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Abstract—New algorithms for the derivation of the transfer-
function matrices of two-dimensional (2-D) discrete systems from
the Roesser and Fornasini–Marchesini state-space models are
presented. Two key steps in developing the algorithms are as
follows. First, the transfer-function matrix is reformulated in
terms of the characteristic polynomials of the matrices involved.
Second, an efficient algorithm for the determination of 1-D poly-
nomial coefficients is developed and is, in turn, used to determine
the coefficient matrices of the 2-D transfer-function matrix. The
proposed algorithms are computationally efficient and reliable.
The efficiency of the algorithms is illustrated by comparing the
proposed method with two existing methods through examples.

Index Terms—2-D transfer-function matrix, 2-D discrete sys-
tems.

I. INTRODUCTION

STATE-SPACE two-dimensional (2-D) discrete systems
have been studied quite extensively during the past decade,

and several useful methods for their analysis and design
have been established [1]. These include methods for stability
analysis [2]–[6], analysis of finite-wordlength effects [7], [8],
design [9], [10], model reduction [11]–[13], and relevant
computation issues [14], [15]. Since many of the available
analysis and design methods are applicable only to the 2-D
transfer-function matrix, it is often necessary to derive the
transfer-function matrix from a state-space description of the
system.

One of the commonly used state-space models for 2-D
discrete systems is the Roesser model [16]. Several algorithms
for the derivation of the 2-D transfer-function matrix from
the Roesser state-space model have been proposed [17]–[22].
Those in [17]–[19] are basically extensions of the well-known
Fadeeva algorithm [23] to the 2-D case while the algorithms in
[20]–[22] are based on the discrete Fourier transform (DFT).
Another popular state-space representation for 2-D discrete
systems is the Fornasini–Marchesini model [24]. To date, no
efficient algorithms for the derivation of the 2-D transfer-
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function matrix from the Fornasini–Marchesini state-space
representation have been reported.

In Sections II and III of this paper, new algorithms for the
derivation of the 2-D transfer-function matrix from the Roesser
and Fornasini–Marchesini state-space models are presented.
Two key steps in developing the new algorithms are as follows.
First, the transfer-function matrix is reformulated in terms of
the characteristic polynomials of several matrices that depend
on one complex variable. Second, algorithms are proposed
that identify the coefficients of a 1-D polynomial of order
when its values at points on the unit circle are known.
Our algorithms entail solving a system of linear equations
whose coefficient matrix is an unitary Vandermonde matrix.
In Section IV, examples are given to illustrate the efficiency
of the algorithms proposed and to compare them with the
existing algorithms.

II. DERIVATION OF THE TRANSFER-FUNCTION

MATRIX FROM THE ROESSERSTATE-SPACE MODEL

In this section, two algorithms for the derivation of the
transfer-function matrix of a linear, shift-invariant, discrete,
multivariable 2-D system from its Roesser state-space descrip-
tion are developed.

Consider the Roesser state-space model of a single-input,
single-output (SISO) 2-D discrete system [16]

(1a)

(1b)

where , are the horizontal and vertical state
vectors, respectively, and and are the input and output,
respectively. If we define

where denotes the direct sum, then the transfer-function
matrix of the system is given by

(2)
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in (2) can be written as

(3)

where is an integer, and are polynomials in
of order not greater than, and

It follows that

(4)

where denotes the characteristic polynomial of
in variable . Further, from (2) and the formula of matrix
inversion [25], transfer function can be expressed
as

(5)

where

Note that is a common term in , ,
, and ; hence, the above equations can be expressed

as

(6)

By using a well-known formula for the transfer function of a
1-D SISO state-space model (see [25, Appendix A.13]), (5)
can be rewritten as

(7)

where and are the
characteristic polynomials of and ,
respectively. Note that the denominator in (7) is a monic
polynomial in but the denominator in (3) is a polynomial
in with as the coefficient of . This observation
in conjunction with (4) leads to

(8a)

(8b)

A. Algorithm for a SISO Roesser Model

The algorithm for a SISO Roesser model is derived using
(8a) and (8b), and an efficient method for the determination
of a 1-D polynomial as described below.
1) Determination of the Coefficients of a 1-D Polynomial:Let

be a polynomial of order with coefficients .
Also let be points that are uniformly
distributed on the unit circle of the complex plane, i.e.,

(9)

If the values are known, then the
coefficients can be determined as

(10)

where , , and
is the Vandermonde matrix whose second
to last column is

that is

...
...

...

Since are distinct, is always
nonsingular. More important, it follows from (9) that

(11)

where denotes the complex-conjugate transpose of
. Therefore, is a unitary matrix and (10)

can be written as

(12)

Equation (12) provides an efficient formula for the determina-
tion of 1-D polynomial .
2) Determination of the Coefficients of and :
Throughout this subsection it is assumed that matrixhas
no eigenvalues on the unit circle, which is the case where the
system is stable [4]. The case where has eigenvalues on
the unit circle will be considered in Section II-B.

Given a point on the unit circle, it follows from (6)
that , , , and can be evaluated and
used in (8a) and (8b) to obtain the values of and

for at the given point . If this
procedure is applied to each of the points defined by
(9), then the values of every and on the set

can be obtained. From these observations
in conjunction with the analysis in Section II-A-1, we conclude
that all polynomials and can be obtained using
the following algorithm:



114 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 44, NO. 2, FEBRUARY 1997

Algorithm 1:

Step 1: Use (6) to evaluate , , , and
over the set of points defined in (9).

Step 2: Compute the determinant of and the
characteristic equations of , and

for .
Step 3: Use (8a) and (8b) to obtain and

for , .
Step 4: For each , form vectors

and , and determine
polynomials and by using (12)

B. The Unstable Case

If has eigenvalues with unity modulus, the system is
unstable. In such a case, the points defined by (9) need
to be modified to

(13)

where denotes the radius of a circle in the plane
where has no eigenvalues. With , (10)
becomes

where

...
...

...

diag

and diag is the diagonal matrix with
as the entries along its main diagonal. By (11),

diag

which implies that

diag

Therefore, (12) is modified to

diag

diag (14)

Note that (12) is a special case of (14) with , as may
be expected.

C. Dual Algorithm

A dual algorithm to Algorithm 1 can be obtained when the
roles of variables and are interchanged. By representing

in (2) as

where and are polynomials in of order not
greater than , it can be readily shown that

(15a)

(15b)

where , and can be obtained through
the following matrix equation

(16)

Further, (12) needs to be modified as

(17)

where

with

(18)

The above analysis leads to the following algorithm:
Algorithm 2:

Step 1: Use (16) to evaluate , , , and
over the set of points defined by (18).

Step 2: Compute the characteristic equations of, ,
and for

.
Step 3: Use (15a) and (15b) to obtain and

for , .
Step 4: For each , form vectors

and , and determine
polynomials and by using (17).

Obviously, Algorithm 2 can be used to evaluate
only if matrix has no eigenvalues on the unit circle.
Modifications similar to those in (13), (14) should be made
to deal with the case where has eigenvalues on the unit
circle.

D. The MIMO Case

Now consider the Roesser state-space model of a multi-input
multi-output (MIMO) 2-D discrete system

(19a)

(19b)
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where and are input and output vectors. The
transfer-function matrix of the system is given by

(20)

Viewing the entry of as ascalar 2-D rational
function of order given by

where and are the th row of and the th column of
, respectively, and is the entry of ,

can be considered to be given by (2), which is
the transfer function of the SISO Roesser state-space model
given by (1a) and (1b) with , and .
Consequently, the transfer-function matrix in (20)
can be evaluated entry by entry using Algorithm 1 or 2. This
becomes apparent if we write in (20) as

where

(21)

, , and in (5) are the th column of ,
the th row of , and the entry of in
(21), respectively. Consequently, (21) can be used to evaluate

, , , and for each entry of
when Algorithm 1 is applied.

Alternatively, (20) can be written as

where

(22)

, , and in (16) are the th column of ,
the th row of , and the entry of in
(22), respectively. Obviously, (22) is a key formula for the
evaluation of , , , and for each entry of

when Algorithm 2 is applied.

III. D ERIVATION OF THE TRANSFER-FUNCTION MATRIX FROM

THE FORNASINI–MARCHESINI STATE-SPACE MODEL

In this section, two algorithms for the derivation of the 2-
D transfer-function matrix of a linear, shift-invariant, discrete,
multivariable 2-D system from the Fornasini–Marchesini state-
space model are developed.

The Fornasini–Marchesini state-space model of a SISO 2-D
discrete system is given by

(23a)

(23b)

where is the state vector. The transfer function of the
system can be expressed in terms of, , , , , and , as

(24)

(25)

where and are polynomials in . As in (7),
(24) can be written as

(26)

where

(27a)

(27b)

In (26), , , ,
are the characteristic polynomials of , ,

, and , respectively. From (25) and (26), it follows
that

(28a)

(28b)

A. Algorithm for a SISO Fornasini–Marchesini Model

The algorithm for the Fornasini–Marchesini model is based
on (28a), (28b), and the assumption that matrices and

have no eigenvalues on the unit circle. The method for
the determination of a 1-D polynomial described in Section II-
A-1 can be used here with some modifications. Specifically,
(12) needs to be modified as

(29)

where

and

(30)
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The required algorithm can be constructed as follows:
Algorithm 3:

Step 1: Use (27a) and (27b) to evaluate and
over the set of points defined in (30).

Step 2: Compute the determinants of and
, and the characteristic equations of

and for .
Step 3: Use (28a) and (28b) to obtain and

for , .
Step 4: For each , form vectors

and , and determine
polynomials and by using (29).

If or has eigenvalues on the unit circle, then
modifications similar to those in (13), (14) should be made.

B. Dual Algorithm

A dual algorithm to Algorithm 3 can be obtained when the
roles of variables and are exchanged. By representing

in (24) as

where and are polynomials in , it can be
readily shown that

(31a)

(31b)

where

(32a)

(32b)

In (31a) and (31b), , , ,
and are the characteristic polynomials of ,

, , and , respectively. Further, (17) needs
to be modified as

(33)

where

with

(34)

The algorithm is as follows:
Algorithm 4:

Step 1: Use (32a) and (32b) to evaluate and
over the set of points defined by (34).

Step 2: Compute the characteristic equations of,
, , and for .

Step 3: Use (31a) and (31b) to obtain and
for , .

Step 4: For each , form vectors
and , and determine

polynomials and by using (33).

Obviously, Algorithm 4 can be used to evaluate
only if matrices and have no eigenvalues on the
unit circle. If matrix or has eigenvalues on the unit
circle, then modifications similar to (13), (14) should be made.

C. The MIMO Case

Consider now the Fornasini–Marchesini state-space model
of a MIMO 2-D discrete system

(35a)

(35a)

where , and . The transfer-
function matrix of the system can be expressed in terms of

, , , , , and as

(36)

whose entry is a scalar rational function of order
given by

(37)

where , , and are the th row of and the th
column of and , respectively. Therefore, the transfer-
function matrix given by (36) can be evaluated entry
by entry and each entry can be treated as a SISO transfer-
function. Hence, (28a) associated with in (37)
becomes

(38)

where

(39)

In (38), and are the charac-
teristic polynomials of and , respectively.
Therefore, Algorithm 3 can be extended to deal with the
MIMO case by substituting (38) and (39) into (28a) and (27b),
respectively.

Similarly, (31a) becomes

(40)
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where

(41)

and are the characteristic
polynomials of , and , respectively. There-
fore, Algorithm 4 can be extended to deal with the MIMO case
by substituting (40) and (41) into (31a) and (32b), respectively.

IV. EXAMPLES

In Section IV-A, Algorithms 1 and 2 are applied to four
2-D discrete systems represented by the Roesser state-space
model and the required amounts of computation are compared
with those required by the existing algorithms [19], [22]. In
Section IV-B, Algorithms 3 and 4 are applied to two systems
represented by the Fornasini–Marchesini state-space model.

A. Examples for the Roesser Model

Example 1 is a 2-D discrete system of order (2, 6), which
was used in [6] for stability analysis of 2-D systems. The
system is represented by the Roesser state-space model with
the matrices:

Algorithms 1 and 2 proposed and the algorithms in [19] and
[22] led to the transfer function

where

TABLE I
COMPUTATIONAL COMPLEXITY OF THE ALGORITHMS FOR THEROESSERMODEL

The amounts of computation required by the various algo-
rithms are listed in Table I.

Example 2 is a two-input two-output system represented by
the Roesser model of order (2, 2), which was used to illustrate
the algorithm in [19]. The model is given by (19a) and (19b)
with

The transfer-function matrix obtained by using Algorithms 1
and 2, and the Algorithms in [19] and [22] is

where the denominator is given by the matrix:

and the numerators are specified by , , , and
as follows: e14

The amounts of computation required by the various algo-
rithms are listed in Table I.

Example 3 is a 2-D SISO discrete system of order (16,
8) represented by the Roesser state-space model given in
(1a) and (1b). Each element of, , , and is a random
number chosen from a normal distribution with zero mean
and unit variance. The amounts of computation required by
the algorithms are listed in Table I.

Example 4 is a four-input two-output 2-D discrete system
of order (8, 16) represented by the Roesser state-space model
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in (19a) and (19b). Each element of, , , and is a
random number chosen from a normal distribution with zero
mean and unit variance. The amounts of computation are listed
in Table I.

From these examples, it is evident that both Algorithms
1 and 2 lead to a significant reduction in the amount of
computation relative to the Fadeeva and DFT Algorithms [19],
[22]. The DFT algorithm, which exploits the efficiency of
the fast Fourier transform (FFT), is efficient for high-order
systems; nevertheless, our algorithms are more efficient.

Algorithms 1 and 2 require different amounts of compu-
tation if . Extensive results with and

have shown that Algorithm 1 requires less
computation than Algorithm 2 when (see Examples
1 and 4), and Algorithm 2 requires less computation when

(see Example 3).

B. Examples for the Fornasini–Marchesini Model

Example 5 is a 2-D discrete system of order (1, 1), which
was used in [26] to synthesize optimal Fornasini–Marchesini
state-space model structures utilizing a 2-D similarity trans-
formation matrix that is not block-diagonal. The system is
represented by the Fornasini–Marchesini state-space model of
(23a) and (23b) with

It can be readily verified that the above system can be
represented by the Roesser state-space model with

The transfer functions obtained by using Algorithms 1 to 4
are given by

where

TABLE II
COMPUTATIONAL COMPLEXITY OF NEW ALGORITHMS

Example 6 is the 2-D discrete system in Example 2. It can
be represented by the Fornasini–Marchesini model [24] with

(42)

The amounts of computation required by Examples 5 and 6
are listed in Table II.

As can be seen, Algorithms 1 and 2, i.e., the algorithms
based on the Roesser model, are significantly more efficient
than Algorithms 3 and 4, the algorithms based on the For-
nasini–Marchesini model.

V. CONCLUSIONS

Two algorithms based on a 1-D polynomial determination
technique for the derivation of the transfer-function matrix of
a 2-D discrete system from the Roesser state-space model have
been proposed. The computational efficiency of the algorithms
has been examined and found to be superior relative to that of
the algorithms described in [19], [22]. Then, two algorithms
based on the Fornasini–Marchesini state-space model have
been derived. A comparison of the algorithms based on the
Roesser model (Algorithms 1 and 2) with the algorithms based
on the Fornasini–Marchesini state-space model (Algorithms 3
and 4) has shown the former to be more efficient by a factor
of about 10.
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