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New Algorithms for the Derivation
of the Transfer-Function Matrices
of 2-D State-Space Discrete Systems
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Abstract—New algorithms for the derivation of the transfer- function matrix from the Fornasini-Marchesini state-space
function matrices of two-dimensional (2-D) discrete systems from representation have been reported.
the Roesser and Fornasini-Marchesini state-space models are |, gections Il and Il of this paper, new algorithms for the
presented. Two key steps in developing the algorithms are asd ivati fthe 2-D t fer-functi trix f the R
follows. First, the transfer-function matrix is reformulated in erva Iono. .e ) ran,s_er' unction matrix from the Koesser
terms of the characteristic polynomials of the matrices involved. and Fornasini-Marchesini state-space models are presented.
Second, an efficient algorithm for the determination of 1-D poly- Two key steps in developing the new algorithms are as follows.
nomial coefficients is developed and is, in turn, used to determine First, the transfer-function matrix is reformulated in terms of
the coefficient matrices of the 2-D transfer-function matrix. The the characteristic polynomials of several matrices that depend

proposed algorithms are computationally efficient and reliable. | iable. S d. algorith d
The efficiency of the algorithms is illustrated by comparing the ON' ON€ COMpiex variabie. Second, algornthms aré propose

proposed method with two existing methods through examples. that identify the coefficients of a 1-D polynomial of order
when its values atn + 1) points on the unit circle are known.
Our algorithms entail solving a system of linear equations
whose coefficient matrix is an unitary Vandermonde matrix.
In Section IV, examples are given to illustrate the efficiency
. INTRODUCTION of the algorithms proposed and to compare them with the
TATE-SPACE two-dimensional (2-D) discrete system€Xisting algorithms.
ave been studied quite extensively during the past decade,
and several useful methods for their analysis and design Il. DERIVATION OF THE TRANSFERFUNCTION
have been established [1]. These include methods for stability MaATRIX FROM THE ROESSERSTATE-SPACE MODEL
ana_IyS|s [21-[6], analysis of f|n|tg-word|ength effects [7], [8], In this section, two algorithms for the derivation of the
design [9], [10], model reduction [11]-[13], and relevan . . . s : .
b : . fransfer-function matrix of a linear, shift-invariant, discrete,
computation issues [14], [15]. Since many of the available ltivari : :
. : : tivariable 2-D system from its Roesser state-space descrip-
analysis and design methods are applicable only to the o
transfer-function matrix, it is often necessary to derive the

ion are developed.
. . o Consider the Roesser state-space model of a single-input,
transfer-function matrix from a state-space description of the P 9 P
system.

single-output (SISO) 2-D discrete system [16]
One of the commonly used state-space models for 2-D£xh(/§+1, l)} {Al A2:| {Xh(/f, 1)} n |:b1:| (k, 1)
= U s

Index Terms—=2-D transfer-function matrix, 2-D discrete sys-
tems.

discrete systems is the Roesser model [16]. Several algorithmsxv (k, [ + 1) As Ayl |xY(k, D) bo
for the derivation of the 2-D transfer-function matrix from —Ax + bu (1a)
the Roesser state-space model have been proposed [17]-[22]. x"(k, 1)
Those in [17]-[19] are basically extensions of the well-known y(k, 1) =[e1 2] |:X'U(k7 1)} + du(k, 1)
Fadeeva algorithm [23] to the 2-D case while the algorithms in ’

=cx+ du (1b)

[20]-[22] are based on the discrete Fourier transform (DFT).
Another popular state-space representation for 2-D disCrgiferex < ™. x* € R are the horizontal and vertical state

systems is the Fornasini-Marchesini model [24]. To date, BRctors, respectively, and and y are the input and output,
efficient algorithms for the derivation of the 2-D tranSferfespectively. If we define
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H(z1, z2) in (2) can be written as A. Algorithm for a SISO Roesser Model

m The algorithm for a SISO Roesser model is derived using
Z%(@)Z{“ (8a) and (8b), and an efficient method for the determination
k=0

H(z, 20) = & (3) of a 1-D polynomial as described below.
" X 1) Determination of the Coefficients of a 1-D Polynomi&lket
Zpk(z2)751
k=0 p(za) =2y + -+ a1 22+ o
wherek is an integerpy(z2) and ¢;(z2) are polynomials in
z of order not greater than, and be a polynomial of orden with coefficientsa,, - -+, a1, ap.
m Also let{z(l), 0 <1 < n} be(n+1) points that are uniformly
Z pr(z2)72k = det #nl-A; —As distributed on the unit circle of the complex plane, i.e.,
P k#2771 —Ag ZQI - A4 ’ )
- z(l) =2 0<i<n ©)
It follows that
Pnl(z2) = det (20T — Ay) = P22, Au) 4) If the values{p; = p[z2(I)], 0 < I < n} are known, then the

coefficients{cy, 0 < I < n} can be determined as
where P(z;, A4) denotes the characteristic polynomial &f;

in variable z,. Further, from (2) and the formula of matrix a=V(z)q (10)
inversion [25], transfer functior (21, z2) can be expressed T T
as wherea = [ay, -+ o ao]”, 4 = [pop1 -+~ pa]t, andV(zy)

is the (n + 1) x (n + 1) Vandermonde matrix whose second
H(z1, z9) =l(z2) + g(22) |1l — E(22)]"'f(22)  (5) to last column is

where T
E(z2) =A; 4+ Ag(z] — Ay) ' As 2 =[20) 20) - 0]
f(z2) =b1 + As(2I— Ay) by that is
-1
glE:; i?ﬁcﬁ?iilfi?)—lbf V(z2) = r@n o 1
2)=| L
Note that(z,I — Ay4)~! is a common term irE(zz), £(z2), z2(n)* o+ z9(n) 1
g(z2), andl(z2); hence, the above equations can be expressed
as Since z(l) (0 < I < n) are distinct, V(zy) is always
[E(zQ) f(zQ)} B |:A1 b1:| ) [AQ} nonsingular. More important, it follows from (9) that
glz2) Uzm)] Lo d]  |e VH(2,)V(22) = (n + 1)1 (11)

. (ZQI bt A4)_1[A3 bg]
(6) where V(z,) denotes the complex-conjugate transpose of
V(z2). Therefore V(z;)/+/n + 1 is a unitary matrix and (10)
By using a well-known formula for the transfer function of a&an be written as
1-D SISO state-space model (see [25, Appendix A.13]), (5)
can be rewritten as a=

det 211 — E(z2) + f(22)g(22)]

Vi (z5)q (12)

H(z, 2) = det 211 — E(z2)] +l(z2) -1 Equation (12) provides an efficient formula for the determina-
Pz, E(2) — f(z)g(2 tion of 1-D polynomialp(zs).
il P([721) E(£2)2])g( 2) +U(z2)—1 (7) 2) Determination of the Coefficients @f.(z,) and qx(z2):

Throughout this subsection it is assumed that maiix has
where P[z1, E(z2)] and Plz1, E(z2) — f(22)g(22)] are the no eigenvalues on the unit circle, which is the case where the
characteristic polynomials df(z,) and E(z) — f(z2)g(22), system is stable [4]. The case whesg has eigenvalues on
respectively. Note that the denominator in (7) is a monite unit circle will be considered in Section II-B.
polynomial in z; but the denominator in (3) is a polynomial Given a pointz; on the unit circle, it follows from (6)
in z; with p,,(22) as the coefficient ot*. This observation that E(z), f(z), g(z2), and I(z;) can be evaluated and

in conjunction with (4) leads to used in (8a) and (8b) to obtain the values ®f(z>) and
m qr(z2) for 0 < k < m at the given pointzs. If this
Z Q(22)2F = P22, A {Plz1, E(z2) — f(22)g(22)] procedure is applied to each of the+ 1 points defined by
k=0 (9), then the values of every,(z;) and pi(z2) on the set
+ [[(z2) — 1| P21, E(22)]} (8a) {#(l), 0 <1< n} can be obtained. From these observations
m in conjunction with the analysis in Section II-A-1, we conclude
Z pr(22)2¥ = P(z0, Ay)P[21, E(2)] (8b) that all polynomialgpy(z2) and g (z2) can be obtained using

k=0 the following algorithm:
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Algorithm 1: where f;(z;) and §;(z1) are polynomials inz; of order not

Step 1: Use (6) to evaluaB(z,), f(z), g(z), andi(z,) 9reater thamn, it can be readily shown that
over the set of points defined in (9). .

Step 2: Compute the determinant oI — A, and the N T ~ 3 N
characteristic equations dE(z>), and E(z) — lz; @(z1)7 = Pla, APz, B(n) = 1(0)8(20)]
f(22)g(z2) for zo = 22(), 0 < 1 < . . .

Step 3: Use (8a) and (8b) to obtgip[z2(1)] and gx[z2(1)] +[(z) = 1]Ple2, E(20)]}
foro<i<n 0<k<m.

Step 4: For eacht (0 < k < m), form vectorsq =
[po---pa]¥ andq = [go---¢s]*, and determine
polynomialspy(z2) and gx(z2) by using (12)

(15a)

A

ﬁl(zl)zé = P(Zl, Al)P[ZQ, E(Zl)] (15b)

NIE

l

Il
<

whereE(z,), f(z1), &(z1), andi(z;) can be obtained through

the following matrix equation
B. The Unstable Case

If A, has eigenvalues with unity modulus, the system is []?(751) f:(zl)} _ [A4 b2} " [Aﬂ
unstable. In such a case, thet 1 points defined by (9) need g(z1) (=) c; d c1
to be modified to (1I-=A)"'[Ay by]. (16)
_ o d27l/(n41)
z(l) = re’ ’ O<ismn (13) Further, (12) needs to be modified as
wherer > 0 denotes the radius of a circle in thg plane 1
where A4 has no eigenvalues. With = [po ---p,]*, (10) a=——VH(z))q 17)
becomes m+1
where
a =V (z2)q 21 =[2(0) z(1) - a(m)]"
where with
7,n22(0)n ca 772(0) 1 Zl(k}) :ej27rk/(m—|—l)7 0< k<m. (18)
VT(ZQ) =
rize(n)" e rze(n) 1 The above analysis leads to the following algorithm:
=V(z,) diag {r", .-+, 7, 1} Algorithm 2: ) ) )
_ _ _ _ _ Step 1: Use (16) to evaluale(z ), f(z1), g(z1), andi(z;)
and diag{r", ---,r, 1} is the diagonal matrix with over the set of points defined by (18).
7™, -+, v, 1asthe entries alongits main diagonal. By (11), ~ Step 2: Compute the characteristic equationAf E(z,),
Vo(2) 1V (22) = (n + 1) diag {2, -+, 12, 1} and Bz) ~ £(z)8(=1) for = =2 (k), 0 < & <
which implies that Step 3: Use (15a) and (15b) to obtaif[z (k)] and
il (k)] for 0 <1< m, 0<k<m.
Vii(zy) = 1 diag {r=2", -+, r=2, 1YV (z,). Step 4: For each (0 < I < n), form vectorsq =
' n+1 ' [Po- - Pm]t andq = [go - dm]*, and determine
Therefore, (12) is modified to polynomialsp;(z1) andgi(z1) by using (17).
1 Obviously, Algorithm 2 can be used to evaludigz;, z2)
a=——dag{r 2, ..., 772, 1}VH(zy)q only if matrix A; has no eigenvalues on the unit circle.
”‘1"1 Modifications similar to those in (13), (14) should be made
=———diag{r=", ---, 77 1}V (z,)q. (14) to deal with the case wherA; has eigenvalues on the unit
n+l circle.
Note that (12) is a special case of (14) with= 1, as may
be expected.
C. Dual Algorithm D. The MIMO Case

A dual algorithm to Algorithm 1 can be obtained when the qu consider the Roessgr state-space model of a multi-input
roles of variables; andz, are interchanged. By representingnulti-output (MIMO) 2-D discrete system

H(z, z2) in (2) as ;
XL(/{}—F]., l) . A A Xh(k', l) B; L l)
o ok 1410 | = |As Ay | |xv(k 0| T (B, [ 2
2 =) = Ax+Bu (19a)
xh

<. _ D]\ pu
> hilz) y(k, 1) =[C1 3] L{U(,{ 1)} + Du(k, 1)

7

1=0 =Cx+ Du (19b)
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whereu € Rt andy € R* are input and output vectors. The The Fornasini-Marchesini state-space model of a SISO 2-D
s x t transfer-function matrix of the system is given by discrete system is given by

1 z(k+ 1,14+ 1) =Aix(k, I+ 1)+ Asx(k+ 1, 1)
ZlI bt Al —A2
H(z, ) =[C1 C;] “As  mI- A, +bu(k, I+ 1)+ bou(k +1,1)
B, (23a)
' [BJ +D y(k, 1) = ex(k, 1) + du(k, 1) (23b)
=C[I(z1, 2) — A]"'B +D. (20) Wherez € RV is the state vector. The transfer function of the

system can be expressed in termsef Az, by, b2, ¢, andd, as
Viewing the(k, 1) entry of H(z1, z2) as ascalar2-D rational  H(z;, zy) = (21201 — 20A; — 21.A2) " (22by + 21b2) + d

function of order(m, n) given by (24)
Hy(21, 22) = Ci[I(21, 22) — A]7'By + Dy Z qul(22) 2
whereC;, andB,; are thekth row of C and thelth column of ' (25)

B, respectively, andy; is the (k, 1) entry of D, Hyi(z1, 22) va(z2)21
can be considered to b&(z, z;) given by (2), which is ,

the transfer function of the SISO Roesser state-space moﬂﬁbrepv(z?) and ¢,(z) are polynomials inz,. As in (7),
given by (1a) and (1b) wittb = B;, ¢ = C; andd = Dy;. (24) can be written as

Consequently, the transfer-function matk(z;, z2) in (20) det (21251 — 20 A1 — 21 Ay + 22b1c + 21bo¢)
can be evaluated entry by entry using Algorithm 1 or 2. Thif (21, 22) = det (z172T — 2 A1 — 214s)

becomes apparent if we writH(z;, z2) in (20) as td-1 172 S

_ det (29I — As + boe) det [ I — F(~
H(z1, 22) = L(z2) + Gla)lal = B)] " F(22) = d(et2(221 - A2)2d<)et [211[ . E(Zle 5

where P(z2, Ay — b2¢)Plzy, F(z)]

E(z) F(z)] _[A Bi], [As e = P, )P, Bz 4T 20
{G(@) L(/ﬁ)} {Cl D}JF{CQ}

(2l — A4)_1[A3 B;] (21)

+d-1

E(2) = 2A1 (201 — A)7! (273a)
F(z) =22(A1 — bie) (Il — Ay +bye)™t.  (27h)

f(22), g(z2), andi(z,) in (5) are thelth column of F(z), N (26), P(z2, A2), P(22, A2 — b2 ¢), Plz1, E(22)], Pla,
the kth row of G(zy), and the(k, ) entry of L(z;) in F(z2)] are the characteristic polynomials df;, A> — bsc,
(21), respectively. Consequently, (21) can be used to evalu&téz2), andF'(z2), respectively. From (25) and (26), it follows
E(z), f(22), g(22), andl(z,) for each entry ofH(z;, z,) that

when Algorithm 1 is applied. N

Alternatively, (20) can be written as > @22 = P(z, Ay — bye) Plz, F(2)]
v=0
H(z1, 22) = L(z1) + G(21)[221 = E(21)] ' F(21) +(d = 1)P(z2, A2)Plz, E(z2)] (282a)
N
where ) 3" pulz2)2l =Pz, A2)Play, E(z)]. (28b)
E(z) F(x)| _|As By 4 |As v=0
G(Zl) L(Zl) CQ D Cl
“(al-A1)7' A2 Bi] (22) A. Algorithm for a SISO Fornasini-Marchesini Model
f(21), &(21), andi(z) in (16) are theith column off‘(7l), The algorithm for the Fornasini-Marchesini model is based

the kth row of G(z,), and the (k, ) entry of L(z) in ©ON (28a), (28b), and the assumption that matrieksand
(22), respectively. Obviously, (22) is a key formula for thed2—b2c have no eigenvalues on the unit circle. The method for
evaluation off(z,), £(z1), &(z1), andi(z,) for each entry of the determination of a 1-D polynomial described in Section II-

H(z,, z2) when Algorithm 2 is applied. A-1 can be used here with some modifications. Specifically,
(12) needs to be modified as
Ill. DERIVATION OF THE TRANSFERFUNCTION MATRIX FROM o= ﬁ VH(ZQ)q (29)
THE FORNASINMARCHESINI STATE-SPACE MODEL where +
In this section, two algorithms for the derivation of the 2-
J 2 =[20) »1) - a)

D transfer-function matrix of a linear, shift-invariant, discrete,
multivariable 2-D system from the Fornasini—Marchesini statgnd '
space model are developed. 20(w) = ef2mw/(N+1) 0<w<N. (30)
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The required algorithm can be constructed as follows:

Algorithm 3:

Step 1: Use (27a) and (27b) to evalud#éz;) and F(z2)
over the set of points defined in (30).

Step 2: Compute the determinantsl — A, and 21 —
As +bye, and the characteristic equationsiéfz,)
and F(zy) for z = z(w), 0 < w < V.

Step 3: Use (28a) and (28b) to obtap,[z2(w)] and
Go[ze(w)] for0 < w < N,0<wv < N.

Step 4: For eachv (0 < v < N), form vectorsq =
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Step 2. Compute the characteristic equationsiof A; —
bic, E(z), andF(z) for z; = z(v), 0 < v < N.

Step 3: Use (31a) and (31b) to obtaif,[z1(v)] and
Pulzi(w)] foro <w < N, 0<v <N,

Step 4: For eachv (0 £ w < N), form vectorsq =
[Po---pn]F andq = [go---dn]*, and determine
polynomialsp,,(z1) and g, (z1) by using (33).

Obviously, Algorithm 4 can be used to evaludigz;, z2)

only if matricesA; and A; — b;¢ have no eigenvalues on the
unit circle. If matrixA; or A; —b; ¢ has eigenvalues on the unit

[po---pn]* andq = [go---qn]*, and determine circle, then modifications similar to (13), (14) should be made.

polynomialsp, (z2) and ¢,(z2) by using (29).

If A, or Ay — boc has eigenvalues on the unit circle, thee. The MIMO Case
modifications similar to those in (13), (14) should be made. Consider now the Fornasini-Marchesini state-space model

B. Dual Algorithm

A dual algorithm to Algorithm 3 can be obtained when the
roles of variables:; and z; are exchanged. By representing

H(z, z2) in (24) as

N
Z Guw(21)25
H(Zl, 22) = w=0

~N
Z Puw(21)2
w=0

where p,,(#1) and §.,(z1) are polynomials inz;, it can be
readily shown that

N
> du(21)z =P(z1, Ay = bio)Plzo, F(21)]
w=0
+(d = 1)P(z1, A) Pz, E(z)]
(31a)
]\T ~
Y bulz1)28 =Pz, A1) Plz, E(21)] (31b)
w=0
where
E(z1) =21 40(m1— A;) 7! (32a)

~

F(Zl) :zl(Ag - bQC)(ZlI - A+ blc)_l.(32b)

~

In (31a) and (31b)P(z1, A1), P(z1, A1 =bic), Plz, E(z1)),
and P[z2, F'(z1)] are the characteristic polynomials df;,

A; —bic, E(z1), andF(z ), respectively. Further, (17) needs

to be modified as

_ 1 H
“=Nr1 V¥(21)q (33)
where
21 =[2(0) z(1) 2 ()]
with
21(v) = 27/ N+ 0<wv<N. (34)

The algorithm is as follows:
Algorithm 4:

Step 1: Use (32a) and (32b) to evalud€éz ) and F'(z)
over the set of points defined by (34).

of a MIMO 2-D discrete system
zk+1,14+1)=A1x(k, I+ 1)+ Asx(k+ 1, )
+ Biu(k, I+ 1)+ Bou(k+ 1, 1)
(35a)

y(k, 1) =Cxz(k, 1) + Du(k, 1) (35a)

whereu € R, y € R* andD € ®*¢. The s x ¢ transfer-
function matrix of the system can be expressed in terms of
A11 A—21 Bly B2, C, andD as

H(Zl, 22) IC(legI bt ZQAl bt ZlAQ)_l

(#%B1+21B2)+D (36)

whose entryk, {) is a scalar rational function of ordén, N)
given by

Hkl(zl, 22) ICk(leQI — 2041 — ZlAQ)_l
(22Bu + 21B21) + Dy (37)

where Cy, By;, and By; are thekth row of C and thelth
column of B; and B, respectively. Therefore, the transfer-
function matrixH(z;, z2) given by (36) can be evaluated entry
by entry and each entry can be treated as a SISO transfer-
function. Hence, (28a) associated wiflfi,;(z1, z2) in (37)
becomes

N

> qu(z2)7) =Pz, Ay — BuCi)Pla, F(2)]
v=0
+ (Dkl —_ 1)P(22, AQ)P[Zl, E(ZQ)](38)
where

F(ZQ) = ZQ(Al bt Blle)(ZQI - A2 + BQle)_l (39)

In (38), P(z, Ay — By,C,) and Pz, F(z,)] are the charac-
teristic polynomials of4, — B»;C; and F(zQ), respectively.
Therefore, Algorithm 3 can be extended to deal with the
MIMO case by substituting (38) and (39) into (28a) and (27b),
respectively.

Similarly, (31a) becomes

N
Z Gu(21)28 = P(21, Ay — B1Cy)Plza, F(21)]
w=0

~

+ (Diy = 1)P(21, A1) Plza, E(z)]
(40)
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where TABLE |
o 1 CoMPUTATIONAL COMPLEXITY OF THE ALGORITHMS FOR THE ROESSERMODEL
F(Zl) = Zl(AQ —Bglck)(le—Al +B110k) (41) _
Algorithms Flops
P(z, A1 — B1,Cy) and Pz, F(#)] are the characteristic Example 1 [ Example 2 | Example 3 | Example 4
polynomials ofA; — B1;Cy, andF(z,), respectively. There- 1 3.786 x 107 [ 5.657 x 10 | 5.375 x 10° [ 7.386 x 10°

: . 8.424 x 10* | 5.692 x 10° [ 2.591 x 10° | 2.325 x 107
fore, Algorithm 4 can be extended to deal with the MIMO case ;... [19] | 2.431 x 10° | 1.360 x 10* | 1.143 x 10% | 1.440 x 10°

by substituting (40) and (41) into (31a) and (32b), respectively. prr [22] | 1.815 x 10° | 2.060 x 10* | 2.645 x 107 | 3.178 x 107

IV. EXAMPLES

In Section IV-A, Algorithms 1 and 2 are applied to four-ljhe amoun_ts of _computatlon required by the various algo-
s are listed in Table I.

2-D discrete systems represented by the Roesser state-s{)'zs . .
xample 2 is a two-input two-output system represented by

model and the required amounts of computation are compar . .
d P P ﬁe Roesser model of order (2, 2), which was used to illustrate

with those required by the existing algorithms [19], [22]. | ; . c
Section IV-B, Algorithms 3 and 4 are applied to two systemtgi?halgor'thm in [19]. The model is given by (19a) and (19b)

represented by the Fornasini—-Marchesini state-space model’

2 1 ] 1 0

A. Examples for the Roesser Model A A, 1 0| o0 1
Example 1 is a 2-D discrete system of order (2, 6), which - |:A3 AJ - I 5 I _; 5
was used in [6] for stability analysis of 2-D systems. The 0 1 | 0 -9

system is represented by the Roesser state-space model with T
he matrices: T 1 -1 2 1
the atrices . B :[B{ B%"] — |:1 0 I ) 0:|
0.500 0.007 An— 0 0 0 0 01
P 01000

Al:[—o.()()? 0.500 0 1110 —1}

C=IC CQ]:[O -1 |1 1/

A _{0.012 —0.008 0.028 0 0 0 }
o 0 0 0.012 0.008 0.012 The transfer-function matrix obtained by using Algorithms 1
0 1 0 0 0 0 and 2, and the Algorithms in [19] and [22] is
0 0 ! 0 0 0 Hi(z1, 22) H(z1, 22)
A|0845 2657 2810 0 0 0 H(z1, 22) = {Hg(% %) Hilx, 22)}
0 0 0 0 1 0
0 0 0 0 0 1 where the denominator is given by the matrix:
0 0 0 0845 —2.657 —2.810 1 -2 1
b =[bT bI* D, =4 -10 -2
=[0.134 1 | —0.657 0.036 0.269 0.805 1 2]” 4 -2 01
c=[c; c]=[0983 0500 | -1 0 1 2 3 1] and the numerators are specified Ny;, N;2, N;3, andN4
d —0. as follows: el4
Algorithms 1 and 2 proposed and the algorithms in [19] and N. N
[22] led to the transfer function N, = {Ntl Ntﬂ
s 1IN 5 1 T t3 t4
H(zl’ 22) _ [22 e 2o ] t[zl 21 ]T -0 0 2 | 0 1 17
[2§ o 2 1]D4[22 n 1] -1 6 7 | 0 5 3
where -2 13 0o | 0 6 0
r 1.0000 -1.0000 0.25007 = - - -+ - - -
0.0000  0.0000  0.0001 o 1L =3 1 0 0 -l
—2.5821 25821 —0.6453 3.0-3 -4 | 1 -1 =5
D, =| 00000 0.0000 0.0002 L6 -13 -8 | 2 -3 -4
2.3107 —-2.3107  0.5778 The amounts of computation required by the various algo-
0.0000 0.0000 0.0000 rithms are listed in Table I.
[—0.7140  0.7140 —-0.1785] Example 3 is a 2-D SISO discrete system of order (16,
r 0.0000 0.6317 —0.3094 1 8) represented by the Roesser state-space model given in
7.5360 —6.3818 1.3419 (1a) and (1b). Each element &, b, ¢, andd is a random
—0.8882 2.0949 —0.7442 number chosen from a normal distribution with zero mean
N, = |-239776  25.1974 —6.4878 and unit variance. The amounts of computation required by
8.8500 —9.2265 2.5091 the algorithms are listed in Table I.
16.5056 —18.8216  5.3540 Example 4 is a four-input two-output 2-D discrete system
L —7.9463 6.2887 —1.1409 of order (8, 16) represented by the Roesser state-space model
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in (19a) and (19b). Each element &f, B, C, andD is a
random number chosen from a normal distribution with zero

TABLE 1l

CoMPUTATIONAL COMPLEXITY OF NEW ALGORITHMS

mean and unit variance. The amounts of computation are listed Algorithms Flops
in Table I.

From these examples, it is evident that both Algorithms Example 5 ] Example 6
1 and 2 lead to a significant reduction in the amount of 1 515 5657
computation relative to the Fadeeva and DFT Algorithms [19], 2 514 5692
[22]. The DFT algorithm, which exploits the efficiency of 3 3515 61953
the fast Fourier transform (FFT), is efficient for high-order 4 2648 60439
systems; nevertheless, our algorithms are more efficient.

Algorithms 1 and 2 require different amounts of compu- _ _ _
tation if m # n. Extensive results with < m < 30 and Example 6 is the 2-D discrete system in Example 2. It can
1 < n < 30 have shown that Algorithm 1 requires les$e represented by the Fornasini-Marchesini model [24] with

computation than Algorithm 2 whem < n (see Examples A — (A A,
1 and 4), and Algorithm 2 requires less computation when 1=lo o
m > n (see Example 3). 0 o
Az = A, AJ
B. Examples for the Fornasini-Marchesini Model B — 'Bl}
L=

Example 5 is a 2-D discrete system of order (1, 1), which L 0
was used in [26] to synthesize optimal Fornasini-Marchesini B, — 0
state-space model structures utilizing a 2-D similarity trans- 2= | B2
formation matrix that is not block-diagonal. The system is C=C. (42)

represented by the Fornasini—-Marchesini state-space mod
(23a) and (23b) with

0o 1 0.1210
A= [0 —0.7243} b= [—0.0456}

eﬁ'ﬂg amounts of computation required by Examples 5 and 6
are listed in Table II.

As can be seen, Algorithms 1 and 2, i.e., the algorithms
based on the Roesser model, are significantly more efficient
than Algorithms 3 and 4, the algorithms based on the For-

nasini-Marchesini model.
4| 0 0 b — |0 .
27 1-0.5257 —0.6815 27 10.0223 V. CONCLUSIONS
c=0 1] d=0

Two algorithms based on a 1-D polynomial determination
technique for the derivation of the transfer-function matrix of

It can be readily verified that the above system can {e2-D discrete system from the Roesser state-space model have

represented by the Roesser state-space model with been proposed. The computational efficiency of the algorithms
has been examined and found to be superior relative to that of

the algorithms described in [19], [22]. Then, two algorithms

A A, —0.7243 | 1.0543 based on the Fornasini-Marchesini state-space model have
A= { As AJ = _0—050:1 I —0_68_1; been derived. A comparison of the algorithms based on the
) ) Roesser model (Algorithms 1 and 2) with the algorithms based
b 1 on the Fornasini—-Marchesini state-space model (Algorithms 3
b= [bl} = |- and 4) has shown the former to be more efficient by a factor
2 1 of about 10.
c=[c; co]=[-0.0456 | 0.0223] REFERENCES
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