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Synthesis of 2-D State-Space Fixed-Point 
Digital-Filter Structures with Minimum 

Roundoff Noise 
WU-SHENG Lu, MEMBER, IEEE, AND ANDREAS ANTONIOU, FELLOW, IEEE 

Ahsrrucr -Based on a roundoff-noise analysis, a general synthesis pro- 
cedure is developed which leads to an optimal local state-space 2-D 
digital-filter realization that minimizes the output-noise power due to 
roundoff subject to a scaling condition on the state variables. The output- 
noise power and the signal scaling condition are closely related to two 
positive-definite matrices W and K. These matrices provide two sets of 
invariants, called the 2-D second-order modes of the filter, which play a 
crucial role in the minimization of the output-noise power. With the 
availability of matrices W and K, the 2-D similarity transformation that 
yields an optimal state-space realization can be obtained by solving sep- 
arately two 1-D optimization problems so that the well-developed tech- 
niques for minimizing roundoff noise in 1-D state-space digital filters can 
also be used for minimizing roundoff noise in 2-D state-space digital 
filters. 

I. INTRODUCTION 

T HE MINIMIZATION of roundoff noise in digital 
filters is of considerable practical significance since it 

leads to implementations with optimal signal-to-noise ratio. 
Minimum roundoff noise can be achieved in 1-D infinite- 
impulse-response (IIR) digital filters by using the method 
of Mullis and Roberts [l], [2], or that of Hwang [3], or by 
using the state-space structures of Bomar [4]. In the two- 
dimensional (2-D) case, the effects of finite precision in the 
implementation of recursive digital filters were considered 
in [5]-[7]. Recently, the synthesis of 2-D separable de- 
nominator digital filters with minimum roundoff noise has 
been considered in [S]. The 2-D counterpart of the funda- 
mental work in [l]-[3], however, is not available to date 
and continues to be a significant open problem [9, p. 1281, 
[lo, p. 2801. 

The objective of this paper is to provide a solution to the 
following synthesis problem: given the transfer function of 
a 2-D digital filter, find the state-space realization that 
minimizes the output-noise power due to the roundoff of 
products, subject to [,-norm dynamic range constraints. 
Based on Roesser’s local state-space model (LSS) [ll], a 
2-D roundoff-noise analysis is carried out from which an 
explicit expression of the output-noise variance is derived. 
It is then shown that the output-noise power and the 
dynamic range constraints on state variables are naturally 
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related to two positive-definite matrices W and K first 
reported in the literature by Mertzios [12]. These matrices 
provide two sets of 2-D second-order modes which play a 
crucial role in the minimization of roundoff noise. The 
main results of this paper are illustrated by two examples. 

II. LOCAL STATE-SPACE MODEL 

A single-input single-output 2-D digital filter can be 
represented by the local state-space model (LSS) due to 
Roesser [ll] given by 

(14 

(lb) 

where u(i, j) E R”, h(i, j) E R”, A, E Rmx”, and A, E 
Rnx”. Throughout the paper it is assumed that 

det [ 

z, - ZlA, - ZlA, 
- z A 2 3 1, - 224 I 

zo 

for h z2) E I( ~,,~2~:1~11~~~1~21~~~ (2) 
which implies the asymptotical stability of the filter. 

As in [ll], let 

A, = Im+n, A,,= [“d :],A,,= [j3 J4] 

A;j = AloAt-l,j + A,lAi,j-l for (i, j) > (0,O) 

A-i,j= Ai,-j=O for i>,l, j>l. (3) 

The transfer function of the filter can be expressed in 
terms of A,,, b, c, and d as 

0098-4094/86/1000-0965$01.00 01986 IEEE 
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Since the filter is stable, we have 

~o~olc( Ai-l,j[ :] + ‘i.i-l[ hql) <* (5) 

and since (5) holds for all b and c, we deduce 

E lE lAijlcm (6) 
i=o j=O 

where (A,j( represents matrix Aij with its entries replaced 
by their absolute values. 

It is known that a 2-D similarity transformation matrix 
for the LSS model should be of form Tt 0 T= o [ 1 T =T,@T, 

2 
(7) 

where TI= RmXm, T2 E R”‘“, and @ denotes the direct 
sum. This transformation leads to an equivalent realization 
characterized by (A”, & Z), where 

A”= T-IAT, 6 = T-lb, and c” = CT. (8) 

Once matrices xij are defined by analogy with (3), it is 
easy to show that 

iij = T-?I,,T for i 2 0, j 2 0. (9) 

III. A ROUNDOFF NOISE ANALYSIS 

A general analysis of roundoff noise applicable to 1-D 
state-space digital filters has been given by Hwang [13]. 
With a few minor modifications, a noise model can simi- 
larly be established for 2-D digital filters using Roesser’s 
local state-space description. This model is then used to 
derive an explicit expression for the output-noise power. 

A. Derivation of Noise Model 
If finite wordlength effects due to input, coefficient, and 

product quantization are taken into consideration, the 
state-space model of an actual filter becomes 

[;;+$J;]=$;:J;] + bti(i, j) + a(i, j) + P(i, j) 

OW 

c(i, .i) Y(i, j) = 2 h-i, j) [ I 
+&(i, j)+y(i, j)+S(i, j) 

ow 
whereA=A+AA,b=b+Ab,Z=c+Ac,andj=d+Ad 
are the finite wordlength implementations of matrices A, 
b, c, and d, respectively; U = u + Au; a(i, j) E Rm+n, 
/3(i, j) E R”+“, y(i, j) E R, and S(i, j) E R are random 
errors generated by product quantization in (10). 

Define the state-error vector as 

and let 

A= 

AA= 

0 0 
& A, 1 
AA, AA, 
AA, AA, 

+(i, j) =bAu(i, j)+Abu(i, j)+a(i, j)+P(i, j) 

.[ 1 = 71h j) - %(i, j> 
and 

Ay(i, j) = Y(i, j)- Y(i, j). 

Straightforward manipulation yields 

+y(i, j)+S(i, j). ~ (lib) -- 
If we assume that {A, b, C, 2) = {A, b, c, d,} and ti(i, j) 

= u(i, j), that is, if the errors in y(i, j) are due to product 
quantization only, then model (11) becomes 

+ T1(i-l,j) 
[ I T2(i,j-l) (124 

Ay(i, j) = c +y(i, j>+S(i, j> WV 

where 

Tt(iT j) 
[ I T2(iy A 

= cx(i, j)+ a(i, j). 

B. Output-Noise Power * 
For any fixed (i, j) > (O,O), noise model (12) gives 

Ay(i, j) = c cc i [ A Ti(i--1-1, j-k) 
I-1.k 

(0.0) < (I, k) Q (i. A 0 1 
+A 

0 
‘pk-l T2(i-1, j-k-l) I) 

03) 
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Let us assume statistical independence among noise sources 
and among distinct samples for each noise source [14, p. 
2881. If quantization of products is carried out by round- 
ing, then the variance of each noise source is Ez/12, where 
E, is the quantization step size. By (13), the expected 
square error is 

E,2 
E(Ay2(i, j)) =Ec cc Al-l,k "ol : 

(O,O)<(/.k)~(i,j) [ 1 
&I,, +A,,,-,[; ;2]A;,+,]Ct+$‘+Y) (14) 

where 

E,2 
,,Q,=E[v,j =E[a,a;]+E[P,P:], 1=1,2 (1% 

are positive definite diagonal matrices of dimensions m 
and n, respectively, and p and v are the numbers of 
constants in c and d, respectively, which are neither zero 

, nor one. 
Concerning the convergence of series (14) as i -+ cc and 

j -+ co, (6) gives 

= E f 11cAijl12 Q llc112 
i=O j=O 

’ : ii llA,Jl12- 
i=O j-0 

where 11. I( denotes the Euclidean norm, and thus 

where q* represents the largest element in the diagonal of 
Ql@Q2. Therefore, viewing the output noise Ay(i, j) as a 
stochastic process, its variance can be calculated as 

E@Y’) 

. [ 

1 

=iizE (i+l)(j+l)-1 ~0,0~S~~~~i,j~Ay2tz~k~ 1 

where 

Q = Qt@Q2 (17) where 

W= E E A;,c’cA,, 08) 

(16) 

and tr [ a] denotes the trace of a matrix. The computation 
of matrix W can be carried out as shown in Appendix A. It 
is important to note that W in (18) is positive-definite if 
(A, c) is a 2-D locally observable pair, namely 

rank[ct (CA,,)’ . ..(cA.,)’ (CA,,)‘-.-(CA,,)’ 

. . . (~A,,,-~)~]~=m+n. (19) 

The proof can be found in Appendix B. 
An important feature of expression (16) is its depen- 

dence on the coordinate system. Consequently, if transfor- 
mation (7) is applied, the output-noise power of realization 
(8) is given by 

where 

(21) 
i-0 j=O 

and Q = Ql@Q2. In the next section, an optimal similarity 
transformation T will be found, which minimizes E(Ajj2) 
under a set of dynamic range constraints. 

IV. ROUNDOFF NOISE MINIMIZATION 

A. Scaling Condition 
To prevent overflow in the digital filter, signal scaling 

will be applied based on the I, norm, which accordingly 
gives a set of dynamic range constraints on the local state 
variables. 

Let f(i, j) be the state for an impulse input. By (4) 

f (i, j) = Ai- j . [:]+Al,j-l[bq] 

and, consequently, the local state at (i, j) due to an input 
sequence { u(Z, k), (0,O) d (I, k) < (i, j)} is obtained as 

[ I v(i,j) = h(i, j> CC f(Z,k)u(i-Z, j-k). (22) 
(0.0) < (I, k) < (i. j) 

If e,, is the pth column of the identity matrix of dimen- 
sion (m + n), then the pth component of the local state in 
(22) can be estimated as 

.e,CCu2(i - 1, j- k) 
(1.k) 

Q e~Kepllul12 

K= f iTi f(i,j)f’(i,j). 
i=O j=O 

(23) 

(24) 
i=Oj=O 
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Notice that e;Ke, is the pth diagonal element of K and, 
therefore, if all the diagonal elements of K are equal to 
one, (24) implies that the amplitude of each state compo- 
nent is no more than I]u]]. The dynamic range constraints 
on the state variables are, therefore, given by 

K= 1 
1 (25) 

* 

Further, once a similarity transformation T is used to 
reduce the output-noise power, the above dynamic range 
constraints should also be satisfied by the transformed 
realization. Since 

& 2 f f(i,j)f’(i, j)=T-lKT-’ (26) 
i-0 j-0 

In other words, the eigenvalues of @ g K,,W,, and \E = 
K,,W,,, denoted by+= {+,, l<i<m} and +!J= {J;, 1~ 
j < n }, are invariant under a 2-D similarity transformation. 
In the rest of this paper, we call sets { &, 1~ i Q m} and 
{ #j, 1~ j < n } the 2-D second-order modes of the filter. 
As will be shown below, these invariants are crucial in 
obtaining an explicit solution to a simplified optimization 
problem. 

C. Simplified Optimization Problem 
From now on we assume that matrix 0 in (20) is equal 

to (m + n + 1)1 and is independent of the similarity trans- 
formation used. In other words, it is assumed that the 
computation of each component of the new state variables 
fi (i + 1, j) and & (i, j + 1) always involves (m + n + 1) mul- 
tiplications, i.e., both matrix A” and vector 5 have neither 
zero or one entries. This assumption is obviously pessimis- 
tic. It, however, greatly simplifies our problem, and 
numerical experience for the case .of 1-D filters [l] has 

the dynamic range constraints on the new state variables 
shown that the application of the noise model with this 

5(i, j) and &(i, j) are given by 
assumption is valid. Expression (20) now becomes 

I 
1 

(m+n+l)Ei _ 

. . * 1 E(AJ2) = 12 G+$p+u) (32) 

K=T-‘KT-~= 1 
.l 

* 
. (27) 

where 

6 = tr(T’WT) (33) 

1 1 
referred to as the unit noise of realization (T-‘AT, 
T-lb, CT, d) is the only transformation-dependent quan- 

The computation issues of matrix K are detailed in tity in (32). Our objective can be formulated as the follow- 
Appendix A. Note that K is positive-definite if (A, b) is a ing optimization problem: given a reachable, observable, 
locally reachable pair, i.e., and stable LSS realization {A, b, c, d }, find a 2-D similar- 

rank[f(l,O) f(O,l)*--f(m,n)] =m+n. (28) ity transformation T = Tl @ T2 such that realization 

The proof is given in Appendix B. 
@, 8, Z, d”) = { T-‘AT, T-lb, CT, d} minimizes unit noise 
G subject to constraint (27). 

B. The 2-D Second-Order Modes 
By analogy with the 1-D case, (26) and (21) given 

k?’ = T- ‘KWT and, therefore, the eigenvalues of KW are 
invariant under a 2-D similarity transformation [12]. It 
turns out, however, that these invariants are not significant 
in the present optimization problem. This is because the 
related optimization problem using these invariants would 
lead to a non-block-diagonal similarity transformation 
which is not acceptable. An alternative approach is, there- 
fore, explored. If we denote 

K= K,, Kl2 [ 1 w= 
K:2 K22 ’ 

then (26) and (21) yield 

and 

k,litll = T; ‘K,,W,,T, 

I?22it22 = T,- 1K22W22T2. 

Since matrices K,, E Rmx” and K,, E Rnx” in K (see 
(29)) are both positive-definite, one can find a nonsingular, 
block-diagonal matrix P = P,@P, such that 

KEp-‘Kp-t= 
1 

(34) 

where I is a certain m x n real matrix. Now if 

F= p-‘T (35) 

F is also block-diagonal and can be used as a 2-D similar- 
ity transformation. Substituting (35) in (33) and (27) gives 

- -- 
c= tr(T’WT) 

and 
(29) 1 

* 

i=f-l zrn r [ 1 p-t= 1 

(30) 
rf I, 1 

* 

1 

(31) 
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respectively, where w iv,, 
w= p’wp s -‘I [ 1 w;2 w22 . 

(38) 

A further simplification of the problem can now be 
made through the use of the singular value decomposition 
(SVD) of matrix ? 115, ch. 61. We can express F as 

where R, E Rmx”, R, E Rnx”, S, E Rmxm, and S, E RnX” 
are orthogonal matrices; A, = diag { A,, . . . Al,,,}, A, = 
diag{X,,..+X,,}; XII>, *mm >X,,>O, _a”d h2r> e-0 > 
X,, > 0 are the singular values of matrix T. By substituting 
(39) in (36) and (37), we have 

6 = tr (SA R’WRRS’) = tr (R*R’pR) 

= F x:p; + f h$l;+i 
i=l i=l 

(40) 

where u: is the i th diagonal element of R’PR, and z = SA-‘R’ 1, r I 1 rt I RA-‘St 
” 

1 
* 

1 zz 
1 

* 

l- 

This yields the simpler constraint 

1 
. 

kzs AC2 * St= [ 1 * A;* . . 1 1 , * 
* 

1, 
(41) 

Since any 2-D similarity transformation ? can be obtained 
by properly choosing block-orthogonal matrices R, S, and 
diagonal matrix A in (39), the above optimization problem 
is now reduced to the following one: given as LSS realiza- 
tion {A, b, c, d } as is (1) choose two block-orthogonal 
matrices R, S and a set of positive real numbers {X,;, h,,, 
l<i=gm, l<j<~~} such that (I? in (40) is minimized 
subject to constraint (41). 

D. A Solution of the Simplified Problem 
A remarkable feature of the problem of minimizing c in 

(40) subject to constraint (41) is that the free parameter R 

appears only in 6 and free parameter S appears only in Z?. 
Therefore, one can choose R independently of S. Making 
use of this advantage, we conclude that constraint (41) can 
be characterized by two simple equalities on the X’s. This 
result is stated as a lemma below. 

Lemma I: There exist a block-orthogonal matrix S and 
a diagonal matrix A such that constraint (41) is satisfied 
if, and only if 

M 1 n 1 
z-=m and x-=n. 
j-1 A:i i-1 G; 

(42) 

Proof: Substituting S = S,@S, in (41), the constraint 
condition becomes 

* 

S A-2S’ 2 2 2 1 
1 

1 * 
. . 1 

This implies that (42) holds since S, and S, are both 
orthogonal. Conversely, by Lemma 3 of [3], conditions (42) 
imply that there exist two orthogonal matrices S, E Rmx” 
and S, E Rnx” such that 

1 *- 

s A-*St= II 11 1 

* 1 VIXWI 

and 
1 * 

s A-*9= 
2 2 2 

[ Y * 1 1 . IlXll 

These equalities give (41) where S = S,@S,. q 
The following lemma gives two sets { XTi, 1~ i Q 

m},{h*,,, l<ign} in terms of u, (l<i<m+n), which 
minimize (40) subject to condition (42). 

Lemma 2: For any positive real numbers {u,, 1~ i < m 
+ n }, the minimization problem 

subject to (42) can be solved by selecting ; ,f Ui 
I I 

v2 qj = r=l 
9 1< j<m 

‘/ 

qj = 

$ ,g um+i11i2 
I I3 1-l 

U m+j 

l< j&n (46) 

(44) 

(45) 
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and then solving the minimization problem 

rn?Z = * 
[ 

2 Xiiuf + i X2 .u2 
i=l 2’ m+i 1 i=l 

(.&)’ + ( ++j2 

Theorem 1: Given a reachable and observable real- 
ization { A, b, c, d } satisfying stability condition (2) there 
exists a 2-D similarity transformation T = T,@T,, such 
that realization { T-‘AT, T-lb, CT, d } minimizes the out- 
put-noise power E(Ay*) in (32) subject to dynamic range 
constraint (27). The computation of the desired transfor- = (47) 
mation matrix T can be carried out by the following 

m n * procedure. 

Proof: Define 1) Compute positive-definite matrices K and W via (24) 

m n and (18), respectively. 

F = 1 X;pi” + c &u;+~ + q1 
(&m) 

2) Find matrix P = P,@P2 such that (34) holds. 
i=l i=l 3) Compute w via (38). 

+1J*( .$n) 
4) Find block-orthogonal matrix R = R,@R, such that 

R,W,,Ri and R,W,,R: are diagonal, i.e., R,W,,Ri = 
diag{u,... urn}, R,v,,R: = diag{ u,+r . . . u,+,}. 

where qr and q2 are the Lagrange multipliers. Routine 5) Compute 

calculus manipulation leads t,o solutions (45) and (46). 
Substituting (45) and (46) in G given by (40) yields (47). A* = y 0 [ 1 A* 

2 

The above lemma reduces the main optimization prob- 

m~[(?;ir+ (:l;+il’] ((:: 

where A? = diag { %* * * A?,,, > and A*2 = diag { %I . . . %, > 
lem to are given by (45) and (46), respectively. 

6) Find block-orthogonal matrix S = S,@S, such that 

‘JAT-~S;= [ 1 ‘.. jxm 

where ui is the square root of the ith diagonal element of and 
R’WR. By the invariance of the 2-D second-order modes 1 * 
under a similarity transformation, the optimum values of s A*-*St= 

22 2 -.- the u’s which minimize the expression in (48) are obtained * 1 1 IlXll 

as follows. 
Lemma 3: The minimum value in (48) can be achieved 

by the algorithm given in the appendix of [3]. 

if, and only ifi_the block-orthogonal matrix R is chosen 7) Form 

such that R:W,,R, and RiW,,R, are both diagonal. T= PRAY!?‘. 
Moreover 

min 
u 

-(.pi)‘, (.&+ii 
m n 

I m \2 I n 12 
E. Other Issues 

We conclude this section with a brief discussion on 

= several issues relevant to the main results presented. 
m n 1) As for the 1-D case [l], the signal scaling conditions 

based on the I, norm can be expressed as 

where the +‘s and #‘s are the 2-D second-order modes of 
the filter considered. 

Proof: Notice first that {uf, l~i~m} and { u:+~, 
1~ i < n } are also the diagonal elements of matrices 
R,W,,R: and R,W,,R’,, respectively. Thus, by Lemma 2 
of [3], the minimum values of 

m n 
c ui and 2 u,,,+; 

i=l i=l 

will be achieved if, and only if, R,W,,R: and R,W,,R: 
are diagonal. Further, by (34) and (38) the invariance of 
the 2-D second-order modes implies that the eigenvalues 
of matrices R,W,,Ri and R,W,,R: are + = { &, 1~ i < m} 
and 4 = { Gi, 16 i < n }. Therefore, (49) holds. 0 

We are now in a position to summarize the-main results 
of this section. 

a211 f/p = (E,2’-‘)* k=l;..,m+n (50) 

where 1 is the wordlength, 6 is a parameter which 
determines the probability of overflow, and ]I fkll denotes 
the 1, norm of doubly-indexed sequence composed of the 
k th component of f (i, j), i.e., 

IlfAl’ = 4 E f f(i, j)f’(i, j) e,=K,,, 

i=o j=O 

k=l;..,m+n. 
Thus, scaling condition (50) becomes 

k=l;--,m+n. (51) 

We observe that condition (51) is the same as condition 
(25) up to a constant factor and, therefore, no essential 



LU AND ANTONIOU: 2-D STATE-SPACE FIXED-POINT DIGITAL-FILTER STRUCTURES 971 

differences will occur when scaling condition (25) is 
replaced by (51). 

2) Through the same argument as in [3], we can establish 
a lower bound for C? in (33) as 

g >, (m + n)(det KW)(l’m+n). (52) 
Note that det (KW) is invariant under similarity transfor- 
mation so that the lower bound given in (52) is coordinate 
independent. 

3) From Theorem 1, it is observed that once matrices K 
and W are computed, the desirable transformation T = Tl 
@T2 can be obtained by solving separately two 1-D mini- 
mization problems as follows. 

(1) Find a nonsingular transformation Tl of dimen- 
sion m such that 

Gl = tr( T:W,,T,) (53) 
is minimized subject to 

1 * 
T,-‘K,,T,-‘= 

[ .I 

’ ’ (54) 
* 1 

where W,, and K,, are the positive-definite 
matrices of dimension m given by (29). 

(2) Find a nonsingular transformation T2 of dimen- 
sion n such that 

and 

rank 4 0 a2b2 1 = 0 b, a,b, 2. 

These assumptions guarantee that the resulting matrices K 
and W are positive definite. Let us suppose that K and W 
have been computed through (18) and (24), and are given 
by 

K= [:: ::]and W= [Lt ~1. 

It is easy to verify that 

P= 
!K 0 [ 1 0 F-4 and R=A*=S=I. 

Thus, T = P and the optimal realization is given by 

, and d”=d. 

c2 = tr (Ti W,,T,) (55) 
Example 2 

As a numerical example, we consider a stable state-space 
is minimized subject to digital filter of order (2,2) modelled by (1) where 

1 * 

[ I 

1.88899 -0.91219 1 -1.0 0.0 
T;‘K22T;1 = . . (56) 

I 
A = 

’ * 1 
--~~2,71--~~‘~~ss-~--~.-----~‘~ 

1.88899 1 .O 

where W,, and K,, are the positive-definite I - 0:0258 0:02431 j - 0.91219 0.0 I 

matrices of dimension n given by (29). bT= [ 0.219089 0.0 I - 0.028889 0.091219 1, and 
In other words, upon the availability of matrices W and 

K defined in (18) and (24), the well-developed synthesis 
c = [ 0.28889 -0.091219 1 -0.219089 0.01. 

approaches in [l] and [3] can be used to obtain a state-space Since the system is stable, we may use finite sums 

realization for a 2-D digital filter with minimum roundoff 
noise. z f AijctcAij and f : f(i, j)f’(i,j) 

i=() j=tJ i-0 j=O 

Example I 
V. EXAMPLES 

Let us consider an arbitrary 2-D filter of order (1,l) 
represented by state-space model (l), where 

We assume that the filter is BIB0 stable so that K and W 
in (24) and (18) are well defined. We also assume that 
(A, c) is a 2-D locally observable pair and that (A, b) is a 
2-D locally reachable pair, i.e., 

rank[:;;j=rank[s: ‘$I=2 

to approximate W and K, respectively. Taking M = N = 
240, numerical computation gives 

1.133630 - 1.032898 ; 0.977893 1.774435 
- 1 032898 0 965161 1 -0 941089 - 1 672273 --1-------1------f---l-------l---- 

0.977893 -0.941089 ; 87.124460 85.257248 
1.774435 - 1.672273 , 85.257248 , 87.172446 1 

and 

87.124446 85.257248 / 1.639820 -1.539081 

--1-------~--___,__~~~~2~~---~ ____ 85 257248 87 172445 I - 1 233185 

1.639820 1.321218 ; 1.133630 - 1.032898 
- 1.539081 - 1.233185 , - 1.032898 0.965161 1 

The unit noise of this filter after scaling is the sum of 
products of corresponding diagonal entries in W and K 
and is given by 

4 

G, = 1 wiikii = 365.804889. 
i=l 
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Following the procedure of Theorem 
ilarity transformation is calculated as 

-3.309820 10.442754 ; 
-5.328425 10.609476 ! 

1, the desirable sim- A. Truncation Method 
A straightforward way of computing W and K is to use 

the truncated double sums 

W= f f Aijc’cAi, and K= E 5 f(i,j)f’(i,j) 
;=(Jj=() i-0 j=O 

(Al) 

---------------+--------------- 
0 ' 0.915337 0.261280 

; -0.949348 -0.065936 

The characterization of the optimal state-space structure of 
this filter can now be obtained as 

~=~-l,+,~= O-'7_2_42_0____0,924519_L_=01?27_5_93__--0,0_67820_ 

1 0.964470 0.045371 0.016180 -0.119001 0.010522 0.023012, ; 1 :0.128139 -0.473073 0.888409 -0.135037 0.181558 1.000580 1 
r 0.1132311 

i; cc T-‘h = 

and 

?=cT=[0.390436 -0.666105 1 -0.200540 -0.0572431. 

The corresponding matrices l@ and Z? are 

3.389308 

@= [ 0.000009 

o.OOOOO9 -1.256271 0.264211 

3.389308 
-1.256271 -0.539958 

0.264211 0.007450 -0.539958 0.007450 1 3.389006 -0.000005 
-0.000005 3.389074 

and 

0.999957 

R= [ 0.475650 

0.475650 0.172402 0.067288 

0.999974 
0.172402 0.204635 

0.204635 0.096822 1 0.999968 0.475657 
0.067288 0.096822 0.475657 0.999982 

These give the unit noise of realization (a, g,?) as 

C? = i G;;k;; = 13.555811 
i=l 

which is quite close to the lower bound of C$ given in (52): 

(m + n)(det KW)l’(m+“) =11.949383. 

VI. CONCLUSIONS 

Based on a roundoff-noise analysis, a general synthesis 
procedure has been presented which leads to an optimal 
local state-space 2-D filter that minimizes the output-noise 
power due to roundoff subject to a signal scaling condi- 
tion. 

Two matrices W and K derived from the calculation of 
the output-noise power and the signal scaling condition, 
respectively, provide two sets of 2-D second-order modes 
of the filter. It has been demonstrated that these modes 
play a crucial role in the minimization of roundoff noise. 
The general synthesis procedure has been illustrated by 
two examples. 

It should be pointed out that the approach presented in 
this paper can be extended to the N-dimensional case 
where N > 2 in a straightforward manner provided that the 
multidimensional LSS model proposed in [16] is used. 

APPENDIX A 

In this appendix, we outline two approaches for comput- 
ing matrices W and K defined by (18) and (24), respec- 
tively. 

where M and N are positive integers. Through the use of 
recursive formula (3), the above finite sums can readily be 
programmed. In general, when M, and N are taken to be 
large enough, the sums in (Al) will represent good ap- 
proximations of Wand K. However, experience has shown 
that even for small dimensions m and n, this approach 
needs a considerable amount of computation time. 

B. Evaluation of Kji and yj (i = I, 2) via a Lyapunov 
Approach 

Define 

and 

F(z,w)= [Z(z,w)-A]-% 

G(z,w)=c[Z(z,w)--Al-l 

z(z, w) = Z,z@Z,w 

where @I denotes direct sum, and let 

1 
i=- 

# 9 
dw dz 

(w)* (rl=l Iwl=l 
am*--y 642) 

and 

1 
cc- 

# # 
dw dz 

(w)* jzl=l Iwl=l 
G*(z,w)G(z,+-y (A3) 

where * represents conjugate transpose. The use of the 
residue theorem leads to 

K,,= [I, O]k Irn i 1 o , K,,=[O Z,lg I” [ 1 n 
w,,=[z, o]Jif . 

Thus 

where [Z, 0] F( z, w) can be written as 

[I, O]F(z,w) = (zz-A(w))-%(w) 
with 

and 

A;(w) = A,+ A,(wZ- A,)-‘A, 

a,(,) =b,+ A,(wZ- A,)-%,. 
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Hence, (A4) becomes 

K,,=i $i eL $ (zZ-/i,(w))-%,(w) 
2rj Iwl=l w 2r.i ,z,=l 

.~;(W)(z*z- x;(w))-l; 

W) 

where Z?i(w) is the positive-definite Hermitian solution of 
the Lyapunov equation 

~,(w)K,(w)A;*(w)-R,(W) = -6,(~)6;(~). (~6) 

The integral in (A5) can be computed through the use of 
the residue theorem. 

K,,, Wll, and W,, can be evaluated in a similar manner. 

APPENDIX B 

Theorem B.1: If (A, c) is a 2-D locally observable pair, 
i.e., condition (19) holds, then matrix W defined by (18) is 
positive-definite. 

Proof: If x is an (n + m)-dimensional vector such 
that x’ Wx = 0, then 

0 = x’Wx = E f x’A;~c~cA~~x = f 5 IlcAijx(12. 
i-0 j-0 i=Oj=l) 

Hence 
cAijx = 0 forall ia0, j>O 

which implies 

x’[c’ (CA,,)‘-*(CA,,)’ (cA&-(cA~,)~ 

. . . (cA,,,-~)‘]’ = 0. (Bl) 

By condition (19), equation (Bl) implies that x = 0 and, 
therefore, W is positive-definite. 0 

Theorem B.2: If (A, b) is a 1-D reachable pair, i.e., 
condition (28) holds, then matrix K defined by (24) is 
positive-definite. 

Proof: If x is an (m + n)-dimensional 
that X’KX = 0, then 

O=x’Kx= 2 E Ilx’f(i, j)ll” 
i=lJ j=O 

which yields 

x’f(i, j) =0 for i >/ 0, j > 0. 
Therefore 

vector such 

w 

x’[f(l,O) f(O,l):*-f(m,n)] =O. 
Condition (28) now implies that x = 0 and, hence, K is 
positive definite. q 
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