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Abstract—This paper is concerned with the minimization
of roundoff noise subject to 2-norm dynamic-range scaling
constraints in two-dimensional (2-D) state-space digital filters.
Two methods are proposed, with the first one using error feed-
back alone and the second one using joint error feedback and
coordinate transformation optimization. In the first method,
several techniques for the determination of optimal full-scale,
block-diagonal, diagonal, and scalar error-feedback matrices for
a given 2-D state-space digital filter are proposed. In the second
method, an iterative approach for minimizing the roundoff noise
under 2-norm dynamic-range scaling constraints is developed by
jointly optimizing a scalar error-feedback matrix and a coordinate
transformation matrix, which may be regarded as an alternative
approach to the conventional method for synthesizing the optimal
2-D filter structure with minimum roundoff noise. An analytical
method for the joint optimization of a general error-feedback
matrix and a coordinate transformation matrix under the scaling
constraints is also proposed. A numerical example is presented to
illustrate the utility of the proposed techniques.

Index Terms—Optimal coordinate transformation, optimal
error feedback, roundoff noise minimization, scaling constraints,
2-D state-space digital filters.

I. INTRODUCTION

DUE to the existence of an infinite number of realizations
for a given transfer function , there is a certain de-

gree of freedom in choosing a particular realization of the filter.
This freedom is often used to optimize some criterion associated
with a particular algorithm or realization. If is realized
through hardware implementation using fixed-point arithmetic,
then the internal noise caused by finite-word-length (FWL) reg-
isters may be the most serious concern with which to deal. One
of the primary FWL register effects in fixed-point digital filters
is the roundoff noise caused by the rounding of products/sum-
mations within the realization. Although hardware implemen-
tation of dynamic systems and digital signal processing mod-
ules with large data length becomes increasingly affordable in
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many applications, high implementation cost remains a concern,
especially for multidimensional dynamic systems in which a
large number multipliers are involved. In addition, the increased
execution time needed for carrying out many multiplications
of long-length numbers is obviously out of favor for real-time
applications. The synthesis of state-space digital filter struc-
tures with minimum rounfoff noise under-norm dynamic-
range scaling constraints has been investigated in [1]–[4], and
the investigation has been extended to 2-D state-space digital fil-
ters in [5]–[8]. Another technique for the reduction of roundoff
noise at the filter output is to use error feedback (EF). The EF
is achieved by extracting the quantization error after multipli-
cation and addition and then feeding the error signal back to
a certain point through a simple circuit. Many techniques for
EF have been presented in the past for one-dimensional (1-D)
digital filters [9]–[18], and more recently, for 2-D digital filters
[19]–[23]. It has also been shown that the roundoff noise can
be reduced by means of delta operator [24]–[26] and the digital
filter in this case can be viewed as a special case of the filter
with EF [24].

This paper proposes two new methods for the reduction
of roundoff noise in 2-D state-space digital filters. Several
closed-form formulas for evaluating the optimal full-scale,
block-diagonal, diagonal, and scalar EF matrices for a given
state-space digital filter are derived. Then, an iterative noise
reduction technique for state-space digital filters is developed
by jointly optimizing a scalar EF matrix and a coordinate trans-
formation matrix subject to -norm dynamic-range scaling
constraints. An analytical method for the joint optimization of a
general EF matrix and a coordinate transformation matrix under
the scaling constraints is also proposed. Although the objective
function involved in the joint optimization is not convex in gen-
eral, and a rigorous mathematical proof of a global convergence
property of the algorithm is not available at present, in every
case of our fairly extensive computer simulations, the algorithm
converges to an identical solution, regardless of the choice of
an initial point. A numerical example is presented to illustrate
the algorithms proposed and to demonstrate their performance.

Throughout the paper, stands for the identity matrix of
dimension , the transpose (conjugate transpose) of a ma-
trix is indicated by , and the trace andth diagonal
element of a square matrix are denoted by tr and ,
respectively.
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II. TWO–DIMENSIONAL STATE-SPACEDIGITAL FILTERS WITH

ERRORFEEDBACK

Consider the following single-input/single-output local state-
space (LSS) model for 2-D digital filters which
was originally proposed by Roesser [27]:

(1)

where

Here, is an horizontal state vector, is an
vertical state vector, is a scalar input, is a

scalar output, and , and are real
constant matrices of appropriate dimensions. The LSS model
in (1) is assumed to be BIBO stable, separately locally control-
lable, and separately locally observable [28].

Because of finite register sizes, FWL constraints are imposed
on the local state vector, input, output, and coefficients in the
filter realization . By considering the quantization
carried out before matrix-vector multiplication, an FWL imple-
mentation of (1) can be expressed as

(2)

where each component of coefficient matrices , and as-
sumes an exact fractional bit representation. The FWL local
state vector and the output all have a bit frac-
tional representation, whereas the input is a bit
fraction.

The quantizer in (2) rounds the bit fraction
to bits after the multiplications and additions, where
the sign bit is not counted. In a fixed-point implementation, the
quantization is usually performed by two’s complement trunca-
tion that discards the lower bits of a double-precision accumu-
lator. Thus, the quantization error

(3)

coincides with the residue left in the lower part of . The
roundoff error is modeled as a zero-mean noise process
of covariance with

In an effort to reduce the filter’s roundoff noise, the quantization
error is fed back to each input of delay operators through
an constant matrix in the FWL filter (2).
The 2-D filter with EF can be characterized by the LSS model

(4)

where is referred to as anEF matrix.

Subtracting (4) from (1) yields

(5)

where

By taking the 2-D z-transform on both sides of (5) and setting
for , and for

, we obtain

(6)

where . Here, and rep-
resent the 2-D z-transform of and , respectively,
and is the 2-D transfer function from the quantiza-
tion error to the filter output .

The noise gain is defined as , where
denotes noise variance at the filter output and can be evaluated
as

tr (7)

where for , and

By applying the 2-D Cauchy integral theorem, the matrix
defined in (7) can be expressed in closed-form as

(8)

where is called the local observability Gramian of the 2-D
filter and is defined by

(9)

with

(10)
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and the partial ordering for integer pairs used in [27, p. 2].
We remark that matrix is referred to as theunit noise

matrix for the 2-D filter, and can be viewed as the unit
noise matrix for the 2-D filter with EF specified by matrix.

From (10), it follows that

(11)

which leads to

(12)

By comparing matrix in (9) with (12), we obtain the rela-
tions [29]

(13)

where

Therefore, if there is no EF in the 2-D filter, then the noise gain
with becomes

tr

tr (14)

The -norm dynamic-range scaling constraints on the local
state vector involves the local controllability Gramian of the 2-D
filter, which is defined by

(15)

where

A different yet equivalent state-space description of
(1)— —can be obtained via a coordinate trans-
formation with , where

(16)

Accordingly, the local observability and local controllability
Gramians for become

(17)

respectively. If the -norm dynamic-range scaling constraints
are imposed on the local state vector , i.e.,

(18)

then it can be shown that [6], [7]

tr (19)

where for and for are the
eigenvalues of matrices and , respectively,
and

The state-space realization satisfying (18) and (19) is called the
optimal realization(which is sometimes also referred to as the
optimal filter structure). A method for constructing such a filter
structure was proposed in [6] and [7].

If the coordinate transformation for the LSS model in (1) is
taken into account, then the 2-D filter with EF can be character-
ized by

(20)

which corresponds to (4) in the original realization. In this case,
the noise gain becomes

tr

tr (21)

Then, the problem is now formulated as follows. For given
and (and therefore, and ), obtain matrices and

that minimize (21) subject to the constraints in
(18).

III. D ETERMINATION OF OPTIMAL ERROR

FEEDBACK MATRICES

In this section, suppose that the LSS model in (1) is expressed
by the optimal realization, after choosing an appropriate coor-
dinate transformation matrix that satisfies (18)
and (19) simultaneously. Then, closed-form formulas for de-
termining the optimal full-scale, block-diagonal, diagonal, and
scalar EF matrix to minimize tr for a given 2-D
state-space digital filter will be derived. It is noted that the op-
timal full-scale EF matrix is often too costly because it requires
as many as explicit multiplications. The costs can be
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reduced, e.g., by constraining the EF matrix to be block-diag-
onal or diagonal, which reduces the number of distinct coeffi-
cients to or .

1) Case 1 Is a General Matrix: Substituting (8) into (7),
we obtain

tr

tr tr tr

tr tr tr (22)

Differentiating (22) with respect to the EF matrix yields

(23)

By choosing the EF matrix as , the noise gain in
(22) achieves its minimum value

tr tr

tr (24)

2) Case 2 Is a Block-Diagonal Matrix: In this case, ma-
trix assumes the form

(25)

where and are and matrices, respectively,
which leads (22) to

tr tr tr

tr

tr (26)

Letting and , it follows that

(27)

By substituting (27) into (26), we obtain the minimum value of
the noise gain as

tr tr

tr (28)

3) Case 3 Is a Diagonal Matrix: In this case, matrix
assumes the form

diag

diag (29)

which leads (26) to

tr

(30)

This implies that if ’s and ’s satisfy

(31)

then the right-hand side of (30) becomes negative, that is,
tr tr holds. Letting and

, we obtain diag and
diag with

(32)

where achieves its minimum as

tr

(33)

4) Case 4 and Are Scalar Matrices and : If
and with scalars and , then (30)

becomes

tr

tr
tr

tr

tr
tr

tr
(34)

Hence, if and satisfy

tr
tr

tr
tr

(35)

then the right-hand side of (34) is negative, that is,
tr tr holds. Moreover, from and

, it follows that the values of and that mini-
mize are given by

tr
tr

tr
tr

(36)

which lead (34) to

tr
tr

tr
tr

tr
(37)
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IV. NOISE REDUCTION BY JOINT OPTIMIZATION OF ERROR

FEEDBACK AND COORDINATE TRANSFORMATION

First, the joint optimization of scalar EF matrices
and and coordinate transformation matricesand

will be investigated for roundoff noise minimization under
-norm dynamic-range scaling constraints. Such constraints on

the matrix are introduced in order to guarantee
for every block-diagonal matrix . Then, (21) is
written as

tr

tr (38)

where , that is, for . If the
coordinate transformation for the LSS model in (1) is taken into
account, then (36) is changed to

tr
tr

tr
tr

(39)

Equations (38) and (39) imply that for fixed and , matrix
can be optimized to minimize subject

to the scaling constraints in (18) and vice versa. The proposed
joint optimization will be performed in an iterative manner.

First, scalars and can be derived from (39) when the initial
, say , is given. In what follows, let the unit noise matrix

in (8) with be denoted by

(40)

Under the joint application of a scalar EF and a coordinate trans-
formation, the noise gain is given by tr
tr . In order to minimize (with and tem-
porarily fixed) over an nonsingular matrix and an

nonsingular matrix subject to the scaling constraints
in (18), we define the Lagrange function

tr tr

tr tr (41)

where and are Lagrange multipliers. By using the formula
for evaluating matrix gradient [30, p. 275]

tr

we compute

tr

tr (42)

Letting and for
, it is derived that

tr

tr (43)

Note that if matrices and are symmetric, then
the matrix equation has the unique solution [31]

Then, it follows from (43) that

tr

tr (44)

where for and for are the
eigenvalues of and , respectively. Therefore,
we obtain

(45)

Substituting (45) into (41) yields the minimum value of
for fixed and as

(46)

Having obtained matrix , the improved values
of scalars and can be obtained using (39). This iterative
procedure for minimizing the roundoff noise under the scaling
constraints in (18) with respect to scalar parametersand
as well as an symmetric positive-definite

can be summarized as follows.

1) Set , and

diag

2) Compute scalars and using

tr
tr

tr
tr

3) Compute

tr

tr
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4) Replace and by and computed
using

respectively.
5) Derive from (45), and take the resulting

matrix as .
6) Compute tr tr .
7) Update , and repeat from Step 2) until the

change in either or tr
tr becomes insignificant compared with a
prescribed tolerance.

We remark that although the objective function involved in
the joint optimization is not convex in general and a rigorous
mathematical proof of the convergence property is not yet avail-
able at present, the above iterative algorithm was applied to quite
a number of simulation examples, and fast convergence was ob-
served in all the cases where all the final results were identical
for any initial state-space realization. A sample of these exam-
ples will be illustrated in the next section.

Suppose the above algorithm converges after iter-
ations and the optimal coordinate transformation matrix

has been computed from the
symmetric positive-definite matrix
(see the Appendix). Then, following (29)–(32), the diagonal
EF matrix with diag
and diag that minimizes

tr

tr

tr

tr

tr (47)

is given by

(48)

This diagonal EF matrix leads to further reduc-
tion of the noise gain, i.e.,

(49)

Next, we discuss the joint optimization of a general EF ma-
trix and a coordinate transformation matrix
for roundoff noise minimization under the scaling constraints
in (18). In this case, the problem can be reduced as follows: For
given and (and therefore and ), obtain matrix

that minimizes tr subject to
for , where the optimal can be obtained
by . For tractability, we consider the minimiza-
tion of tr instead of tr , where

. In other words, we define the Lagrange function

tr tr

tr tr (50)

where and are Lagrange multipliers, and

Employing steps similar to those used in deriving (45) from
(41), we arrive at

(51)

where for and for are the
eigenvalues of and , respectively. Note that
matrices and are symmetric positive-definite, pro-
vided that . Once are obtained, the coor-
dinate transformation matrix can be constructed
from and to satisfy the scaling con-
straints in (18) (see the Appendix). The noise gain
is then computed by tr .

V. NUMERICAL EXAMPLE

In this section, we present a numerical example to illustrate
the algorithms proposed in Sections III and IV.

Consider a 2-D stable, separately locally controllable,
and separately locally observable state-space digital filter

with described by

If a coordinate transformation matrix is selected
as

diag

diag

then the above filter satisfies the scaling constraints in (18) and
produces tr .
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If a coordinate transformation matrix is chosen
as

then the above filter is transformed to the optimal realization
with minimum roundoff noise subject to the

scaling constraints in (18), where we have the first equation at
the bottom of the page, whose local controllability and local
observability Gramians are written as in the second equation
at the bottom of the page, respectively, where the infinite sums
in (9) and (15) are calculated by truncation
and , and the noise gain is given by
tr .

Let us now apply the EF described in Section III to the above
optimal realization . In the case when is allowed
to be a general EF matrix, then (23) suggests that we should
choose , which yields . If is
constrained to be a block-diagonal EF matrix, then the optimal

is calculated using (27), which gives

If is constrained to be a diagonal EF matrix, then it can be
calculated using (32) as

diag

which yields . If a scalar EF matrix is
calculated using (36), then we obtain and

, which yield .
Now, we apply the iterative optimization procedure described

in Section IV to the original realization . The pro-
posed algorithm converges after eight iterations to scalars

, and a transformation matrix
with

which yield the noise gain .
Next, a refined solution that offers further reduced noise gain

is deduced by calculating an optimal diagonal EF matrix for
the optimal realization .
In this case, the optimal diagonal EF is obtained using (48) as

diag

which yields .
Finally, we apply the joint optimization of a general EF ma-

trix and a coordinate transformation matrix
described in Section IV to the original realization .
In case , the transformation matrix is
computed as

which yield the noise gain tr
.
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TABLE I
NOISE GAIN I(DDD) FOR DIFFERENTEF SCHEMES

The simulations described above are summarized in Table I,
where 3–bit quantization (integer quantization) implies that the
elements of matrix are rounded to power-of-two quantization
with 3 bits after binary point (integer quantization). From this
table, it is observed that the utilization of an optimal EF matrix
leads to considerable reduction in roundoff noise, even when
a scalar matrix with quantized and . It
is also observed that when the transformation matrix is jointly
optimized, further noise reduction can be achieved compared
with that in the conventional optimal realization.

VI. CONCLUSION

The minimization of roundoff noise in 2-D state-space digital
filters by means of EF and joint EF/coordinate transformation
optimization has been investigated. General, block-diagonal, di-
agonal, and scalar EF matrices for minimizing the noise gain in
a given 2-D state-space digital filter have been derived. Then,
an iterative procedure for minimizing the roundoff noise in a
2-D digital filter has also been developed by jointly optimizing
a scalar EF matrix and a coordinate transformation subject to the
usual -norm dynamic-range scaling constraints. Furthermore,
an analytical method for the joint optimization of a general EF
matrix and a coordinate transformation matrix under the scaling
constraints has been proposed. Simulation results have been pre-
sented to illustrate the validity of our proposed algorithms.

APPENDIX

DERIVATION OF MATRIX

From (45), the optimal coordinate transformation matrices
and that minimize (41) for fixed and can be obtained in
closed form as

(A.1)

where and are arbitrary and orthogonal
matrices, respectively. From (A.1), it follows that

(A.2)

Next, we choose the and orthogonal matrices
and such that (A.2) satisfies the scaling constraints in (18).
To this end, we carry out the eigenvalue-eigenvector decompo-
sitions

(A.3)

where

diag

diag

As a result, it follows that

(A.4)

where

diag

diag

Now, an orthogonal matrix and an orthogonal
matrix such that

...
...

...
. . .

. . .

. . .
...

...
. . .

. . .
(A.5)

can be obtained by numerical manipulations [3, p. 278]. By
choosing and in (A.1), the optimal
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coordinate transformation matrix satisfying (18)
and (46) simultaneously can now be constructed as

(A.6)
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