dx; i �

K

k=1

uik(vkw
T
k )

2

F

= 1

2
tr

m

i=1

D
T
x; i �

K

k=1

uik(wkv
T
k )

� Dx; i �

K

k=1

uik(vkw
T
k )

= 1

2

K

k=1

K

j=1

akjbkjckj

�

K

k=1

v
T
k Sx; kwk + cx (7)
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where

akj =u
T
k uj ; bkj = v

T
k vj ; ckj = w

T
k wj (8a)

Sx; k =

m

i=1

uikDx; i (8b)

cx = 1

2

m

i=1

kDx; ik
2

F
:

Hence,@JK=@vk = 0 and@JK=@wk = 0 for k = 1; � � � ; K yield

K

j=1

akjckjvj =Sx;kwk (9a)

K

j=1

akjbkjwj =S
T
x; kvk: (9b)

By using the Kronecker product notation, the aboveK sets of equa-
tions can be combined into the following pair of matrix equations:

(C 
 In)v =Sxw (10a)

(B 
 Ip)w =S
T
x v (10b)

where

C =

a11c11 � � � a1Kc1K
a21c21 � � � a2Kc2K

...
...

aK1cK1 � � � aKKcKK

B =

a11b11 � � � a1Kb1K
a21b21 � � � a2Kb2K

...
...

aK1bK1 � � � aKKbKK

(11a)

Sx =diagfSx; 1; � � � ; Sx;Kg: (11b)

In and Ip aren � n and p � p identity matrices, respectively, and

 denotes the Kronecker product [10].

Equations (10a) and (10b) are two key equations in our study be-
cause they not only characterize the vectorsv andw that minimize the
error functionJK (with a fixedu!), but also exhibit a structure similar
to (3a) and (3b), from which the consistency of our development with
the conventional SVD can be appreciated. As a matter of fact, if array
D is degenerated to a matrix and thus vectorsfui; 1 � i � Kg and
fakjg are eliminated in (8)–(10), then matrixSx; k defined by (8b)
becomes matrixD itself, and (9a) and (9b) become

K

j=1

ckjvj =Dwk (12a)

K

j=1

bkjwj =D
T
vk: (12b)

Note that although (12a) and (12b) are still nonlinear inv andw;
they are readily solvable: the SVD ofD provides a solution to
(12). In fact, if fvk; 1 � k � Kg and fwk; 1 � k � Kg are
the first K pairs of the singular vectors, (12a) and (12b) become
�kvk = Dwk; �kwk = DT vk which are satisfied byvk andwk

automatically sincefvk; wkg is the kth Schmidt pair ofD: On
comparing (12) to (9), we see a substantial difference between the
two-dimensional (2-D) and 3-D cases: as far asK > 1; vectors
vk and wk in (9) cannot be obtained by the SVD since matrix
Sx; k=kukk

2 depends on indexk, and the Schmidt pairs obtained
from that matrix with different indexk are not orthogonal to each
other in general. In what follows, we shall focus on (10) and develop
an iterative method to solve the problem withK > 1: TheK = 1

case is treated in Section III-D where a suboptimal solution to the
problem will be deduced.

From (8a) it follows that bothC and B are symmetric and
nonsingular, hence (10) can be written as

v = [C
�1

(w)
 In]Sxw (13a)

w = [B
�1

(v)
 Ip]S
T
x v (13b)

where the property that for invertibleP and Q; (P 
 Q)
�1

=

P�1 
 Q�1 has been used andC�1; B�1 have been written
as C�1(w); B�1(v) to emphasize their dependence onw and v:
Equation (13) suggests the following iterative scheme for solving
(10):

~v
(i)

= [C
�1

(w
(i)
)
 In]Sxw

(i) (14a)

~w
(i)

= [B
�1

(v
(i)
)
 Ip]S

T
x v

(i) (14b)

and

v
(i+1)

=�~v
(i)

+ (1� �)v
(i) (14c)

w
(i+1)

=� ~w
(i)

+ (1� �)w
(i) (14d)

for i = 0; 1; � � � ; where 0 < � < 1 is a scalar weight. Our
numerical study of the algorithm indicates that a value of� between
0.4 and 0.8 often leads to a satisfactory convergence rate. The
initial vectorsv(0) andw(0) in (14) can be chosen arbitrarily, but
a better choice is to formv(0) and w(0) using the firstK pairs
of weighted singular vectors ofSx: The iteration continues until
kv(i+1)�v(i)k+kw(i+1)�w(i)k is less than a prescribed tolerance,
and at that timev = v(i+1) and w = w(i+1) are claimed to be
the solution of (10). Although a mathematical convergence proof of
scheme (14) has not been available, in our simulation study scheme
(14) works well for arrays of various sizes.

Now recall that the above solution vectorsv andw are obtained
with a fixedu; hence the triplefu; v; wg is unlikely to be the one
that minimizesJK in (6). However, since a quasioptimal pairfv; wg
has been obtained, the pair can be used to obtain an improvedu by
minimizing JK in (6) with respect tou; with v andw fixed. From
(7) we have

@JK

@uk
=

K

j=1

bkjckjuj � hx; k (15)

wherebkj and ckj are defined in (8a), and

hx; k =

vTkDx; 1

...
vTkDx;m

wk: (16)

Hence,@JK=@uk = 0 for k = 1; � � � ; K is the linear system of
equation given by

(Bc 
 Im)u = hx

where

Bc =

b11c11 � � � b1Kc1K
b21c21 � � � b2Kc2K

...
...

bK1cK1 � � � bKKcKK

; hx =

hx;1
...

hx;K

: (17)

SinceBc is symmetric and nonsingular, we obtain

u = (B
�1
c 
 Im)hx: (18)

With the new vectoru from (18), matricesSx; B; andC in (11)
are updated, and an improved pairfv; wg can be computed using
iteration (14). This procedure repeats until the difference between
the new triplefu; v; wg and the preceding triple is less than a given
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Fig. 1. Algorithm 1—the two-level iteration approach to solving the 3-D
optimal LRA problem.

tolerance. In the rest of the brief, the above solution procedure will
be referred to as Algorithm 1, and a diagrammatic explanation of the
algorithm is shown in Fig. 1.

Two remarks about the algorithm are now in order. First, a solution
obtained from Algorithm 1 is only alocal minimum of JK in (6).
By (6) we see thatJK is a highly nonlinear function of the unknown
vectors—if we collect allu; v; andw and definex = [uT vT wT ]T ;

thenJK is a 6th-order polynomial ofx: Note also that Algorithm 1
starts with an initialu; consequently the solution so obtained depends
on the initialu: A possible way to obtain an improved local minimum
is to set up an additional optimization process at a level higher than
the optimization sketched in Fig. 1 as a supervisory mechanism which
feeds an initialu into the optimization process in Fig. 1, compares its
output to the outputs obtained from different initialu; and generates
a new initial u that would lead to a better local solution. Second,
the uk’s (and vk’s and wk’s) obtained from Algorithm 1 are not
orthogonal in general. Although similarity between the key equations
(3) (for matrices) and (10) (for the 3-D arrays) exists, the crucial
difference between them is that (3) implies�2kûk = AAT uk and
�2kv̂k = ATAv̂k; thus the orthogonality offûk’sg (and v̂k’s) is
an immediate consequence from the theory of symmetric matrices;
however, even for a fixedu; the matrices involved in (10), namely
Sx; B; andC; are dependent nonlinearly on vectorsv andw; and
therefore the orthogonality offuk ’sg (and fvk’sg and fwk’sg) do
not hold forM = 3 and beyond.

D. Evaluation ofuk; v(i+1); andw(i+1)

The dimensions ofv(i+1); w(i+1) in (14) and u in (18) are
Kn; Kp; and Km; which could be fairly high for a large size
array. Consequently, the matrices involved in (14) and (18) may cause
storage difficulties for the computer. The problem can be considerably
eased off by taking the advantage of the special structure of the
Kronecker products involved as well as the block diagonal structure
of Sx: As a matter of fact, if we denoteC�1(w(i)) = ff

(i)
kj g and

B�1[v(i)] = fe
(i)
kj g; then (14) implies that, fork = 1; � � � ; K;

~v
(i)
k =

K

j=1

f
(i)
kj Sx; jw

(i)
j (19a)

~w
(i)
k =

K

j=1

e
(i)
kj S

T
x;jv

(i)
j : (19b)

Fig. 2. Algorithm 2—the iterative approach to solving the 3-D optimal LRA
problem withK = 1:

Similarly, denotingB�1c = fgkjg; (18) then implies that, fork =

1; � � � ; K;

uk =

K

j=1

gkjhx; j : (20)

From (19) we see that each vector~v(i)k ( ~w
(i)
k ) can be evaluated

by summing upK vectors, each of which is a result of a matrix
multiplication of sizen � p by p � 1 (p � n by n � 1); followed
by a scalar multiplication. As compared to (14), (19) considerably
reduces the data memory required. Similarly, compared to (18), the
evaluation ofuk using (20) requires a much-reduced data memory.
So for algorithm implementation, (14) and (18) in Fig. 1 should be
replaced by (19) and (20), respectively.

E. TheK = 1 Case and a Suboptimal Solution

The K = 1 case corresponds to the problem of finding vectors
u1 2 Rm; v1 2 Rn; andw1 2 Rp such thatJ1 = kD�u1 �v1 �w1k

2

F

is minimized. WithK = 1; (9a) and (9b) are reduced to

ku1k
2 kw1k

2
v1 =Sx; 1w1 (21a)

ku1k
2 kv1k

2
w1 =S

T
x; 1v1 (21b)

i.e., �1v
� = Ŝxw

� and �1w
� = ŜTx v

�; where �1 =

kv1k kw1k; v
� = v1=kv1k; w

� = w1=kw1k; and

Ŝx = Sx; 1=ku1k
2
=

1

ku1k2

m

i=1

ui1Dx; i:

On comparing (21) to (3), we conclude thatv� and w� can be
obtained as the first Schmidt pair of̂Sx; 1; and �1 is the largest
singular value ofŜx; 1: Having obtained�1; v�; andw�; v1 andw1

can be obtained asv1 = �
1=2
1

v� andw1 = �
1=2
1

w�: Evidently, this
SVD approach greatly reduces the computation complexity that the
K > 1 case requires. Again we recall that the abovev1 andw1 are
computed to a fixedu1; hence the second-level iteration is still needed
here to updateu1: TakingK = 1 in (15) and setting@J1=@u1 = 0;

we obtain

u1 =
1

kv1k2kw1k2
hx;1 (22)

i.e.,

u1 =
1

�1

v�TDx; 1

...
v�TDx;m

w
�

: (23)
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Fig. 3. Even number of frames. The two upper rows are original images, and the two lower rows are optimal rank-20 approximations.

Equation (23) provides a formula for the evaluation ofu1 in terms of
�1; v

�; andw�: The vectoru1 so obtained is in turn used to update
matrix Ŝx whose SVD yields an improved Schmidt pairfv�; w�g
and�1: Like the general case, this iteration continues until the new
triple fu1; v1; w1g shows no difference from the preceding one up to
a prescribed tolerance. The above solution procedure will be referred
to as Algorithm 2, and a diagram that summarizes the algorithm is
shown in Fig. 2.

Motivated by its reduced computation complexity, a suboptimal
solution to the LRA problem may be obtained by applying Algorithm
2K times. That is, once the first optimal triplefu1; v1; w1g is found,
the residual array

R1 = D � u1 � v1 � w1

is evaluated, to which the same algorithm is applied to obtain the
second triplefu2; v2; w2g that best approximatesR1: In general, at
the kth step of the procedure, the(k � 1)th residual array

Rk�1 = D �

k�1

i=1

ui � vi � wi

is constructed, to which Algorithm 2 is applied to obtain thekth triple
fuk; vk; wkg: As far as the rank ofD is greater thanK; applying
Algorithm 2K times generates a residual sequenceR1; R2; � � � ; RK

whoseF -norm is strictly monotonically decreasing, and eachkRkkF
can be viewed as the error of the approximation ofD by Dk =

k

i=1
ui �vi �wi: We shall callDK so obtained a suboptimal solution

to the LRA problem.

We now conclude this section with two remarks. First, we em-
phasize that the solution obtained by the above approach is a local
one, and that the rank-K approximationDK is only suboptimal,
except theK = 1 case. This is to say that for a givenK > 1; the
approximation made using this method yields larger error as opposed
to that of Algorithm 1. This is another important difference between
the processing of 3-D and 2-D arrays. As was noted at the end of
Section II-A, for a 2-D array these two solutions are identical. We
shall touch upon this issue again in Section III. Second, it is noted
that the suboptimal solution was also proposed in [8]. However, the
analytic method used there to compute the solution is different from
ours.

III. A PPROXIMATION OF AN IMAGE SEQUENCE

In this section, we describe an example in which the algorithms
developed in Section II are applied to an image sequence in order
to obtain its approximations that are close enough to the original
sequence with substantially reduced data storage. The sequence at
hand contains sixteen frames of81 � 81 images that describes a
circular object with 256 gray levels (8 bits) rotating about15� with
respect its center. This image sequence is selected for testing the
algorithms for two reasons: 1) each image has edges (one line segment
and one circle) as well as smooth areas where the gray levels are
linearly distributed; and 2) a large portion of the object, i.e., the disk,
is moving throughout the sequence. The even number of images of the
sequence are shown in the two upper rows in Fig. 3. Algorithms 1 and
2 with � = 0:5 were applied to the sequence withK varying from



422 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 45, NO. 3, MARCH 1998

TABLE I
APPROXIMATION ERRORS OFALGORITHMS 1 AND 2 IN EXAMPLE 1

2 to 20, and the approximation errors obtained are listed in Table I.
It is observed that the optimal LRA’s that Algorithm 1 generates are
consistently better than those obtained from Algorithm 2, although
the computation complexity of Algorithm 1 grows rapidly withK:

From Table I we see that withK = 20; theF -norm of the optimal
LRA is 15.1310. This means that, on average, the error for each pixel
of the sequence is about

15:1310p
16� 81� 81

� 0:0467

for the normalized range of gray level [0, 1]. The even number of
images from the optimal rank-20 optimations are shown in the two
lower rows in Fig. 3. The ratio of the total number of entries of
the original sequence to the total number of entries required by the
rank-20 approximation is

� =
16� 81� 81

20� (16 + 81 + 81)
= 29:4876:

It is important to stress that by using the proposed approximation
method combined with the coding techniques similar to [4] or [11],
where statistical properties of the singular vectors are taken into
account, substantially higher compression ratio can be achieved.

IV. CONCLUDING REMARKS

We have described two algorithms for LRA of 3-D signals.
Extension of the algorithms to the four-dimensional (4-D) case is
straightforward, and omitted here. It is interesting to note that the
problem of approximating a 2-D array can also be tackled in a 4-D
framework. Indeed, using the one-to-one mapping

D(i; j; l; k) = A[(i� 1)N2 + j; (l� 1)N2 + k]

where1 � i; l � N1; 1 � j; k � N2; with N1 andN2 being the
positive integers satisfyingn = N1N2; the 2-D arrayA is converted
into the 4-D array D of sizeN1 � N2 � N1 � N2:

ACKNOWLEDGMENT

The authors are grateful to the reviewers for their constructive
comments and for bringing [9] to their attention.

REFERENCES

[1] L. L. Scharf, “The SVD and reduced rank signal processing,”Signal
Process., vol. 25, pp. 113–133, Nov. 1991.

[2] H. C. Andrews and C. L. Patterson, “Singular value decomposition
and digital image processing,”IEEE Trans. Acoust., Speech, Signal
Processing, vol. ASSP-24, pp. 26–53, 1976.

[3] , “Outer product expansions and their use in digital image process-
ing,” IEEE Trans. Comput., vol. C-25, pp. 140–148, 1976.

[4] N. Garguir, “Comparative performance of SVD and adaptive cosine
transform in coding images,”IEEE Trans. Commun., vol. COM-27, pp.
1230–1234, Aug. 1979.

[5] D. P. O’Leary and S. Peleg, “Digital image compression by outer
product expansion,”IEEE Trans. Commun., vol. COM-31, pp. 441–444,
Mar. 1983.

[6] M. Ohki and M. Kawamata, “Design of three-dimensional digital filters
based on the outer product expansion,”IEEE Trans. Circuits Syst., vol.
37, pp. 1164–1167, Sept. 1990.

[7] W.-S. Lu, H.-P. Wang, and A. Antoniou, “Design of 3-D digital filters
by using outer-product array decomposition,” inProc. 3rd Int. Conf.
Advances Commun. Contr. Syst., Victoria, B.C., Canada, Oct. 1991.

[8] T. Saitoh, T. Komatsu, H. Harasima, and H. Miyakawa, “Still picture
coding by multidimensional outer product expansion,”IECE Trans., vol.
J68-B, pp. 547–548, Apr. 1985.

[9] W. A. Light and E. W. Cheney,Approximation Theory in Tensor Product
Spaces. New York: Springer-Verlag, 1985.

[10] R. A. Horn and C. R. Johnson,Matrix Analysis. Cambridge, U.K.:
Cambridge Univ. Press, 1985.

[11] T. Minami, H. Sakamoto, A. Suzuki, and O. Nakamura, “Encoding of
pictures using the singular value decomposition (SVD) and 1-D discrete
cosine transform (DCT),” inProc. IEEE Int. Commun. Conf., Seattle,
WA, June 1995, pp. 1418–1422.

A Noise-Exclusive Adaptive Filtering Framework
for Removing Impulse Noise in Digital Images

H. Kong and L. Guan

Abstract—A class of noise-exclusive adaptive filters for removing
impulse noise from digital images is developed and analyzed in this brief.
The filtering scheme is based on noise detection using a self-organizing
neural network and noise excluding estimation. These filters suppress
impulse noise effectively while preserving fine image details. Applications
of the filters to several images show that their properties of efficient
impulse noise suppression, edges and fine details preservation, minimum
signal distortion, or minimum mean square error are better than those
of the traditional median-type filters.

I. INTRODUCTION

When an image is coded and transmitted over a noisy channel
or degraded by electrical sensor noise, degradation appears as salt-
and-pepper noise (i.e., positive and negative impulses) [1]. Removal
of such impulse noise while preserving the integrity of the image
is an essential issue in image processing. The well-known median
filter has been recognized as an effective technique for impulse
noise suppression due to its edge preserving characteristic and its
computational simplicity [2], [3].
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