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Optimal Design of IIR Frequency-Response-Masking
Filters Using Second-Order Cone Programming

Wu-Sheng Lu, Fellow, IEEE,and Takao Hinamoto, Fellow, IEEE

Abstract—The frequency-response-masking (FRM) technique
proposed by Lim has proven effectiveness for the design of very
sharp digital filters with reduced implementation complexity com-
pared to other options. In this paper, we propose a constrained opti-
mization method for the design of basic and multistage FRM filters
where the prototype filters are of infinite-impulse response (IIR)
with prescribed pole radius. The design is accomplished through a
sequence of linear updates for the design variables with each up-
date carried out using second-order cone programming. Computer
simulations have demonstrated that the class of IIR FRM filters
investigated in the paper offers an attractive alternative to its fi-
nite-impulse response counterpart in terms of filter performance,
system delay, and realization complexity.

Index Terms—Frequency response masking (FRM), infinite-im-
pulse response (IIR) filters, robust stability, second-order cone pro-
gramming (SOCP).

I. INTRODUCTION

T HE frequency-response-masking (FRM) technique pro-
posed by Lim [1] has proven effectiveness for the design

of digital filters with narrow transition bands that can be im-
plemented with reduced complexity compared to other options
[2]–[10]. As illustrated in Fig. 1(a), abasicFRM filter consists
of a prototype filter with replaced by , a pair of
masking filters , and a delay line of
delay units with matching the group delay of the prototype
filter. For additional reduction of implementation complexity,
the prototype filter itself may be realized with a basic FRM
filter, and if necessary, one can repeat this to construct a
multistageFRM filter. Fig. 1(b) illustrates a two-stage FRM
filter, where factor at the first and second stages become
and , respectively.

Most of the work on FRM filters to date has been focused on
finite-impulse response (FIR) filters [1]–[9], primarily because
linear phase response can be readily achieved when all subfilters
in an FRM filter are of FIR. Infinite-impulse response (IIR) fil-
ters are known to have improved selectivity and implementation
efficiency, as well as reduced passband group delay relative to
their FIR counterparts. On the other hand, nontrivial IIR filters
do not have precise linear phase response and stability is often
an issue that makes the design more complicated. In the context
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of FRM filters, employing an IIR prototype filter appears to be
an attractive option for the following reasons.

1) As high selectivity can be readily achieved by low-order
IIR filters, FRM filters with low-order IIR prototype fil-
ters can offer satisfactory performance as well as further
reduction in implementation cost.

2) If an IIR prototype filter, whose passband group delay is
samples less than that of its FIR counterpart, is used in

a basic FRM filter, then the passband group delay of the
FRM filter is reduced by samples. The reduction
in passband group is even greater as the number of filter
stages grows. Since very sharp FIR FRM filters always
have large group delay, which is undesirable in many ap-
plications, the class of FRM filters with IIR prototype fil-
ters offers a better alternative.

3) Although in principle, one may consider designing all-IIR
FRM filters, the advantages gained by using IIR masking
filters are not as great as that of IIR prototype filter, es-
pecially in terms of group delay reduction. Moreover, the
design of an all-IIR quickly becomes too involved as the
number of filter stages increases.

On the other hand, if one adopts the filter structure in Fig. 1,
where the prototype filter is of IIR but the masking filters re-
main linear-phase FIR, then, onlyone IIR filter is involved in
the design regardless of the number of filter stages used. With
this filter structure, the design becomes more tractable and, as
will be presented in the subsequent section, a design method-
ology applicable to both basic and multistage IIR FRM filters
can be developed.

In [10], a method for the design of recursive FRM filters with
two allpass filters (called model filters) replacing the prototype
filter and the delay line is proposed. The design in [10] is accom-
plished using a two-stage approach in that a good initial point
is obtained by separately optimizing the model filters and the
masking filters, and then a second-stage optimization is carried
out to finalize the design. Multistage recursive FRM filters were
not considered.

There are algorithms that can be used for solving general non-
linear programming problems [24], [25]. However, since these
solution methods do not take advantages of special problem
structures such as convexity of the objective function and linear
or low-order polynomial type constraints, they tend to be less
efficient relative to those which consciously utilize as many de-
sirable features as the problem at hand can offer.

In this paper, we propose a new constrained optimization
method for the minimax design of recursive basic and multistage
FRM filters in Lim’s framework as illustrated in Fig. 1 where the
prototype filter is the only IIR filter. The proposed design algo-
rithm starts with a trivial initial point, and the coefficients of all
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Fig. 1. (a) Basic FRM filter structure. (b) Two-stage FRM filter structure.

subfilters are jointly optimized through a sequence of linear up-
dates with each update carried out using second-order cone pro-
gramming (SOCP). SOCP is a class of well-structured convex
programming problems that can be tackled using efficient inte-
rior-point solvers [11]–[17], as such the proposed algorithm can
be used as a fast design tool for IIR FRM filters. Other features
of our design method include the following.

• It imposes a norm constraint on the parameter update
vector to validate a key linear approximation used in the
design and eliminate a line search step usually required
in nonlinear optimization. The constraint fits nicely into
the SOCP formulation.

• By considering factorized denominator of the IIR proto-
type filter, a sufficient and near necessary condition for
robust stability of the prototype filter is converted into a
set of linear inequality constraints suitable for the SOCP
formulation.

• It provides a framework where the designs of basic and
multistage IIR FRM filters can be carried out in a similar
manner.

Collectively, these features lead to designs with improved per-
formance relative to their FIR counterparts.

The paper is organized as follows. Section II reviews some
basic elements of SOCP and discusses the notion of robust sta-
bility triangle that are needed in the rest of the paper. Robust
stability constraints for IIR digital filters that are well suited
for the proposed SOCP formulation are described in Section III.
Section IV presents an SOCP-based design methodology appli-
cable to both basic and multistage IIR FRM filters. Algorithmic
details for the design of basic and multistage FRM filters as

well as simulation results are presented in Sections V and VI,
respectively.

Throughout the paper, boldfaced characters denote matrices
and vectors; represents the identify matrix of dimension;

denotes the standard Euclidean norm;and denote
normalized passband and stopband edges, respectively; and the
normalized base frequency band is denoted by

. For the sake of description simplicity, the term “IIR
FRM filter” is in this paper referred to as the filter structure in
Fig. 1 with an IIR prototype filter and linear-phase FIR masking
filters; and the proposed design method will be illustrated in
terms of lowpass filters although it is in principle applicable to
other types of bandpass filters.

II. PRELIMINARIES

A. SOCP

SOCP, which is sometimes called conic quadratic program-
ming [14], [15], is a class of convex programming problems
where a linear function is minimized subject to a set of second-
order cone constraints [14], [16]

minimize (1a)

subject to (1b)

where , , ,
, , and . The term

“cone” here reflects the fact that each constraint in (1b) is
equivalent to a conic constraint
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Fig. 2. Second-order cone inR .

where is the second-order cone in , i.e.,

(2)

The second-order cone in (2) is also called ice-cream cone or
Lorentz cone, see Fig. 2 which illustrates a second-order cone
in .

From (1), it is evident that SOCP includes linear program-
ming and convex quadratic programming as special cases. On
the other hand, since each constraint in (1b) can be expressed as

where denotes that is positive semidefinite, SOCP is
a subclass of semidefinite programming (SDP) [16], [20]. Com-
mercial and public-domain software based on interior-point
optimization algorithms for SOCP and SDP are available
[17]–[19]. It is important to stress, however, that in general,
the problem in (1) can be solved more efficiently as an SOCP
problem than solving it in an equivalent SDP setting [14]. In
the subsequent sections, we attempt to formulate the design
problems at hand as SOCP problems rather than SDP problems.

B. Robust Stability of a Second-Order Discrete-Time System

Consider the transfer function of a second-order discrete-time
system, whose denominator polynomial is given by

(3)

It is well known that the system is stable if and only if coeffi-
cients and satisfy [21]

(4a)

(4b)

(4c)

i.e.,

(5a)

where

(5b)

Fig. 3. Stability triangle.

Fig. 4. Internal stability triangle.

Note that the constraints in (4) arelinear with respect to and
, and characterize the triangle in the (, )-space shown in

Fig. 3, which will be referred to as thestability triangle.
For the sake of robust stability, we consider a triangle in (,
)-space that is strictly inside the stability triangle as shown

in Fig. 4, where is a small positive scalar. The region en-
closed with the internal triangle is characterized by three linear
inequalities

i.e.,

(6)

where , , and are defined in (5b). Using an elementary anal-
ysis on the roots of for ( , ) going along the boundary of
the internal stability triangle, it canbe shown thatall system poles
that are associated with the internal stability triangle in Fig. 4
cover the most part of the disk with radius in the -plane,
which is shown as the shaded region in Fig. 5. We shall refer to
the internal stability triangle in Fig. 4 as arobust stability triangle
as any point ( , ) in the triangle corresponds to a second-order
discrete-time system with a pole radius (defined as the maximum
magnitude of the poles) no larger than . It is noticed that
when the value of is small (which is always the case in filter
design), the difference between the shaded region in Fig. 5 and
the disk with radius becomes insignificant. Therefore,
restricting coefficients ( , ) to within the robust stability tri-
angle is sufficient andnearnecessary for to have a stability
margin .
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Fig. 5. Shaded region plus two short segments (in solid line) on the real axis
represent the pole locations corresponding to the internal stability triangle in
Fig. 4.

III. CONSTRAINTS FORROBUST STABILITY OF

IIR FRM FILTERS

Consider a basic IIR FRM filter shown in Fig. 1(a), where the
transfer function of the prototype filter assumes the form

(7a)

where

(7b)

where is a polynomial of order expressed as a product of
second-order sections (and a first-order section ifis odd)

if even

if odd

(7c)

and is an integer between 0 and. The reason our design
formulation uses the above form of denominator, namely

, is that assigning a certain number of poles at the
origin was found beneficial for the design of several types of
digital filters as observed in [22].

Define vector as

...
for (8a)

if even

if odd
(8b)

where presents only if is odd, and assume polynomial
is robustly stable in the sense that for a given parameter
vector in (8) satisfies

(9a)

for (9b)

where and are defined in (5b). From Section II-B, it follows
that such a has a stability margin . Now, suppose
vector is updated to

...
(10)

and we want the denominator polynomial associated with
to remain robustly stable with the same stability margin, then the
constraints in (9) become

for

i.e.,

(11)

where with , and

...

with (if is even, then the top-left in does not
present and ). The constraint in (11) can be expressed
as

(12)

where , a linear inequality constraint for
updated denominator polynomial to maintain a stability margin

.

IV. DESIGN METHODOLOGY

Thissectionpresentsageneraldesignmethodologyapplicable
to both basic and multistage IIR FRM filters. The design goal
is an FRM filter, whose prototype filter is an IIR filter with pre-
scribed pole radius, that achieves sharp bandpass-type frequency
response with reduced passband group delay as well as reduced
implementation complexity relative to its FIR counterpart.

Let be the frequency response of an IIR FRM filter
of frequency and parameter vector , and be
the desired frequency response. We seek to determine a vector

that solves the constrained weighted minimax optimization
problem

minimize minimize (13a)

subject to stable (13b)

For a filter structure as illustrated in Fig. 1 with an IIR ,
the optimization problem in (13) is highly nonlinear. In what
follows, we present a solution method that converts (13) into a
solvable SOCP problem.

If denotes an upper bound of on
, then, the problem in (13) can be converted into

minimize (14a)

subject to for (14b)

stable (14c)
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Suppose we have a reasonable initial pointto start, and we
are now in the th iteration. For a smooth in the vicinity
of current point , we can write

provided that

is small (15a)

where is the gradient of with respect to and
evaluated at . Thus, for with subject to (15a),
we have

(15b)

For the filter design at hand, and are complex-
valued, and we need to define

(16a)

(16b)

(16c)

It follows that

(17)

where

In the light of (14b), (15a), and (17), we see that an approximate
solution in the th iteration can be obtained by solving the con-
strained optimization problem

minimize (18a)

subject to for (18b)

small (18c)

stable (18d)

where is a set of dense grid points
placed in the frequency region of interest.

For a -stage IIR FRM filter, parameter vector collects
the coefficients of all subfilters in the order

...

stage

...

stage

(19)

where and are the coefficient vectors associated with the
numerator and denominator of the IIR prototype filter, respec-
tively, and and are the coefficient vectors associated with
the FIR masking filters in the th stage.

Concerning the constraint in (18c), note that the order of the
IIR prototype filter ( , ) is usually considerably lower than that
of the masking filters , therefore it is reason-
able to control the “smallness” of their coefficientsseparately.
To this end, we denote

...

(20)

and impose

for (21)

where for are prescribed bounds to control the
magnitude of .

The stability constraint in (18d) can be specified using (12).
Furthermore, in order to prevent undersirable overshot in transi-
tion band we impose constraints on the magnitude of the FRM
filter as

for (22)

where is a set of grid points placed in
the transition band and is a prescribed upper bound to elimi-
nate transition overshot. The constraints in (22) can be approx-
imated by the second-order cone constraints

for (23)

where

Replacing the constraints in (18c) and (18d) with that in (21)
and (12), respectively, and imposing additional constraints in
(23), the th iteration of our design is carried out by solving the
SOCP problem

minimize (24a)

subject to for (24b)

for (24c)

(24d)

for (24e)

In (24), there are second-order cone con-
straints, and linear constraints (obviously, a linear inequality
constraint can be treated as a trivial second-order cone con-
straint; however, efficient SOCP solvers (e.g., toolbox SeDuMi
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[17]) often deal with linear constraints and second-order cone
constraints separately).

Several interior-point methods for SOCP have been devel-
oped in the last several years, see, for example, [11]–[15], and
[18]. Lucid exposition of the subject in terms of what can be
expressed via conic quadratic constraints, interior-point poly-
nomial-time methods and complexity analysis can be found in
the recent book [16].

The original problem in (13) and, equivalently, the problem in
(14) are highly nonlinear and nonconvex optimization problems.
As such, the above method, if it converges, only provides alocal
minimizer for the problem; therefore, the design optimality con-
sidered in this paper is always in a local sense. Among other
things, the performance of such a local solution depends largely
on how the initial point is chosen. Fortunately, for FRM filter de-
signs, a technique that generates a reasonably good initial point
is available, see Sections V-C and VI-B. Concerning the conver-
gence of the method, although a rigorous proof is presently not
available, in our simulations, when the method was applied to
design a variety of IIR FRM filters, we had not detected a single
failure of convergence. One might attribute the success of the
proposed method to three factors: 1) the global convergence of
each sub-problem in (24) when an interior-point convex pro-
gramming algorithm is applied; 2) the use of constraint (24c)
that validates the key approximation in (15b); and 3) the use of
a good initial point.

Another related issue is the convergence rate or, in a more
general term, the computational efficiency. From the above
description of the method, it is quite clear that the computa-
tional efficiency is determined by how efficient each individual
SOCP problem in (24) is solved and how many linear updates
are needed to reach a minimizer of (13). For the former, most
of the algorithms that are presently available for solving the
SOCP problem (24) are so-called polynomial-time algorithms,
meaning that the amount of computations required is bounded
by a polynomial of the data size [16]. Consequently, the com-
putational complexity for problem (24) is affordable for today’s
computing devices even for designing relatively high-order IIR
FRM filters, and it will increase only moderately when the
size of the problem increases. For the latter, with a given set of
bounds in constraint (24c), the number of updates needed
depends on how far the initial point is from the minimizer.

It should also be pointed out that although problem (24) is
merely anapproximationof (13), as the iteration continues and
the local minimizer gets closer, the increment vectorobtained
by solving (24) gradually shrinks in magnitude and within a
limited number of iterations it eventually becomes such a value
that the updated solution point is practically the same as the true
minimizer.

In summary, we have described a method for minimax op-
timization of an objective function that is frequently encoun-
tered in filter design problems and is allowed to be highly non-
linear. The method proposed here accomplishes the optimiza-
tion through a sequence of linear updates where each update
is solvable in an SOCP setting. The usefulness of this method-
ology will be demonstrated in the next two sections where IIR
FRM filter design problems are addressed.

V. DESIGN OFBASIC IIR FRM FILTERS

A. Frequency Response and Its Gradient

The reader is referred to Fig. 1(a) as the filter structure consid-
ered in this section, where the transfer function is given
by (7) and

(25a)

(25b)

Throughout, it is assumed that the masking filters and
have linear phase responses; the lengthsand are

either both even or both odd; and the group delays of
and have been equalized to

. Under these circumstances, the desired passband group
delay for the IIR FRM filter is

(26)

where is the intended passband group delay of the prototype
filter, and the frequency response of the FRM filter can be ex-
pressed as

(27)

where

and

if even

if odd

if odd

if even

if odd

if even

if odd

if even

if odd

if even
(28)
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and the design variables are put together as parameter vector

(29)

with vector defined by (8a).
It follows that the gradient of in (28) is given by

(30)

where

...

with

for

In the th iteration, vector involved in (24b) can be eval-
uated using (30) at .

B. Desired Frequency Response and Weighting Function

Since the frequency response of the FRM filter is in the form
of (27) with the desired phase response factored out, the desired
frequency response for in (27) is a zero-phase lowpass
function given by

for
for

(31)

and the weighting function is typically a piecewise constant
function given by

for
for
elsewhere

(32)

where scalar may assume a value greater or smaller
than one to weigh the importance of the stopband relative to the
passband.

C. Initial Design

Given sampling factor , normalized passband and stopband
edges and , and filter length ( , ), , and , a reason-
able initial design of subfilters , , and
can be readily prepared as follows.

1) Prototype Filter : From [1], the passband edge
and stopband edgeare given by

(33a)

(33b)

(33c)

where denotes the largest integer less than, or by

(34a)

(34b)

(34c)

where denotes the smallest integer larger than, depending
on which set of satisfies .

Once is determined, an FIR filter of length that
approximates the desired lowpass frequency response with pass-
band edge, stopband edge, and passband group delaycan
be readily obtained using an established method (such as a Ham-
ming-window method, see for example [21]). the initial design
of is then represented by its parameter vector

(35)

where is the impulse response of the FIR filter.
2) Masking Filters and : If (33) is used to

determine the values of and , then the passband and stop-
band edges of are given by and

, respectively, and the passband and stopband edges
of are given by and , re-
spectively.

If (34) is used to determine the values ofand , then the
passband and stopband edges of are given by

and , respectively, and the passband
and stopband edges of are given by and

, respectively.
Once their passband and stopband edges are determined, the

linear-phase FIR masking filters and can be
designed using a Hamming-window method [21], and initial pa-
rameter vectors and can be obtained using (28). Hence an
initial point of form (29) is obtained.

D. Placement of Grid Points

There are two issues to be addressed here: the number of total
grid points in , namely the value of , and how we place
these grid points. Our design practice has indicated that for sat-
isfactory design results has an empirical lower bound

(36)

and relatively denser grid points should be placed in the regions
near the passband and stopband edges. We recommend that 25%
to 50% of the grid points be placed in the 10% of that band
nearest to the band edge.
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Fig. 6. Amplitude responses of (a) prototype filterH (z ), (b) masking filtersH (z) (solid line) andH (z) (dashed line), (c) FRM filter. (d) Passband
ripples of the FRM filter, all in decibels. (e) Passband group delay of the FRM filter.

E. A Design Example

With the preparations made in Section V-A–D, the data re-
quired in (24) have been specified and we are now in a position
to apply the design method outlined in Section IV to a basic IIR
FRM filter. It is a lowpass filter with , , ,

, , , , and .
Other parameters used in the design are stopband weight ,
stability parameter , ,

, , and .
A total of 1100 grid points were used in set . The SOCP

problem was solved using MATLAB toolbox SeDuMi [17].
With 49 iterations, the algorithm converges to an IIR FRM filter
with the amplitude responses of the subfilters and FRM filter
shown in Fig. 6(a)–(c), the passband ripple in Fig. 6(d), and
the passband group delay in Fig. 6(e). The maximum passband

ripple was 0.0775 dB, the minimum stopband attenuation was
40.8921 dB, and the passband group delay was 102 samples
with a 3.86% maximum relative deviation. The maximum mag-
nitude of the poles of was 0.9487. An FIR counterpart
of the above FRM filter was presented in [1] where ,

, and are linear-phase FIR filters of length
of 45, 41, and 33, respectively. The values of, , and
used in [1] are identical to those in our design. This implies
a 218-sample group delay for the FIR FRM filter versus a
considerably reduced 102-sample passband group delay [see
Fig. 6(e)] for the current IIR FRM filter design. Improved
passband ripple (0.0775 dB versus 0.0896 dB) and comparable
stopband attenuation (40.8921 dB versus 40.96 dB) over the
design in [1] are observed. Concerning the implementation
complexity, since the proposed FRM filter has the same struc-
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ture as that in [1] with identical masking filters, the difference
in implementation is exclusively due to the replacement of
linear-phase FIR filter of length with an IIR filter of
length for the prototype filter . The
basic IIR FRM filter requires a total of 63 multipliers and 99
adders while the FIR FRM filter requires 61 multipliers and 118
adders. Although finite wordlength effect is an issue of concern
for IIR filters, we do not intend to address it in detail here but
to simply remark that the prototype IIR filter is usually of low
order which, in the implementation stage, can be factorized
into product of a small number of stable second-order sections
with each realized using a simple structure with low roundoff
noise [26].

VI. DESIGN OFMULTISTAGE IIR FRM FILTERS

For the sake of notation simplicity, the proposed design algo-
rithm is described for a two-stage IIR FRM filter and the reader
is referred to Fig. 1(b) as the filter structure. With straightfor-
ward modifications, however, the proposed design algorithm
can be applied to IIR FRM filters with arbitrary number of
stages.

A. Frequency Response and Its Gradient

Suppose the prototype IIR filter, , assumes the form
in (7) and the masking filters are given by

(37a)

(37b)

for , 2. Throughout we assume that all masking filters have
linear phase responses; for eachthe lengths and are ei-
ther both even or both odd; and the group delays of and

have been equalized to
for , 2. For simplicity we also assume

. Under these circumstances, the desired passband
group delay for the two-stage IIR FRM filter is given by

(38)

and the frequency response of the FRM filter can be expressed
as

(39)

where

(40a)

(40b)

(40c)

(40d)

(40e)

with , , and defined in (28), , , , and
for , 2 defined in a way similar to , , ,

and in (28), respectively. The design parameters are put
together in vector

stage

stage

(41)

which is a special case of (21) with .
From (40) and (41), if follows that the gradient of is

given by

(42)

where

for

...

with

for

B. Initial Design

Given filter length ( , ), , and for , 2, sampling
rate , and band edges and , an initial design for a two-
stage IIR FRM filter can be readily obtained as follows.

i) Use parameters , , and to identify the passband
and stopband edgesand (see Section V-C) for proto-
type filter . Since will be implemented
using an FRM filter in the second stage, we donot need
to prepare an initial as a single filter.

ii) Use the parameters and obtained from Step (i) to-
gether with parameters and (see (33) and (34)) to
prepare initial masking filters and as
describe in Section V-C2.

iii) Use and as the passband and stop-
band edges, respectively, for the FRM filter in the second
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Fig. 7. Amplitude responses of (a) prototype filterH (z ). (b) Masking filtersH (z ) (solid line) andH (z ) (dashed line). (c) Prototype filterH (z ).
(d) Masking filtersH (z) (solid line) andH (z) (dashed line). (e) FRM filter. (f) Passband ripples of the FRM filter, all in decibels. (g) Passband group delay
of the FRM filter.

stage. This, in conjunction with parameters (, ), ,
, and , can be used to prepare an initial prototype

filter and masking filters
using the method described in Section V-C.

Other issues that need to be addressed for the design of mul-
tistage IIR FRM filters such as a desired frequency response,
a weighting function, and placement of grid points, have been
discussed in Sections V-B and Sections V-D.
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C. Design Example

The design presented here is a two-stage lowpass IIR FRM
filter with , , , , ,

, , , , and
. Other design parameters used are ,

, , ,
for , 2, , , and .

Using MATLAB toolbox SeDuMi[17], it took the SOCP al-
gorithm 57 iterations to converge. The amplitude responses of
the subfilters and FRM filter are shown in Fig. 7(a)–(e), and the
passband ripple and passband group delay of the FRM filter are
shown in Fig. 7(f) and (g), respectively. The maximum passband
ripple was 0.0659 dB, the minimum stopband attenuation was
42.6271 dB, and the passband group delay was

samples with 2.11% maximum relative deviation.
The maximum magnitude of the poles of was 0.8926.

Compared with the basic IIR FRM filter presented in Sec-
tion V-E, the current design offers improved performance in
terms of passband amplitude ripple and stopband attenuation
with reduced implementation complexity in terms of the number
of multipliers (55 for the current filter versus 63 for the basic
IIR filter) and adders (89 for the current filter versus 99 for the
basic IIR filter) used. The cost of the above gains is a 32-sample
increase in passband group delay. However, the two-stage IIR
FRM filter’s 150-sample passband group delay is still consider-
ably less than that of the FIR FRM filter (218 samples).

VII. CONCLUSION

We have presented a methodology for the optimal design of
basic and multistage FRM filters where the prototype filters are
of IIR with prescribed pole radius. It is shown that the design
can be accomplished by a sequence of linear updates for the de-
sign variables with each update carried out using SOCP. The
proposed method begins with a trivial initial point and unifies
the algorithms for basic and multistage IIR FRM filters. The de-
sign examples presented in the paper have demonstrated that the
class of FRM filters with IIR prototype filters of robust stability
offers an attractive alternative to its FIR counterpart in terms of
filter performance, system delay, and realization complexity.
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