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Separate/Joint Optimization of Error Feedback and
Coordinate Transformation for Roundoff Noise
Minimization in Two-Dimensional State-Space

Digital Filters
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Abstract—This paper is concerned with the minimization many applications, highimplementation cost remains a concern,
of roundoff noise subject to Iz-norm dynamic-range scaling especially for multidimensional dynamic systems in which a
constraints in two-dimensional (2-D) state-space digital filters. 506 number multipliers are involved. In addition, the increased

Two methods are proposed, with the first one using error feed- - - . L
back alone and the second one using joint error feedback and execution time needed for carrying out many multiplications

coordinate transformation optimization. In the first method, Of long-length numbers is obviously out of favor for real-time
several techniques for the determination of optimal full-scale, applications. The synthesis of state-space digital filter struc-

block-diagonal, diagonal, and scalar error-feedback matrices for tures with minimum rounfoff noise undés-norm dynamic-
a given 2-D state-space digital filter are proposed. In the second range scaling constraints has been investigated in [1]-[4], and

method, an iterative approach for minimizing the roundoff noise ; LS S
under I5-norm dynamic-range scaling constraints is developed by the investigation has been extended to 2-D state-space digital fil-

jointly optimizing a scalar error-feedback matrix and a coordinate ~ ters in [5]-[8]. Another technique for the reduction of roundoff
transformation matrix, which may be regarded as an alternative noise at the filter output is to use error feedback (EF). The EF

approach to the conventional method for synthesizing the optimal s achieved by extracting the quantization error after multipli-
2-D filter structure with minimum roundoff noise. An analytical cation and addition and then feeding the error signal back to

method for the joint optimization of a general error-feedback tai int th h imole circuit. M techni f
matrix and a coordinate transformation matrix under the scaling a certain point through a simple circuit. Many techniques tor

constraints is also proposed. A numerical example is presented to EF have been presented in the past for one-dimensional (1-D)
illustrate the utility of the proposed techniques. digital filters [9]-[18], and more recently, for 2-D digital filters

Index Terms—Optimal coordinate transformation, optimal [19]-[23]. It has also been shown that the roundoff noise can
error feedback, roundoff noise minimization, scaling constraints, be reduced by means of delta operator [24]-[26] and the digital
2-D state-space digital filters. filter in this case can be viewed as a special case of the filter
with EF [24].

This paper proposes two new methods for the reduction
of roundoff noise in 2-D state-space digital filters. Several
D UE to the existence of an infinite number of realizationg|psed-form formulas for evaluating the optimal full-scale,

for a given transfer functiod(z), there is a certain de- j|ock-diagonal, diagonal, and scalar EF matrices for a given
gree of freedom in choosing a particular realization of the filtegiate-space digital filter are derived. Then, an iterative noise
This freedom is often used to optimize some criterion associa@fiuction technique for state-space digital filters is developed
with a particular algorithm or realization. i (z) is realized py jointly optimizing a scalar EF matrix and a coordinate trans-
through hardware implementation using fixed-point arithmetigyrmation matrix subject td»-norm dynamic-range scaling
then the internal noise caused by finite-word-length (FWL) regonstraints. An analytical method for the joint optimization of a
isters may be the most serious concern with which to deal. Oggneral EF matrix and a coordinate transformation matrix under
of the primary FWL register effects in fixed-point digital filtersyne scaling constraints is also proposed. Although the objective
is the roundoff noise caused by the rounding of products/suffinction involved in the joint optimization is not convex in gen-
mations within the realization. Although hardware |mplemergra|’ and a rigorous mathematical proof of a global convergence
tation of dynamic systems and digital signal processing mogroperty of the algorithm is not available at present, in every
ules with large data length becomes increasingly affordabledgse of our fairly extensive computer simulations, the algorithm
converges to an identical solution, regardless of the choice of
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[I. TwWO—DIMENSIONAL STATE-SPACE DIGITAL FILTERS WITH Subtracting (4) from (1) yields
ERROR FEEDBACK A AA "
. ) ) . . i,7) = i,7) + — D)e(i,j
Consider the following single-input/single-output local state- xAll(L, J,) N xF,L /_J> ( L Je(i )
space (LSS) modélA, b, ¢, d),,.., for 2-D digital filters which y(i,j) = eAx(i, j) + ce(i, j) ®)
was originally proposed by Roesser [27]:

where
z11(i,j) = Az (i, j) + bu(i, j) Ax(i,j) = =(i,5) — &(i, )
y(i, ) = ex(i, ) + du(i, ) @) Azyi(i, ) = w110, ) = 8113, )
where Ay(i,j) = y(i, j) — 5. J)-
z11(i,§) = [xf(‘ + 17j)] . x(i,j) = [z}:(‘ﬂ)] By taking the 2-D z-transform on both sides of (5) and setting
2" (i,j +1) " (i, 5) Az"(0,5) = 0forj = 0,1,..., andAz®(i,0) = 0 for i =
Ao [j; ij b= [2;] c=ler e 0,1,..., we obtain

) . ) AY(Zl./ZQ) = GD(Zl,ZQ)E(Zl,Zg)

Here,z" (i, j) is anm x 1 horizontal state vectog? (i, j) is an Gp(z1,2) = e(Z — A" (A-D) +¢ (6)
n x 1 vertical state vectomw(i, j) is a scalar inputy(z, j) is a ’
scalar output, andly, Ay, A3, Ay, b1, by, ¢1, ¢, andd are real whereZ = z11,,, ® 221, Here,AY (21, z3) andE(z1, z2) rep-
_constgnt matrices of appropriate dimensions. The LSS mo@géent the 2-D z-transform afy(i, j) ande(i, j), respectively,
in (1) is assumed to be BIBO stable, separately locally contrgindG (21, z») is the 2-D transfer function from the quantiza-
lable, and separately locally observable [28]. tion errore(, j) to the filter outputAy(i, §).

Because of finite register sizes, FWL constraints are imposedrhe noise gain is defined d§D) = o2, /02, whereo?
on the local state vector, input, output, and coefficients in thnotes noise variance at the filter output and can be evaluated
filter realization(A, b, ¢, d) . ». By considering the quantization g5
carried out before matrix-vector multiplication, an FWL imple-

. 1 % dzleQ

mentation of (1) can be expressed as I(D) = e 7? f. Gp(21,22)Gp(21,22) i
#11(1,5) = AQE (i, )] + bu(i, 7) = tr[Wp] @)
§6,5) = eQIE(i, )] + duli, j) @ wherel'; = {z;:|z] = 1} fori = 1,2, and
where each component of coefficient matrice®, ¢, andd as- 1 dz1dzs
sumes an exact fractiond!. bit representation. The FWL local Wp = —= % Gp(21,22)Gp(21, 22) .
state vectot(i, j) and the outpufi(i, j) all have aB bit frac- (2m7) T, #1%2
tional representation, whereas the inp(it j) is a(B — B.) bit By applying the 2-D Cauchy integral theorem, the mal#bp,
fraction. defined in (7) can be expressed in closed-form as
The quantizeiQ[-] in (2) rounds theB bit fraction (i, 5)

to (B — B.) bits after the multiplications and additions, where Wp=(A-D)Y'W,(A-D)+c'c (8)

the sign bit is not counted. In a fixed-point implementation, the ) - )
quantization iS usua”y performed by two’s Comp|ement trunc&[herewo. IS Ca."ed the |Oca| Obsel’vablllty Gramian Of the 2-D
tion that discards the lower bits of a double-precision accumiilter and is defined by

lator. Thus, the quantization error 1 % 7{ "oz — A dz1dzs
(7 — hatestd
e(i,j) = &(i, j) — QI (i, )] 3) @) e I 122
coincides with the residue left in the lower parti(, j). The =3 g(i.j)"g(i.j) 9)
roundoff errore(z, j) is modeled as a zero-mean noise process i=0 j=0
of covariancer?I,,,, with .
with
1
0% = —9272B-Be) S AG—-1,9) I, O Gj-1)|0 O
12 g(évJ)_CA 0 0 +CA 0 In

In an effort to reduce the filter’s roundoff noise, the quantization I

S . A0 — [Lm Oy _ |00,
errore(i, ) is fed back to each input of delay operators through =lo ol =lo 1,
an(m+n) x (m + n) constant matrix in the FWL filter (2).
The 2-D filter with EF can be characterized by the LSS model

o - - ACD =0 (j21)

zlf(z."],) = AQ[Mz(.zyzi)] +bU(}7.7) + De(i, j) A — 400 gi=15) | A0.1) g(i5=D)

y(i,5) = eQ[x(i, )] + du(i, j) (4) — AG=13) 4(10) 4 g(ii=1) 4(0.1)

whereD is referred to as a&RF matrix (i,7) > (0,0) (10)
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and the partial ordering for integer paiisj) used in [27,p. 2]. A different yet equivalent state-space description of
We remark that matrisW , is referred to as thenit noise (1)—(A, b, ¢, d),,+,—Ccan be obtained via a coordinate trans-

matrix for the 2-D filter, andW p can be viewed as the unitformationz(i, j) = T~ 'x(i, j) with T = T; @ T, where

noise matrix for the 2-D filter with EF specified by matdX.

From (10), it follows that A=T'AT, b=T"'b, e=cT. (16)

0 Accordingly, the local observability and local controllability
} A Gramians fo(A, b, ¢, d),, become

s A — oali-1) | Im 0 Gj-1) |0
g(i,j)A=cA [0 0:|A+CA {0

I,
= cAU1D AL | g1 401 W,=T"W,T, K.=T 'K.T T (17)
A (i,5) > (0,0
= {g ' Ei J}g _ EO: 0; (11) respectively. If thd,-norm dynamic-range scaling constraints

are imposed on the local state vecidt, j), i.e.,
which leads to _ 1 T ]
(KC)”Z(T K.T )ii:]-7 1=1,2,....,m+n (18)

T T
cet A WoA - then it can be shown that [6], [7]
=cTe+ AT >N " g(i,5) gli, )A Lfm N\ 2
1=0 7=0 int Wo = — i — i 19
j 1151111 rw,] m(;m) +n(;04> (19)

—Tet ZA(i,O)TcTcA(i,O)

P wheres?; fori = 1,2,...,mando?, fori = 1,2,... ,n arethe
eigenvalues of matriceK .,W,; and K .,W 4, respectively,

+ 3 AT AN 13N ACDTT A gng
7=1

oo 0o s K. — Kcl KcZ
— Z ZA(i’j)TCTCA(i’j). (12) e Kpg Kc4 ’
=0j=0 The state-space realization satisfying (18) and (19) is called the

optimal realization(which is sometimes also referred to as the

By comparing matrix@ , in (9) with (12), we obtain the rela- =+ , - ;
optimal filter structurg. A method for constructing such a filter

tions [29] X
structure was proposed in [6] and [7].
T 71 Im If the coordinate transformation for the LSS model in (1) is
Wor=[In 0][AW,A+c 0 taken into account, then the 2-D filter with EF can be character-
0 ized by
Wo=[0 I,][ATW,A+c"( [ I } (13)
" 1(i.j) = T~ ATQ[&(i, )] + T~ "bu(i, j) + De(i, j)
where (i, j) = I'Qx (i, )] + du(i, j) (20)
W — W, W, which _corres.ponds to (4) in the original realization. In this case,
°T W,y Wyl the noise gairf (D, T) becomes
Therefore, if there is no EF in the 2-D filter, then the noise gaif D:T) = tr[(T~'AT — D)"T"W ,T(T~' AT — D)]
I(D) with D = 0 becomes +tr[T"c"eT].  (21)
1(0) = tr{ATW,A + ¢ Then, the problem is now formulated as follows. For given

A, b andc (and thereforeW , and K .), obtain matriced) and

= W], (14) T = T, ® T, that minimize (21) subject to the constraints in

The l,-norm dynamic-range scaling constraints on the Iocélrs)'
state vector involves the local controllability Gramian of the 2-D

filter, which is defined by I1l. DETERMINATION OF OPTIMAL ERROR

FEEDBACK MATRICES

K. = ; 7{ f (Z—A)~'bb" (2" — AT)flw In this section, suppose that the LSS model in (1) is expressed
(2m5)* Jr, Jr, 2172 by the optimal realization, after choosing an appropriate coor-
N = . ey AT dinate transformation matriX = T, & T, that satisfies (18)
- Z Zf("%”f(zvf) (15  and (19) simultaneously. Then, closed-form formulas for de-
i=0j=0 termining the optimal full-scale, block-diagonal, diagonal, and
scalar EF matriXD to minimizeI (D) = tr[W p] for a given 2-D
state-space digital filter will be derived. It is noted that the op-
i—1,5) [bl] 4 AGi-D [ 0 } timal full-scale EF matrix is often too costly because it requires
' as many a$m + n)? explicit multiplications. The costs can be
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reduced, e.g., by constraining the EF matrix to be block-diaghis implies that ife;'s and3;’s satisfy
onal or diagonal, which reduces the number of distinct coeffi-

cients tom? + n* orm + n. 4 < _g(Wards + W02A3)'i’i> <0, i=12....m
1) Case 1D Is a General Matrix: Substituting (8) into (7),  \ (Wo1)ii ’ e
we obtain Bi </Bz _9 (WOSAQW;I- W04A4>ii> <0, i=1,2,...,n
I(D) =trlc"c+ (A— D)"W,(A - D)] (Woa)s (31)
=trlcTc+ ATW,A] + tr[D"W ,D] — 2tr[D"W , A]
— tr[W,] + tr[DTW, D] — 2tr[DTW, A. (22) then the right-hand side of (30) becomes negative, that is,

I(D) = triWp] < tr[W,] holds. LettingdI(D)/0a; = 0 and

Differentiating (22) with respect to the EF matiX yields 9I(D)/9p; = 0, we obtainD; = diag{a1, as, ..., oy} and
D, = diag{ﬂl,ﬂg./ Ce ﬂn} with
oI(D)

——= =2W,(D - A). 2 y
oD W ( ) ( 3) o = (W0114(1VI-’|- T?2A3)” i=1,2 m
By choosing the EF matrix aB = A, the noise gaid (D) in (W ,3A5 +01W“ LAY
(22) achieves its minimum value B = —2 W) 2 = i=1,2,....,n (32)
o4 )it
T
Lnin(D) = U[W,] — tr[A" W, A] where(D) achieves its minimum as
= tr[c’ . (24)

(WA + W A3)%
2) Case 2D Is a Block-Diagonal Matrix: In this case, ma- Imin(D) = tr[W,] — Z (Wo1)is

trix D assumes the form =t n
B Z (Wo3As + W4 AL)%

(Wos)ii

D=D, oD, (25) (33)

i=1

whereD; andD, arem x m andn x n matrices, respectively, 4) Case 4D; andD, Are Scalar MatricesuI,,, andj3I,,: If

which leads (22) to D, = al,, andD, = pI, with scalarsa and 3, then (30)
becomes
I(D) = tr[W,] + tr [DT W1 D1] + tr [D] W ,4D,]
— 2t [DT (W1 Ay + W 2A4s3)] I(D) — tr[W,]
—2tr [Df (W o342 + Wi Ay)] . (26) — t[W.]a <a B Ztr[WoltA;[lv; I/]V02A3]>
ol
LettingdI(D)/9D = 0 anddI(D)/dD, = 0, it follows that W8 <ﬁ 3 Ztr[WogtI;l[i};- I/]V04A4]> e
o4

Dy = Ay + W' WA _ _
Dy = A+ WIW A, 27) Hence, ifa and g satisfy
tr[Wo1 A1 + W,2As)
“ <0‘ W 1] <0
tr[WosAs + W4 A4)
- 0
& <ﬂ W oa] <

By substituting (27) into (26), we obtain the minimum value of
the noise gairf (D) as

(35)
Inin(D) = trW,] — tr [D] (W ,1 A1 + W ,2A5)]

- [D4T(W03A2 +WoiAy)] . (28) then the right-hand side of (34) is negative, thatlig)) =
tr(Wp] < tr[W,] holds. Moreover, frondI(D)/0a = 0 and
01(D)/98 = 0, it follows that the values o and/ that mini-
mize I(D) are given by

3) Case 3D Is a Diagonal Matrix: In this case, matrixD
assumes the form

D, =diag{ay, as,...,amn} WAL+ W0 A3]
Dy = diag{B1, B, - . -, B} (29) “= tr[W 1]
tr[W 34, + W 4A
which leads (26) to g=1 BtrfW ] 1A (36)
04
I(D) — tr[W,] which lead (34) to
- (Wo1A; + W02A3)ii)
= Woi)iai | a; —2 ’
;( )i (a Wi Lnin(D) = W] — (trW 141 + W2 A3])

tr[Wol]

- (Wo3As + W ouAy)i; )
+ ;(Woél)iiﬂi (/37‘, —22-28 (214704)%4 = ) . (30) B (tr[WogzéTv;oZ[]fo4A4]) @
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IV. NOISE REDUCTION BY JOINT OPTIMIZATION OF ERROR  Letting 0.J(«, 8, P)/OP; = 0 anddJ(«, 3, P)/0X; = 0 for
FEEDBACK AND COORDINATE TRANSFORMATION 1 = 1,4, itis derived that
First, the joint optimiza.tion of scalar EF r.natricD:;. =al,, PW, P, = K., tr [Kdel] —m
andD, = (I,, and coordinate transformation matrics and 1
T, will be investigated for roundoff noise minimization under PWysPy= MKy, I [K64P4 ] =n. (43)

l5-norm dynamic-range scaling constraints. Such constraints,%te that if matriced% > 0 andM > 0 are symmetric, then

the matrixD are introduced in order to guarantBe' DT = D : . : .
. . . the matrix equatioW P = M has the unique solution [31
for every block-diagonal matrif’ = T, & T4. Then, (21) is x equat uniqu ution [31]

written as pP_—w* [W%MW%]%W*%.

I(D,T) =t[T"((A- D)"W,(A - D) + c"¢)T] Then, it follows from (43) that
=t[(A-D)"W,(A-D)+c"¢c)P] (38)

Wl

whereP = TT7?, thatis,P; = T;T! fori = 1,4. If the

(M

_ i [whacawl P wid
w

coordinate transformation for the LSS model in (1) is taken into P, =/ W4/ f C4W4ﬂ} W;ﬂ%
account, then (36) is changed to
L KWt = — zm:
T c al? = —F/—= Ky ] =M
o = MW di + WorAs)Py] Ve T\ &
tr[WolPl]
tr{(WosAs + W1As) Py Ltr[K W)t = ( ) 44
— X c [3 — Vi ="n ( )
’ tr[WoaPy] 9 Vi 2

Equations (38) and (39) imply that for fixed and 5, matrix wherep? fori =1,2,...,m andv? fori =1,2,...,n are the
T = T & T4 can be optimized to minimiz&(D, T') subject eigenvalues oK .; W1, andK .4W 43, respectively. Therefore,
to the scaling constraints in (18) and vice versa. The propos&d obtain
joint optimization will be performed in an iterative manner. ( m

3 )

W=

Wi Wi Kawi] Wi

=

First, scalarse andg can be derived from (39) when the initial
P, say Py, is given. In what follows, let the unit noise matrix
Wp in (8) with D = ol,, @ (I, be denoted by

@

(SIE

L(y Tt kowi i wod
P, = E Zl/i W4’g I:W4[3KC4W4/{| W4[3 . (45)
i=1

T
W = {VVK“’ ‘;VV“@} . (40)

of V4B Substituting (45) into (41) yields the minimum value of
Under the joint application of a scalar EF and a coordinate tranklo, 8, P) for fixed o and3 as
formation, the noise gaif(D, T) is given by t{TlTWMTl] + N 2
tr[T4TW4§T4]. In order to minimize (D, T) (with « andg tem- mm J(a, B, P) (Z /h) l <Z Vi) T
porarily fixed) over anm x m nonsingular matrix’; and an n \ =
n X n nhonsingular matrixl’y subject to the scaling constraints
in (18), we define the Lagrange function HaVing obtained matriP = P1 D P4, the improved values

of scalarsae and 3 can be obtained using (39). This iterative

J(a, B, P) = trlW1,P1] + M\ (tr [del—l] — m) procedure for minimizing the roundoff noise under the scaling

constraints in (18) with respect to scalar parameteend 3
as well as arfm + n) x (m + n) symmetric positive-definite
aP = P, ® P, can be summarized as follows.

+t[WagPs] + Ay (tr [KeaPT'] —n)  (41)

where)\; and)\, are Lagrange multipliers. By using the formul

for evaluating matrix gradient [30, p. 275] 1) Seti = 1, and
8(tr[MX_1])/8X — _[X—IMX—I]T P(O) = diag{(KC)117 (KC)QQ, ey (Kc)m+n,m+n}~
we compute 2) Compute scalars(z) and () using
N tr[(WolAl + W02A3)P1 (L — 1)]
—8J<g}f’ P) _w,, - M PTIK P oli) = tr[Wo1Pr(i —1)]
L tr[(WagAQ + WO4A4)P4(i — 1)]
aJ(a, B, P _ _ 1) = -
(g/—P/i/) = W4,8 — /\4P4 1KC4P4 1 [))(L) tr[Wo4P4('L — 1)]
oJ(a, B, P) _ 3) Compute
P = K] -

aJ (e, 3, P i Inin ((i) L, @ B(i)) = (1 — a(i)*)tr[W o1 Py (i — 1)]
<0Af/ )= [KaP7] . (42) + (1= B))U[WouPa(i — 1)].
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4) Replacd¥, andW 45 by W, ;) andW 3, computed T &T', that minimizes tic” cP] subjectthflKCT*T)ii =1

using fori = 1,2,...,m + n, where the optimaD can be obtained

. by D = T~'AT. For tractability, we consider the minimiza-
Wiai) = (14 a(i) )Wor — a(i)[(WorAr + Wo2A3)"  tion of (1 — p)cTe + uW,)P)] instead of tfe” cP], where
+ W,1A1 + W Aj) 0 < p < 1. In other words, we define the Lagrange function

W4’3(,L-) = (1 + ,[3(2')2)W04 - ﬂ(i)[(WozlAzL + W03A2)T

Jo(P) = tr[Wo1 P1] + Ay (tr [Ko P7'] -
+W04A4+W03A2] ( ) [ 1 1] 1( [ 1 1] m)

FU[WoaPy] + Ny (tr [KeaPy] —n)  (50)
respectively.

5) DeriveP = P; & P, from (45), and take the resulting
matrix asP(i) = P1(i) ® P4(4).

6) Compute t[lWla(i)Pl (3)] + tr[W4a(i)P4(’L')].

7) Updatei := 7 + 1, and repeat from Step 2) until the
change in eithef[a(i) L, ©6(i)1n] Or W10 i) P1(1)]+  Employing steps similar to those used in deriving (45) from
tr[W 4o P4(i)] becomes insignificant compared with 441), we arrive at
prescribed tolerance.

We remark that although the objective function involved in 1 ( m ) L 1 } 3 Wﬁé

1= ol

where); and )\, are Lagrange multipliers, and

I/ilol = (1 - /L)C,{Cl + ,U/Wol
Woy = (1 — )CgCQ + uW oy,

the joint optimization is not convex in general and a rigorous
mathematical proof of the convergence property is not yet avail-
able at present, the above iterative algorithm was applied to quite 1 (.
a number of simulation examples, and fast convergence was ob- * 4 — |, <Z Tai
served in all the cases where all the final results were identical
for any initial state-space realization. A sample of these examheres?; fori = 1,2,...,m ando'il fori =1,2,...,narethe
ples will be illustrated in the next section. eigenvalues oKdWol andKC4Wo4, respecuvely Note that
Suppose the above algorithm converges affér iter- matricesW,; and W, are symmetric positive-definite, pro-
ations and the optimal coordinate transformation matri¥ded thaty > 0. OnceP = P, & P, are obtained, the coor-
T(N) = Ti(N) @ T4«(N) has been computed from thedinate transformation matriX = T'; ¢ T's can be constructed
symmetric positive-definite matriP(N) = P1(N) & P4(N) from P, = T,TT andP, = T,T" to satisfy the scaling con-
(see the Appendix). Then, following (29)—(32), the diagonatraints in (18) (see the Appendix). The noise ggili~" AT)
EF matrixD = Dy @ D, with D1 = diag{a;, a2, ...,am} isthen computed by [tI‘TcTcT]_
andD, = diag{1, (2, - - ., B} that minimizes

V. NUMERICAL EXAMPLE
(D) = tr[T" (N)W ,T(N)]

In this section, we present a numerical example to illustrate
tr [D2TT (NYW ,, Ty (N . » WE pres . P
+ [ ! (T W )] the algorithms proposed in Sections Il and IV.
-2t [DlTl (N)(W01A1+W02A3)T1(N)] Consider a 2-D stable, separately locally controllable,
+tr [DIT} (N)W 04T4(N)] and separately locally observable state-space digital filter
—91r [D4TZ(N)( v3As + W04A4 114 ] (47) (A7 b,c, d)2,2 with d = 0.0 described by
P A A
is given b a2
given by 4z
_ (TT(N)(W,1A1 + W 5 43)T(N)) 1.888990 —0.912190  —1.0 0.0
v (T?(N)WolTl(N)) _ 1.0 0.0 0.0 0.0
" i=1.92 m 0.027710 —0.025800 1.888990 1.0

—0.025800 0.024310 —0.912190 0.0
(T7 (V) (WosAz + WoiA)T4(N))

Bi = e [b1  bo]
(T3 (N)WouTu(N)) —[0.219089 0.0 —0.028889 0.091219]"
i=1,2,....n. (48)
[c1 el
This diagonal EF matribD = D, ¢ D, leads to further reduc- =[0.0288890 —0.091219 —0.219089 0.0].

tion of the noise gain, i.e., . i .
If a coordinate transformation matff = T ®T, is selected

Inin(D) < Imin[o(N) Iy & B(N)I]. (49) as
Next, we discuss the joint optimization of a general EF ma- T, = diag{9.336 610, 9.336 609}
trix D and a coordinate transformation matifix= T; ¢ T4 T, = diag{1.065 112, 0.986 652}

for roundoff noise minimization under the scaling constraints
in (18). In this case, the problem can be reduced as follows: Rben the above filter satisfies the scaling constraints in (18) and
givenA, b, andc (and therefordl . andW ), obtain matrixl’ = produces t[ﬂ’TWOT] = 367.508 947.
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If a coordinate transformation matfik = T, & T4 is chosen which yields I,,,;,(D) = 1.908903. If a scalar EF matrix is

as calculated using (36), then we obtain= 0.957216 andg =
0.893 736, which yield Iy, (D) = 1.950 396.
9544965 1.373341 Now, we apply the iterative optimization procedure described
T = {9_494 676 3.318 699} in Section IV to the original realizatiofA, b, ¢, d)2 2. The pro-

posed algorithm converges after eight iterations to scalats
0.972437, 5 = 0.932447, and a transformation matrik(8) =
T1(8) @ T4(8) with

then the above filter is transformed to the optimal realization

{ 0.329 402 —0.942406}
T, =

—0.136 313 0.947 397

(A,b,¢,d)2» with minimum roundoff noise subject to the Ty (8) = [0'863617 _0'§06058]
scaling constraints in (18), where we have the first equation at 0.720296  —0.508629
the bottom of the page, whose local controllability and local TW(8) = [ 0.606242  —0.537 680}
observability Gramians are written as in the second equation —0.425628  0.708075

at the bottom of the page, respectively, where the infinite sums =~ _ .

in (9) and (15) are calculated by truncation< i < 400 Which yield the noise gaifi(al, ® fI>) = 1.614588. .

and0 < j < 400, and the noise gaid(0) is given by Next, a refined solution that offers further reduced noise gain
tr[W,] = 13.688256. is deduced by calculating an optimal diagonal EF matrix for

Let us now apply the EF described in Section Ill to the aboyB€ Optimal realizatiofT'(8) ' AT(8), T'(8) ‘b, T (8), d)2,».
optimal realizatior{ A, b, ¢, d) ». In the case whe is allowed In this case, the optimal diagonal EF is obtained using (48) as
to be a general EF matrix, then (23) suggests that we should
chooseD = A, which yields Iy (D) = 0.465549. If D is D = diag{0.978 520, 0.962 184, 0.947 598, 0.893 592}
constrained to be a block-diagonal EF matrix, then the optimal

D = D, & D, is calculated using (27), which gives which yields I, (D) = 1.610741.
Finally, we apply the joint optimization of a general EF ma-

trix D and a coordinate transformation matiix= T & T4

D, = [0'965 580 —0.178 717] described in Section IV to the original realizatio, b, ¢, d)2 ».
0.109304  0.933 443 In casey = 0.001, the transformation matri¥ = T, ¢ T4 is
Dy — [ 0.935176  0.200 611] computed as
—0.156671 0.862050
1(D) = 1.555329. T, — [0.714 538 —0.598 664}
0.847981 —0.415827
If D is constrained to be a diagonal EF matrix, then it can be T, = [ 0526874 —0.573 867}
. —0.313219 0.767659
calculated using (32) as
which yield the noise gain/(T~'AT) = trc"c¢P] =
D = diag{0.941314,0.973118,0.969 957,0.817 514} 0.347 755.

0.965031 —0.178310 —0.058655 0.167811
0.115198  0.923959  0.167811  —0.480 100
0.021491  —0.013210  0.965031  0.115198
—0.013210  0.045857 —0.178310  0.923959
b=1[0.039012 —0.111613 0.319129 0.142200]"

¢=[-0.590350 —0.263054 —0.072168 0.206471]

A

r 1.0 —0.221999 0.064066 —0.1841417
K - —0.221999 1.0 —-0.036319 0.155751
7| 0.063821 —0.036079 1.0 —0.221 999
L—0.184141 0.155751 —0.221999 1.0 J
M 3.422064 —0.759695 0.219239 —0.124 2867
W = —0.759695 3.422064 —0.630143 0.532989
7] 0.219239 —0.630143  3.422064 —0.759 695
L —-0.124286 0.532989 —0.759695 3.422064
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TABLE | whereU; andU, are arbitrarym x m andn x n orthogonal
NOISE GAIN I{1}) FOR DIFFERENTEF SCHEMES matrices, respectively. From (A.1), it follows that

Accuracy of D

Error-Feedback m 1 .
Scheme Infinite 3 Bit Integer _1 _r 1 173
Precision | Quantization | Quantization T1 KclT1 =m Z 1hi U, |:W1-’“K01W1-’n:| U,
D=0 13.688256 i=1
General D 0.465549 0.555529 2.040208 n -1 ) oL
" _ _ 4 1732
Block-Diagonal D 1555329 1612408 2.040208 T KTy =n (Y vi| U, [Wi/aKc4W42,r;] Us.
Diagonal D 1.908903 1.937559 2.0402083 =
Scalar D = ol,, & I, || 1.950396 1.965326 2.0402083 (A.2)
Jointly Optimized -
Tad D=l o g1, | 1614588 1.653024 1.660762 _
— Next, we choose ther x m andn x n orthogonal matrice¥ ;
Optimal 1.610741 1.635407 1.660762 o . L
T and Diagonal D ‘ andU , such that (A.2) satisfies the scaling constraints in (18).
Jointly Optimized 0.347755 0.416500 1773003 To this end, we carry out the eigenvalue-eigenvector decompo-
T and General D i
sitions
. . . L L 112 T
The simulations described above are summarized in Table |, [WfaKdea} = R0 R;
where 3—-bit quantization (integer quantization) implies that the L !
elements of matridD are rounded to power-of-two quantization [W@,K C4Wj@] = R,0,RT (A.3)

with 3 bits after binary point (integer quantization). From this

table, it is observed that the utilization of an optimal EF matrighere

leads to considerable reduction in roundoff noise, even when

a scalar matrixD = ol,, ® gI,, with quantizedx andg. It ©, = diag{ji1, 12, . .-, fim ) RIRT .y
is also observed that when the transformation matrix is jointly _ e T "
optimized, further noise reduction can be achieved compared ©, =diag{v1,va,...,va}, RiRy =1

with that in the conventional optimal realization. .
As a result, it follows that

m -1 1

VI. CONCLUSION m (Z M) [W%aKch%a} 2 _ RlAl_leT
The minimization of roundoff noise in 2-D state-space digital i=1

filters by means of EF and joint EF/coordinate transformation n -t 1 1

optimization has been investigated. General, block-diagonal, di- 7 <Z Vvi) [WXQK@Wj@}

agonal, and scalar EF matrices for minimizing the noise gain in =1

a given 2-D state-space digital filter have been derived. Then,

an iterative procedure for minimizing the roundoff noise in g/here

2-D digital filter has also been developed by jointly optimizing m

a scalar EF matrix and a coordinate transformation subject to the A2 = % <Z m) diag{uf17/617 o 7/%1}

=1

(M

= R,A;’R] (A4)

usuall,-norm dynamic-range scaling constraints. Furthermore,

an analytical method for the joint optimization of a general EF 1 (&

matrix and a coordinate transformation matrix under the scaling Aﬁ = — (Z 1/2'> diag{yl—l_/ ,,2—17 RN 7
constraints has been proposed. Simulation results have been pre- " \iz1

sented to illustrate the validity of our proposed algorithms. .
Now, anm x m orthogonal matrixS; and am x n orthogonal

matrix S, such that

APPENDIX S
DERIVATION OF MATRIX T =T, @& T4
—2aT _ * 1
From (45), the optimal coordinate transformation matriEes S1AT7S] = . .
andT 4 that minimize (41) for fixedv andg can be obtained in . %1
closed form as - -
1 % - x
Lo/ N . SA;2sT=|F b (A5)
Tl = = I’LZ WI_(E I:WIEGK01W1§G:| Ul : E E *
7= () N

- v | wz|w:k.wz| U, (A1) can be obtained by numerical manipulations [3, p. 278]. By
Vvn (; ) 48 [ aphet 4[’] ! choosingl; = R8T andU, = R,S] in (A.1), the optimal
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coordinate transformation matrik = T'; & T, satisfying (18)  [21] T. Hinamoto, S. Karino, and N. Kuroda, “2-D state-space digital filters

and (46) simultaneously can now be constructed as with error spectrum shapingProc. IEEE Int. Symp. Circuits Systol.
2, pp. 766769, May 1996.

[22] T. Hinamoto, N. Kuroda, and T. Kuma, “Error feedback for noise re-

1 m 3 . L L a1 duction in 2-D digital filers with quadrantally symmetric or antisym-
_ ) -3 3 3 |* T metric coefficients,”Proc. IEEE Int. Symp. Circuits Systol. 4, pp.
T = m Z pi| Wi, [WlaKdWM} RS, 2461-2464, June 1997.
1=1 [23] T. Hinamoto, S. Karino, N. Kuroda, and T. Kuma, “Error spectrum
1 n 1 1 shaping in two-dimensional recursive digital filterslEEE Trans.
_ -3 3 3]t T Circuits Syst.vol. 46, pp. 1203-1215, Oct. 1999.
T.= NG Z Vi W4ﬂ [W45KC4W4Q} R,S;. (A6) [24] G.Liand M. Gevers, “Roundoff noise minimization using delta-operator
=1 realizations,1EEE Trans. Signal Processingol. 41, pp. 629-637, Feb.
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