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Design of Two-Dimensional Digital Filters by 
Using the Singular Value Decomposition 

ANDREAS ANTONIOU, FELLOW, IEEE, AND WU-SHENG Lu, MEMBER, IEEE 

Abstract -A method for the design of quadrantally symmetric 2-D 
digital filters is described. Like the method outlined by Twogood and 
Mitra, the method proposed here is based on the singular value decomposi- 
tion. The salient difference between the two methods is that the proposed 
method uses one or more parallel correction sections which reduce the 
approximation error. In this way, reduced passband ripple and increased 
minimum stopband attenuation can easily be achieved. An important merit 
of the method is that the required 2-D filter is decomposed into a set of 
1-D digital subfilters, which are much easier to design by optimization than 
the original 2-D filter. 

I. INTRODUCTION 

T HE, DESIGN OF two-dimensional (2-D) digital filters 
has been a subject of study since the early 1970’s. It is 

now widely known that the design can be carried out by 
applying transformations to 1-D analog or digital transfer 
functions [l]-[6], by using various optimization methods 
[7]-[9], by applying transformations in conjunction with 
optimization methods [lo], [ll], or by using the singular 
value decomposition (SVD) [12], [13]. In [12], the SVD is 
applied to the so-called planar response matrix, which is 
obtained by truncating the impulse response array. The 
approach yields a class of multistage separable planar 
filters. In [13], the SVD is used to express a specified 2-D 
sampled amplitude response into a sum of products. The 
outcome in this case is a class of 2-D digital filters in 
which the mean-square error is minimized. While the 
method yields stable and computationally efficient filters 
for some highly nonseparable characteristics (e.g., cir- 
cularly symmetric and fan characteristics), the resulting 
approximation error is large both in the passband and in 
the stopband. 
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Fig. 1. Idealized amplitude response of quadrantally symmetric low-pass 
digital filter. 

good, and the designs obtained are quite economical in 
terms of the amount of computation required for the 
implementation. 

II. METHOD OF TWOGOOD AND MITRA 

A 2-D digital filter characterized by a transfer function 
H(z,, z2) is said to be quadrantally symmetric if 

In this paper, an improved method for the design of 
quadrantally symmetric 2-D digital filters is proposed. 
Like the method of Twogood and Mitra [13], the method 
proposed uses the SVD in conjunction with various well- 
known techniques for the design of 1-D digital filters. The 
method leads to a set of stable and separable subfilters 
which can be connected in parallel to yield the desired 2-D 
digital filter. As will be demonstrated by designing a 
circularly symmetric 2-D filter, the method leads to re- 
duced passband ripple and increased minimum stopband 
attenuation. Further, the degree of circularity achieved is 

Two examples of quadrantally symmetric filters are the 
circularly symmetric filter and the fan filter. The idealized 
amplitude response of a circularly symmetric low-pass 
filter is depicted in Fig. 1. 

In a quadrantally symmetric filter, H(z,, z2) has a sep- 
arable denominator [14]; therefore, it can be expressed as 

H(z19 z2) = i fi(zl)gi(z2)* (2) 
i=l 
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Let A = (a,,) be a desired amplitude response where designed, we have 

a,, = ( H( einp/, einvm) I, lil,<L, l,<m<M (3) (fi(ej~q(=~,,, l<Z<L 

and let ~1, and v,,, be normalized frequencies such that and 
l-l m-l 

PI= L-1 and v,,,= - 
M-l 

A= i qu,u; (4 
i=l 

where u1 > a2 2 . . . 2 ur are the singular values of A, ui is 
the ith eigenvector of AA’ associated with the ith ei- 
genvalue a;, ui is the ith eigenvector of A’A associated 
with a,*, Y is the rank of A, and u; denotes the transpose of 
ui [15]. If we let & = u:/*ui and y, = IJ//~u~, then (4) can be 
written as 

A = i c&yi (5) 
i=l 

where { &, 1 Q i G Y } and { yi, 1 G i < r } are sets of orthogo- 
nal L-dimensional and M-dimensional vectois, respec- 
tively. 

An important property of the SVD can be stated as 

where ii E R L, pi E R”, and 

IlXll = Ii f & [ I=1 m=l 1 l/2 

for l< k < r (6) 

is the Frobenius norm of a matrix X = (xl,,,) E RLxM. 
The above relation shows that for any fixed k (16 k 
< r), Cf= l+iy; is a minimal mean-square-error approxima- 
tion to A. 

Since all entries of A are nonnegative, it follows that all 
entries of $Q and y1 are nonnegative [13], [16]. Neverthe- 
less, the elements of $, and yi for i > 2 may assume 
negative values. 

Equation (5) can be written as 

A = +,Y; + ~1 

where 

(7) 

i=2 

Now on comparing (7) with (2) and assuming that k = 1 
and that $Q and y1 are the desired amplitude responses for 
the 1-D filters characterized by fi(zl) and gl(z2), respec- 
tively, a 2-D digital filter can be designed through the 
following steps. 

(1.) Design 1-D filters fi and g, characterized by fi(zl) 
and gl(z2). 

(2) Connect filters fi and g, in cascade. 

Step (1) can be carried out by using one of the many 
available optimization methods. When filters fi and g, are 

where +1r and yl,,, denote the Zth component of $I~ and the 
mth component of yl, respectively. The transfer function 
of the cascade filter obtained in step (2) is given by 

where 
f4(Zl, z2) = fl(dgl(z2) 

and from (6) 

In effect, the amplitude response of the filter obtained is a 
minimal mean-square-error approximation to the desired 
amplitude response. The main disadvantage of the inethod 
is that error zI is usually relatively large and the filter 
might not be acceptable. 

It should be mentioned here that there are several other 
matrix decompositions which will convert A into a sum of 
products as in (5), e.g. the Jordan and LU decompositions 
[17]. However, only the SVD has the highly desirable 
property stated in (6). 

III. IMPROVED METHOD 

The method of Twogood and Mitra can be improved by 
finding a way of realizing more of the terms in (5) by 
means of parallel filter sections so that the approximation 
error may be reduced. From (5), we can write 

where 

A = %Y; + +2~; + ~2 (8) 

i=3 

Since +2 and y2 may have negative components, a careful 
treatment of the second term in (8) is necessary. 

Let 9; and y; be the absolute values of the most 
negative components of $2 and y2, respectively. If 

e,=[l l...l]‘~R~ and e,=[l i...l]‘ERM 

then all components of 

+2=G2+cP;e.+ and y2 = y2 + y;e, (9) 

are nonnegative. Let us assume that it is possible to design 
1-D linear-phase or zero-phase filters characterized by 
f;W, &(z,), &zA and ii2(z2) such that 
fi”(+/) =If,l(ej”~l)lf+Q, 1<1< L, i=1,2 (lOa) 

gi( ejsvm ) =Igi(ejn”m)(eja2Ym, l<m<M, i=1,2 

(lob) 
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where 

@lb) 

W) 

(lid) 

Here, (p,, and T2,,, are the Zth component of & and the 
mth component of y2, respectively, and (or, a2 in (10) are 
constants which are equal to zero if zero-phase filters are 
to be employed. Now let 

CQ = - vn, and a2 = - rn2 (12) 

where n,, n2 are nonnegative integers, and define 

fib,) = f&l) - +;v (134 

and 

g,(z,) = tT2b2) - YZG”‘. (13’4 

From (9)-(13), it follows that 

f,(eM/) = (If;(ej~y,)I-~;)e-j”nlP,-~2,e-j””le/, 

l<l<L 
and 

Moreover, if we form 

fbh 12) = fl(ZlMZ2) + f*(zdg2(z2) (14) 

Fig. 2. Realization of quadrantally symmetric 2-D filter. 

represents the main contribution to the amplitude response 
of the 2-D filter. For this reason, the subfilter char- 
am-&d by fl(4gl(z2) is said to be the main section of 
the 2-D filter. On the other hand, 

represents a correction to the amplitude response, and the 
subfilter characterized by f2( zI)g2( z2) is said to represent 
a correction section. 

Through the use of data C& and y;(i = 3; . . , k, k G r) 
given in (5) vectors r$ and yi can be found, and correction 
sections characterized by fi( zl)gi( z2) can then be designed 
in a similar manner. When k sections are designed, includ- 
ing the main section, Hk(z,, z2) can be formed as 

Hk(zlP ‘2) = i fi(zl)gi(z2) (16) 
i=l 

and from (6), we have 

(17) 

then 
Ijf2(eiWl,ei~vm 

=I.0 ,‘I( .. 1 f( > ( 
In effect, a 2-D digital filter comprising k sections is 

11 
obtained whose amplitude response is a minimal mean- 

1 e/W/ g, eJr*m + 2 eJT/ g, elrvrn square-error approximation to the desired amplitude re- 

= IhYl, + G2lY2mL l<l<L, l<m<M sponse. 

which in conjunction with (6) implies that 

IIA-[H2(ejqp/,ejcYm ) \I( = IIA - 1%~; + +2~;llI 

aI/A-(~~~;+~2~;)11=(2=~~11A-(~19;+~2~;)1/. (15) 
I, I 

Evidently, through the above technique it is possible to 
realize the second term in (5) by means of a parallel 
subfilter, thereby reducing the approximation error from et 
to e2. According to (15), the two-section 2-D digital filter 
obtained has an amplitude response which is a minimal 
mean-square-error approximation to the desired amplitude 
response. 

The method leads to an asymptotically stable 2-D filter, 
provided that the various 1-D subfilters are stable. This 
requirement is easily satisfied in practice. 

Since fi(zJgl(z2) corresponds to the largest singular 
value ur, the quantity 

The general structure of the 2-D filter obtained is il- 
lustrated in Fig. 2, where the various 1-D subfilters may be 
either linear-phase or zero-phase filters, as was shown 
earlier. Evidently, the structure obtained is a parallel 
arrangement of cascade low-order sections; consequently, 
the traditional advantages associated with parallel and/or 
cascade structures apply. First, the sensitivity of the struc- 
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Fig. 3. Realization of quadrantally symmetric 2-D filter using zero-phase 
subfilters. 

ture to coefficient qusintization is expected to be low. 
‘. Second, cotnputations in the various parallel subfilters can 

be carried out simultaneously. Third, the number of multi- 
pliers (or multiplications per output sample) is small. For 
example, if there were k parallel subfilters in Fig. 2 and 
each was of order N x N, then the upper bound on the 
number df multipliers would be 4k(N + 1) as opposed to 
(kN + 1)2 + 2 kN in the case of a corresponding state-space 
implementation. 

If linear-phase subfilters are to be employed, the equali- 
ties in (12) must be satisfied. This implies that the sub- 
filters must have constant group delays which are multi- 
ples of Tl or T2. Causal subfilters of this class can be 
designed as nonrecursive filters by using the -weighted- 
Chebyshev approximation method [18], [19]. In such a 
case, the 2-D filter obtained can be used in real-time 
applications. 

If a record of the data to be processed is available, the 
processing can be carried out in nonreal time. In such a 
case, the subfilters in Fig. 2 can be designed aS zero-phase 
recursive filters. The resulting structure is depicted in Fig. 
3, where fi(zJ and fi(z;l)(gi(z2) and g,(z;‘)) contribute 
eqtially to the amplitude response of the 2-D filter. The 
design can be completed by assuming that the desired 
amplitude responses for subfilters f,, gl, h, and gi for 
i = 2,. . . , k are &i2, yj12, +t12, and yjj2 for i = 2, * * . , k, 
respectively. The various subfilters can readily be designed 
by using the minimax optimization method described in 
[20] and [21]. This method may yield unstable 1-D digital 
filters4 but the problem cati readily be eliminated by re- 
placing poles outside the tinit circle by their reciprocals 
and then adjusting the multiplier constant of the transfer 
function [22]. The advantage of using zero-phase recursive 
subfilters is that 2-D filters of high selectivity and low 
computational complexity can readily be designed. 

It should be mentioned here that ii would be possible in 
principle to use linear-phase recursive subfilters in the 
design. This approach would lead to high selectivity 2-D 
filters with low computational complexity, which could be 
used in real-time applications. Unfdrtunately, however, 
linear-phase recursive filters with group delays which are 
multiples of Tl or T2 are difficult to design in practice. 

When a circularly symmetric 2-D filter is required, the 
design work can be reduced significantly. Matrix A defined 

Ampnplitudc Response Of Id&a1 Fi,m- 

Fig. 4. Ideal amplitude response of low-pass filter. 

in (3) is symmetric; therefore, (5) becomes 

A = c s$;+; (18) 
;=1 

where s1 = 1 and si = + 1 for 2 < i G r. This shows that 
each parallel sectiori requires only one 1-D subfilter to be 
designed and as a consequence the design work is reduced 
by 50 percent. The realization remains as in Fig. 2 or 3 
except that 

IV. ERROR COMPENSATION 

The method described in the preceding section leads to 
good results. Nevertheless, a further improvement is possi- 
ble through the use of error compensation. 

When the main section and the correctioti sections are 
designed by using an optimization method, approximation 
errors will inevitably occur which will accumulate and 
manifest themselves as the overall approximation error in 
the design of the 2-D filter. Fortunately, it is possible to 
prevent the accumulation of error through compensation. 

When the design of the main section is complete, define 
an error matrix 

E, = A- Ifi(ej”“l)gl(ej”“m) I (19) 

and then perform SVD on E, to obtain 

E, = s22422~;2 + . . . + sr2&2~:2. (20) 

Data +22 and yi2 in (20) can be used to deduce f2( zl)g,( z2) 
as in Section III; thus, the first correction section can be 
designed. Now form error matrix E, as 

E, = E, - /s22f2(ei”P~)g2(einv~) 1 

= A-If,(ej”“)g,(ej”“m)+s,,f,(ej”‘“’)g,(ej””m)) (21) 

and perform SVD on E, to obtain 

E, = s33+33~3’3 + . . . + s,3%3~;3. 
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As before, data +33 and y13 can be used to design the 
second correction section. This procedure is continued 
until the elements of the error matrix become sufficiently 
small for the application at hand. 

V. A DESIGN EXAMPLE 

In this section, we illustrate the proposed method by 
designing a circularly symmetric, zero-phase, 2-D filter 
specified by 

/ 

where T,=T,=l. 
By taking L = M I21 and assuming that the amplitude 

response varies linearly with the radius in the transition 
band, the sample amplitude response is given by a 21 x 21 
matrix as 

A= 

‘1 1 1 1 1 1 1 1 1 .75 .5 .25 0 0 0 0 0 0 0 0 O- 
1 1 1 1 1 1 1 1 .75 .5 .25 0 0 0 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 1 .75 .5 .25 0 0 0 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 .75' .5 .25 0 0 0 0 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 .75 .5 .25 0 0 0 0 0 0 0 0 0 0 0 
1 1 1 1 1 1 .75 .5 .25 0 0 0 0 0 0 0 0 0 0 0 0 
1 1 1 1 1 .75 .5 .25 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 1 1 .75 .75 .5 .25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 .75 .75 .5 .5 .25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
.75 .5 .5 .25 .25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
.5 .25 .25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
.25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0, 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

The ideal amplitude response of the 2-D filter is shown in 
Fig. 4. 

An easy-to-use, numerically reliable software package, 
called MATLAB, has been used to perform SVD on 
matrices A, E,, and E, in order to obtain the necessary 
data for the design of the main section and the first two 
correction sections. 

It is worth noting that while vector $,( = yi) obtained 
from the SVD of A is a typical sampled amplitude specifi- 
cation for a 1-D low-pass filter, the data given by the SVD 
of error matrices E, and E, lead to the necessity ‘of 
synthesizing 1-D filters with fairly arbitrary amplitude 
specifications. For example, given A as in (22), the square 
root of $i is obtained as 

&I’ = (1.0415 1.0263 1.0263 1.0005 0.9625 0.9120 

0.8300 0.7075 0.5514 0.3705 0.1866 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0)‘. 

Now if a fourth-order approximation is obtained for trans- 

1195 

fer function fi(zJ, the SVD of E, gives 

$;‘2 = (1.0782 0.9881 0.9881 0.8452 0.8450 0.6482 

0.3966 0.0270 0.1632 0.4371 0.6197 

0.7437 0.7916 0.7916 0.7916 0.7916 

0.7916 0.7916 0.7916 0.7916 0.7916)‘. 

Evidently, this represents an irregular amplitude specifica- 
tion. With this problem as a motivation, an optimization 
method has been developed which can be used for the 
design of 1-D digital filters satisfying arbitrary amplitude 
specifications. 

By using the procedure in Section III along with the 
error compensation technique in Section IV and the afore- 
mentioned 1-D optimization method, a 2-D zero-phase 
filter comprising a main section and two correction sec- 
tions has been designed for the amplitude specification in 

(22) 

(22). Fourth-order transfer-function approximations were 
used for the various subfilters. The realization of the 2-D 
filter is of the form depicted in Fig. 3, and the transfer 
functions of the subfilters are given in Table I. The ampli- 
tude responses of (a) the main section, (b) the main section 
plus the first correction section, and (c) the main section 
plus the two correction sections are depicted in Fig. 
W-W. 

The overall accuracy of the 2-D digital filter depends 
critically on the quality of the 1-D approximations ob- 
tained for the various subfilters. Consequently, if higher 
order approximations are used, better results are achieved. 
To illustrate this feature, the above 2-D filter was rede- 
signed using sixth-order subfilters and the same number of 
correction sections. The transfer functions obtained for the 
subfilters are given in Table II. The amplitude responses of 
(a) the main section, (b) the main section plus the first 
correction section, and (c) the main section plus the two 
correction sections are depicted in Fig. 6(a)-(c). As can be 
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(W 
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i.00 i.00 

(4 

Fig. 5. Amplitude responses of 2-D digital filter using fourth-order 
subfilters. (a) Main section. (b) Main section plus one correction 
section. (c) Main section plus two correction sections. 

Viewpoint ( 10.0. 10.0. to.01 
ReSOlUtfon 71 x 71 

-1. .oo 

Vle*poi”t ( 10.0. 10.0. io.0, 
Resolution 7i x 7i 

-1. .oo 

(b) 

4. .oo 

Fig. 6. Amplitude responses of 2-D digital filter using sixth-order sub- 
filters. (a) Main section. (b) Main section plus one correction section. 
(c) Main section plus two correction sections. 
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TABLE I 
DESIGNBASEDONFOURTH-ORDERSUBFILTERS 

The Main Section f,(3) = 0.1255( (~a+0.7239~+1)(~'+1.6343~+1) 
r"+0.1367z+0.6181)(1"-0.63281+0.2278) 

I 
I 1 

The First Correction Section 72(3) = O~6098(z'+l.1618z+0.1661)('1-0.8367z+0.QQ58) 

( 
~'+0.99.53~)(~'-0.6124~+0.32) 

4; = 0.6266 

The Second Correction Section T3(z) = 0.463( ( s2-1.6331.-0.4466)(1'-1.9Q?r+1.11911 
i"-2.0408~+1)(3'-0.7092.+0.6961) 

& = 0.2764 

TABLE II 
DESIGNBASEDONSIXTH-ORDERSIJBFILTERS 

The Main Section 

The First Correction Section 

The Second Correction Section ~~(8) = 0~01874(aa-l.3S84~+l.0268)(~'-2.6342r+12.66S6)(r"-O.1167.+1.9796) 
(~~-0.8061~-0.7617)(,~-0.3489~-0.24)(d-0~06436~+0.6863) 

4; = 0.2985 

r- 

1 tipple in the passband 

Minimum Stopband 
Attenuation 

TABLE III 
FILTERSPECIFICATIONSACHIEVED 

-l 

Filter Using 4-th Order 
Subfilters 

1.5 dB 

16 dB 

Filter Using 6th Order 
Subfilters 

1.3 dB 

22 dB 

Main Section: 
Maximum Approximation With One Correction 
Error in the Passband Section: 

With Two Correction 
Sections: 

0.4132 Main Section: 
With One Correction 

0.1634 Section: 
With Two Correction 

0.0754 Sections: 

0.3789 

0.1149 

0.0724 

Main Section: 0.3695 Main Section: 
Maximum Approximation With One Correction With One Correction 
Error in the Stopband Section: 0.1814 Section: 

With Two Correction With Two Correction 
Sections: 0.1513 Sections: 

0.4134 

0.1564 

0.1088 
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seen by comparing Figs. 5(c) and 6(c), the use of. higher 
order approximations leads to a significant improvement 
in the overall amplitude response of the 2-D filter. The 
filter specifications achieved are summarized in Table III. 

VI. CONCLUSIONS 

A method for the design of quadrantally symmetric 2-D 
digital filters has been proposed. Like the method of 
Twogood and Mitra, our method is based on the singular 
value decomposition, but through the use of parallel cor- 
rection sections, prescribed amplitude responses can be 
obtained with a much higher degree of precision. 

A degree of flexibility is inherent in the method in that 
the passband ripple can be reduced and the minimum 
stopband attenuation can be increased by increasing the 
number of correction sections and/or by increasing the 
orders of the various subfilters. 

The design can be accomplished in terms of recursive 
zero-phase or nonrecursive linear-phase 1-D subfilters. In 
the first case, high-selectivity 2-D filters can be designed 
whose implementation entails minimal computational ef- 
fort. In the second case, causal 2-D filters can be designed 
which can be used in real-time applications. In both cases, 
the processing delay is low since the filter is realized in 
terms of a number of parallel sections. 

An important merit of the method is that the required 
2-D digital filter is decomposed into a set of 1-D digital 
subfilters, which are much easier to design by optimization 
than the original 2-D digital filter. 
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