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2-D State-Space Digital Filters with 
Fewer Multipliers 

WU-SHENG Lu, MEMBER, IEEE, AND ANDREAS ANTONIOU, FELLOW, IEEE 

Abstract -It is shown that as many as [ m( m - 1) + n (n - 1)]/2 multi- 
plications can be eliminated in a local state-space realization of a ZD 
digital filter of the order ( m , n ) by applying an appropriate transformation 
from the class of orthogonal similarity transformations. Further, it is 
demonstrated that the class of similarity transformations can be enlarged 
so that one can either introduce m + n free parameters in the sensitivity 
function, which may be chosen to reduce the sensitivity of the fiber or to 
eliminate m + n additional multiplications while keeping the filter free of 
overflow oscillations. A numerical example is then given to illustrate the 
various techniques. 

I. INTRODUCTION 

I T HAS been known for some time that minimum-norm 
state-space realizations of 1-D digital filters have certain 

desirable properties when the effects of finite wordlength 
are taken into consideration [l]-[3], e.g., low roundoff 
noise and freedom from overflow oscillations. Owing to 
these advantages and the continued interest in multidimen- 
sional digital-signal processing, the 2-D minimum-norm 
state-space realization has received particular attention 
and a number of contributions have been published on this 
subject [4]-[6]. 

Lodge and Fahmy [6] have shown that if the system 
matrix of a 2-D state-space digital filter satisfies the 2-D 
Lyapunov equation, then the Euclidean norm of the sys- 
tem matrix of a minimum-norm realization is strictly less 
than one and, therefore, such a realization is free of 
overflow oscillations. In such a case, entries in the state- 
space representation are highly unlikely to be either zero 
or one and, consequently, (m + n)(m + n + 2) + 1 multi- 
pliers are almost always needed in the implementation of a 
filter of the order (m, n). 

More economical realizations requiring only 2(mn + m 
+ n) + 1 multiplications can be achieved by using the 
method reported by Kung et al. in [13]. However, the 
norm of the system matrix is always greater than one and 
the advantages of freedom from overflow oscillations and 
low roundoff noise do not apply in general. 

Recently, Aboulnasr and Fahmy [S] have suggested using 
an orthogonal similarity transformation in order to reduce 
the number of the multiplications while preserving the 
norm of the system matrix. Specifically, through the use of 
the singular value decomposition (SVD) technique, they 
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proved [8] that a suitably chosen orthogonal transforma- 
tion can introduce ri = n(m - 1) zero entries (when m > n) 
in the system matrix and hence ri multiplications can be 
eliminated. 

In this paper, we show that as many as r, = [ m( m - 1) + 
n( n - 1)]/2 multiplications can be eliminated in a mini- 
mum-norm realization by applying an appropriate trans- 
formation from the class of orthogonal similarity transfor- 
mations where r2 >, r1 and r, zs= rl if jrn - n 1 is large. 
Further, through the use of a broader class of similarity 
transformations it is demonstrated that one can either 
introduce m + n free parameters in the sensitivity function 
of the digital filter, which can be adjusted to reduce the 
sensitivity or to eliminate m + n additional multiplications. 
These improvements are brought about without changing 
the norm of the system matrix and, therefore, improved 
realizations are achieved that are free of overflow oscilla- 
tions. This paper concludes with a numerical example 
which illustrates our approach. 

II. REDUCTIONINTHEN~MBEROF 
MULTIPLICATIONS 

The 2-D digital filter considered in this paper is repre- 
sented by Roesser’s local state-space model [7] 

(lb) 
where xv E R”, xh E R”, and (m, n) will be referred to as 
the order of the filter. Notice that if (1) is a minimal 
realization of the transfer function, then (m, n) is also the 
order of the transfer function [13]. It is assumed in the rest 
of this paper that the realization represented by (la) and 
(lb) is a minimum-norm realization of a stable 2-D 
quarter-plane digital filter, i.e., ]]A]] < 1 where ]]A]] denotes 
the Euclidean norm of A defined as the square root of the 
maximal eigenvalue of A’A (A’ denotes the transpose of 
A). Our goal is to seek an appropriate similarity transfor- 
mation Q = Q1@Q2 (@ means direct sum) such that the 
resulting realization (QAQ-‘, Qb,cQ-l, d) has a maxi- 
mum number of zero entries while preserving the norm of 
the system matrix. 
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In this section we restrict our attention to the class of upper triangular matrix, i.e., 
orthogonal transformations, in which case IlQAQ-‘11 = IlAll. 

Let x1 A, 
x=QAQt= A- [ 1 RI= 

3 A,’ 

$=Qb= ; [ 1 with rli # 0,l Q i Q m. Denoting 
and C=cQ’= [Ci C2] 

2 & = QAQ: 9 b,=Q,b, and Ci= cQ: 

where equations (4) and (5) imply that 

xl = Q&Q:, $I= Q,b,, G = c,Qi 

and j?. E [ & A,&, - - . &ql] = 

x4 = Q2A,Q;, s2 = Q2b2, C2 = c,Q;. 

Viewing S, = (A,, b,, ci) as the representation of a 1-D 
single-input subsystem, S, is said to be reachable if, and which immediately gives 

‘11 
* 

‘12 

[ *- 0 hm 

only if, its reachability matrix P4 
Fl = [b, A,b, . . . A,m-‘b,] 

is of full rank, i.e., 
detF,#O. (2) 

Furthermore, subsystem S, is said to be observable if, and 
only if, its observability matrix 

is of full rank, namely 

.det Yi Z 0. (3) 
Let 

F2= [b, A,b,...A;-lb,], and Y2= 

0 bl= . . (:I 

(5) 

6) 

(7) 
Lol 

Matrix x1 can be computed by using the Cayley- 
Hamilton theorem. We can write 

-- -- 
A,I;;=A,[b, ~l&~d”-l~,] 

= [&b, 2& * * . @b,] 

= [Z1 A,&, - * . Xplb,] 

0 0 0 - a1 

1 0 0 - a2 

. 0 1 0 - a3 (8) 
. . . . . . . 

i,O ‘i-h, 
where elements a, can be determined by calculating 

det (XI - A,) = X”’ + u,X”‘-~ + . . . + a,. 

Since both F1 and F.’ are upper triangular, we have 

be the reachability and the observability matrices of sub- 
system S, = (A,, b,, c2). The reachability and the observ- 
ability of S, can be characterized by the nonsinrmlarities of 
F2 and Y,. It is worthwhile to observe that in a digital-filter 
context the resulting subsystems S, and S, rarely fail the 
reachability test (2) and the observability test (3) simulta- 
neously. We, therefore, assume that both subsystems S, 
and S, are reachable. The case where S, or S, is neither 
reachable nor observable will be dealt with subsequently. 

x1 = Fl 

r12 - * . . . * * 

‘11 

r13 - 

r12 

Since subsystem S, is assumed to be reachable, I;; is 
nonsingular and, therefore, its QR decomposition (QRO) 
gives (see Theorem A.2 of the Appendix) 

Ql4 = 4 (4) 

where Q, is an m X n orthogonal matrix and R, is an 

I c * . . . * * 

'0 0 0 - a1 

1 0 0 -a2 

0 1 0 -a3 F,-’ 
. . . . . . . 

iti Y-h, 

0 r1Wl 
* 

r1,m--1 

(9) 
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Similarly, since subsystem S, is also assumed to be where elements bi are given by 
reachable, matrix F2 is nonsingular. Hence there exists an det (XI - A4) = A” + n x n orthogonal matrix Q, such that -t 

Equations (16) and (14) give 

& = QAQ: 
* * 

r22 - * 
r21 

r23 - = 
r22 

0 

0 0 0 **- 
-b, . . . 

. . . * * 

. . . * * 

r23 * * - 
F22 

0 01) = 07) 

r2r r2n * 
r2,n-1 

* * * . . . 
r2,n-1 

* L* * * -** 

We now consider the case where S, is neither reachable 
nor observable. In this case 

where r2j # 0 (1 Q j Q n) are given by QRD of matrix F2. 
If S, is observable but not reachable, one can apply 

QRD to the transpose of the observability matrix Y2 to 
obtain the desired orthogonal transformation matrix as rankF,=m,<m. 

Because of the special structure of I;;, we have 
rankFi=m, 

where 

pl = [b, A,b, . . . A,“+b,]. 

Applying QRD to & yields 

Q,r; = R, 
i.e., 

(12) 

where Q, is orthogonal and 2: is lower triangular, i.e., 

f21 

j+ r22 0 [-*I * -. (13) 

f2n 

Q,,&= 2 1 1 08) 
with Q,, orthogonal and wherer2j#0,1< j<n.Nowlet 

-- 
A4 = D,A,Q;, b, = e,b,, and c2 = c,Q:. ‘ll I- * 

ii,= -*. 1 ) po (l<i<m,). (19) 
From (12) and (13), we obtain 

-1 
1 0 L, 1 

Let 

04) xl = Q,,A,Q;, = 

r2n 

5, = Qd,, and Ci = c,Q:, 

(19 where xi, E R “1 X% and xl, E R(“‘-‘%)X(m-“‘l). Now from 
(18) and (19) 

1 m-0 
1 

711 
* 

[b, A,& vTp&] = o --* 71m 

1 

----------- 

0 

which gives 

As in (8) 

-- 
Y,A, = 

c,=[r,, o-o]. 

0 1 
0 0 

0 il 
-b, -b, -b, ... 

0 which gives 

0 

r, 06) 
1 

- 4l 

(21) 
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-- 
In the present case, the column vector A,“lb, is a linear of the form 
combination of the vectors {A’,&,, 0 G i < ml}. That is, 
there are m, real numbers { (Y~, 1 d i d mi} such that 

885 

In effect 

0 0 --- 0 a1 
1 0 *-* 0 * 
0 1 *** 0 * . . . . . . . . . . 
0 0 . .I i n,l 

(22) 

4 x 4 

where T is an (m - m,) X (m - ml) orthogonal matrix to 
x such that 

I 

Q,,A,Q:, = [ fi3 Tz,] = [“d’ f&j (24) 

By Theorem A.3, we can choose an orthogonal matrix T 
such that TAy4Tr is the real Schur decomposition (MD) 
of 44, namely 

Tq4Tt= r” H2 .:. 1 (25) 

1 O Hkl 
where each Hi is either a scalar or a 2x2 matrix having 
complex conjugate eigenvalues. Matrix Qi2 preserves the 
zeros in 8,. Consequently, by means of the orthogonal 
similarity transformation Q, = Qi2Q1i we have 

* * . . . * * 
712 - * . . . * * 

r11 

713 - 

52 

- 
QAQ; = QlAQ;2 = 0 ~1, 1 * 

h,l,m,-1 

and by virtue of (20), eq. (22) implies and 

A71 [ 1 Xl3 = 

. . 

. . . . 

0 
71, 1 * 

rl,ml-l 
--___________------------- 

0 

In other words, because of the lack of reachability, the use 
of matrix Q,, cannot zero the entries in xi,. However, one 
may use another orthogonal transformation Qi2, which is 

0 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

:- 
I 
I 
I 
I 
I 
I 

_--------------- 
Hl * 

H2 

0 ‘Hk 

Q,b, = Q12& = 

(26) 

1 

(27) 

in which the number of zero entries is at least m( m - 1)/2. 
When subsystem S, is neither reachable nor observable, 
one can zero at least n(n - 1)/2 entries in (A,, b,, c2) in a 
similar manner. These results establish the following theo- 
rem. 

Theorem 1: There exists an orthogonal similarity trans- 
formation Q = Q1@Q, which forces at least [m(m - 1) + 
n( n - 1)]/2 zero entries in the realization (QAQ’, Qb, cQ’). 

Theorem 1 implies that at least [m(m - 1) + n(n - 1)]/2 
multiplications can be eliminated in the realization of (1) 
by the above technique. 
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III. SENSITIVITY ANALYSIS 

In this section, the similarity transformation 

T=DQ (28) 
where 

D=diag(d,...d,+,), di#O (lgigm+n) 

and Q is orthogonal will be used to introduce m + n free 
parameters which may be chosen to reduce the sensitivities 
of a digital filter with respect to the multipliers or to 
eliminate m + n additional multiplications while keeping 
the digital filter free of overflow oscillations. 

Since ljAlj < 1, where A is the system matrix in (la), 
matrix W defined as 

W=I-A!4 (2% 

is positive definite. With the following assignments 

/f= TAT-‘, ?,=n, EC,-T-1 

where T is given in (28), W> 0 implies that 

(30) 

D-‘QWQ’D-‘= D-‘Q(l- A’A)Q’D-’ 

= D-2 - D-‘QA$fQ’D-’ 

= D-2 - A”‘D-2/j”> 0. 
(31) 

Therefore, by Theorem 2 of [4] the realization (A”, a, Z) is 
free of overflow oscillations. 

It should be noted that if the orthogonal matrix Q is 
chosen to force at least [ m( m - 1) + n( n - 1)]/2 zero en- 
tries in realization (QAQ’, Qb, cQ’), then the similarity 
transformation given by (28) will preserve these zero en- 
tries in realization (TAT-‘, Tb, CT-‘). Now let 

with 
G(z,,z,)=c[I’(z,,z,)-A]-‘b 

%J,) = [‘b’” z2;m] 
be the transfer function of the filter characterized by (1). A 
common measure of sensitivity with respect to the coeffi- 
cients in (A, b, c) is given by [9] as 

S( zi, z2) = trace 
([~I[~]*+[~][~]* 

+[;][;I*) (32) 

where 

g= [r( zl, z2) - A] -‘c’ 

g=b’[r(z1,z2)-A]-’ 

and [ r( zi, z2) - A]-’ denotes the transpose of [ I( zi, z2) - 
A]-‘, and * is the complex-conjugate transpose. Likewise, 
if the similarity transformation T given by (28) is-applied, 
the sensitivity with respect to the coefficients in (A, b, Z) is 
given by 

sI( zi, z2) = trace ([ ~]QQ~Q[ E]*w-Q 

+[g][g]*QtD-2Q+[E]QtD2Q[g]*}. (33) 

To demonstrate the possibility of reducing the sensitiv- 
ity with respect to the coefficients in (A;&, Z) in a given 
frequency range by adjusting parameters { di, 1 d i d m + 
n }, let us examine the simplest case where D = dI,,, + “, and 
d is a nonzero scalar parameter. In this case (33) becomes 

s( zi, z2) = trace 
{[x3*+~-2[:1[:l* 

and if 

in the given frequency range, then the use of a smaller d 
leads to lower sensitivity in that frequency range. 

IV. FURTHER REDUCTION IN THE NUMBER 
OF MULTIPLICATIONS 

An alternative way to take advantage of the similarity 
transformation in (28) is to force m + n multiplier con- 
stants in the digital filter represented by (1) to be unity. 
This technique leads to the elimination of further m + n 
multiplications in addition to the possible [ m( m - 1) + 
n( n - 1)]/2 multiplications that can be eliminated by the 
technique of Section II. 

For the sake of simplicity, we assume that both pairs 
(A,, b,) and (A4, b,) are reachable so that by the analysis 
given in the previous section there exists an orthogonal 
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similarity transformation Q = Q,@Q; such that 

&QAQ’= 

and 

* * 
r12 
- * 

r11 

r13 

. . . * 

. . . * 

r12 

0 

__-----. --- 

* 

r1m 

r1,m-1 

* I 
I 

* I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

* I 
I 
I 

.--+---- 
l * 
I 
1 r22 
I - 
I 
I r21 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

‘11 

0 

&Qb= ;; 

0 

-0 

* 

_------------- 
* * 

* * 

r23 - 
r22 

0 r2n 

r2,n-1 

-- 
* 

* 

* 

Since rli and r2j for 1 G i d m, 1 G j G n are nonzero, the diagonal matrix D in (28) can be constructed as 

Hence, (34) assumes the form 

D= 

TAT-'= Dj---'= 

‘11’ 

; 

_- 

0 

0 

-1 
r2n 

* . . . 

: 
. . . 

0 --------- 

* *; 
* * I 
. .I 
. -1 . . 

1 I 
* I 

-----A--- 
l * 

* 

(344 

Pw 

(35) 

(364 
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and 

Thus, the similarity transformation given in (28) leads to n + m unit multipliers and preserves the zero entries 
appearing in (34). Since D is a nonsingular diagonal matrix, the resulting realization (TAT-‘, Tb, CT-‘) is also free of 
overflow oscillations. However, the sensitivity of the frequency response with respect to the multipliers may increase. 

If (Ad, b2) is a controllable pair, but pair (A,, b,) is neither reachable nor observable, the approach described in the 
latter part of Section II can be used to find an orthogonal matrix Q = Q,@Q2 such that (26) and (27) hold. The diagonal 
matrix D in (1) can then be constructed as 

D= 

--1 I I 

r11 I I 
I I 
I I 
I 

0 I 
I I 

w-1 I 0 
rl,m, I I 

------------A---------- ; 

0 I D 
-----________I_____‘____I_______________-- 

0 

i r2y1 
I 
I r22l 
I 
I 
I 
I 
I -1 

I r2n 

(37) 

where D, is a diagonal matrix of dimension m - m,, which which gives 
can easily be determined by noting the structure of matrices r* * 1 1 
Hi (1 Q i Q k) given in (26). For example, if k = 2 and both 
HI and H2 are 2 x 2 matrices, i.e., D D;‘= 1 *I * 

------ ;------ 
0 i; :’ I 

Therefore, using the similarity transformation given by 
(28) with D defined as in (37) we can eliminate at least 
[m(m -l)+ n(n -1)]/2 multiplications. In addition, we 
can force the subdiagonal entries in A, and A, to be unity 
or zero. The resulting realization (TAT-‘, Tb, CT-‘) is free 

where rl # 0 and r2 # 0, then matrix D, in (37) can be of overflow oscillations, as in the previous cases. 
taken as 

D,= 

1 
0 

r1 -1 

1 
0 

r2 -1 

V. EXAMPLE 

1 Let us consider a first-quadrant Gaussian filter of the 
order (4,2) characterized by 
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where 
0.174340E + 01 0.117383E +Ol 0.143891E + 00 0.296357E -01 

-0.921900E+OO -0.225628E+OO 0.278089E- 01 0.875035E -01 
0.297146E - 01 -0.180827E -01 -0.498595E- 01 0.919117E + 00 

-0.427139E-03 -0.836201E -02 0.302893E- 01 - 0.114475E + 00 

-0.462118E - 01 

0.444979E- 01 -0.567200E- 01 
-0.456776E-02 

0.1551496 - 01 0.538983E -01 1 0.347877E-02 
0.355290E -02 

0.112382E +Ol 0.358407E - 01 -0.165127E +00 0.315924E - 01 -0.577690E- 01 I 0.338645E - 01 -0.288409E- 01 0.575798E - 01 
= 0.188585E +Ol -0.109236E +Ol 

0.110738E + 01 -0.229426E +00 1 
0.229943E+ 01 

b,= - 0.389516E +00 

I I -0.253897E -01 
-0.650878E -02 

b,= 0.104029E + 01 
-0.376250E - 01 I 

cl = [ 0.310808E - 01 0.708642 E - 01 0.870614E + 00 0.353070E - 011 

c2 = [ 0.124361E - 01 0.171934E - 02 ] 

1.644913 - 1.473914 0.248891 0.115540 
0.607402 - 0.132606 - 0.040859 - 0.004748 
0.0 0.013613 0.349038 - 0.659096 
0.0 0.0 0.233746 - 0.507907 

and and 
d=0.943040E-02. 

This filter was designed by Aly and Fahmy [lo] and was 
used by Aboulnasr and Fahmy [8] to illustrate their ap- 
preach for the elimination of some multiplications in the 

x1 = 

system matrix. The approach suggested in [8] can eliminate 
six multiplications in the system matrix in a total of 49 
multipliers. 

- 0.055211 0.060606 

It is easy to verify that both subsystems (A,, b,) and x2 = - 0.037986 0.045792 
(A4, b2) in (39) are reachable so that the desirable orthogo- 0.005742 0.002210 
nal similarity matrix can be formed as - 0.014650 - 0.003185 1 

Q = Ql@Q2 t40) x3 = 1.133539 
[ 

-0.020326 0.012556 0.072174 
where Q, and Q2 are obtained from QRD of Fl and F2, 0.070849 - 0.041746 0.007246 - 0.060381 1 
respectively. Numerical computation [ll], [12] gives 

x = 1.882544 - 1.015974 
Ql 4 

[ 1.183765 - 0.226120 1 
0.985891 - 0.167006 - 0.010885 

-0.165606 -0.982951 0.079353 = 
0.022919 0.070613 0.865399 
0.008165 0.030474 0.494639 1 

and 

Q2=[ 
0.999346 - 0.036144 1 

l.U4UY/U 

0.036144 0.999346 ’ (42) . 52= 00 
L 

1 

By applying the orthogonal Jransformation Q given by Cl = [ 0.009231 -o.oc 
(_40)-(42) to (39), we have {A = QAQ', b = Qb, C = cQ', 
d=d} where C2 = [ 0.012365 0.002167 1. 

15393 0.776641 0.402388 ] 

A= [2 $21, b= [;!I, c=[cl c2] This realization entails the elimination of seven multiplica- tions. 
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Further notice that QRD of FI and F2 also gives 

Rl 

.I 2.332335 

* 

1.141666 

= 

0.019286 0 0.004508 1 
and 

R 2 = [ 1.040970 0.0 1.23+2264 1 
so that ‘one can form matrix D in (28) as 

where 

D, = diag {2.332335-‘,1.416666-l, 

‘0.019286-1,0.004508-1} 

and 

D, = diag { 1.040970-‘, 1.232264-l). 

By applying the transformation T = DQ, we have {A”= 
TAT-‘, z, = Tb, Z: = CT-I, d = d } where 

-and 

Al = 

A,= 

1.644913 - 0.895259 0.002058 0.000223 
1.0 -0.132606 -0.000556 -0.000015 
0.0 1.0 0.349038 0.154060 
,o.o 0.0 1.0 - 0.507907 

- 0.024642 0.032021 

- 0.027912 0.039831 
0.309927 0.141206 

- 3.382922 - 0.870621 1 
2 2.539739 - 0.027662 0.000233 0.000313 3 = 0.134098 -0.047993 0.000113 -0.000221 1 
,q 1.882544 - 1.202675 4 = 1.0 L 0.226120 1 
6,= K, [ 1 0:o 
El = [ 0.021530 0.007640 0.014978 0.001814] 

Z2 = [ 0.012872 0.002670]. 

It is seen that in addition to the seven zero entries, six 
other entries have been forced to be unity in the resulting 

realization. This increases the number of multiplications 
eliminated to 13. 

V. CONCLUSIONS 

It has been shown that as many as [m(m-l)+n(n - 
1)]/2 entries can be forced to be zero in an LSS realization 
through the use of an appropriate transformation from the 
class of orthogonal similarity transformations. This desir- 
able transformation can be obtained by the QR decom- 
position of the reachability or the observability matrices. 
Further, it has been demonstrated that a suitable use of a 
broader class of similarity transformations can result in 
either introducing m + n free parameters in the sensitivity 
function which may be appropriately chosen to reduce the 
sensitivity with respect to the multipliers or to force ad- 
ditional m + n multipliers to be unity while keeping the 
filter free of overflow oscillations. In effect, a total of 
[m (m + 1) + n (n + 1)]/2 multiplications can be eliminated 
in an LSS realization. This is a significant improvement 
relative to the result given in [8], particularly in the case 
where ]m - nl is large. A numerical example has been 
given which illustrates the techniques described. 

APPENDIX 

This appendix summarizes three theorems of linear alge- 
bra which have been used in the paper. The proofs of these 
theorems can be found in any standard text of numerical 
analysis, e.g., [ll]. 

Theorem A.1 (Singular Value Decomposition (ST/D)): If 
A E R MxN (M > N), then there exist orthogonal matrices 
U= [ui . . . uM] E RMXM and V= [q *. . uN] E RNxN such 
that 

A=U 

01 0 

0 -aNyt (2.1) ---------- 

0 

where ui 2 . . . 2 uN are the singular values of A (i.e., the 
nonnegative square roots of the eigenvalues of A’A); the 
columns { ui, 1 G i G N } form a complete orthonormal 
basis of the eigenvectors of A’A; the columns { ui, 1 Q i < 
M} form a complete orthonormal basis of the eigenvectors 
of AA’. 

Theorem A.2 (QR Decomposition (QRD)): If A E R MX N 
(M > N), then there exists an orthogonal matrix Q such 
that 

where R is an N X N upper triangular matrix. If A has 
rank N, then the first N columns of Qt form an orthonor- 
ma1 basis for the space spanned by thecolumns of A. 

Theorem A.3 (Real Schur Decomposition (RSD)): If 
A E R Nx N, then there exists an orthogonal Q E RNX N such 
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that 

where each Hi is either a scalar or a 2 X2 matrix having 
complex conjugate ligenvalues. 

Quite a few numerically stable algorithms for obtaining 
SVD, QRD, and RSD for a given matrix are available. The 
interested reader is referred to [ll] and [12]. 

PI 

PI 

[31 
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