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Stability of 2-D Digital Filters under 
Parameter Variations 

WU-SHENG Lu, MEMBER, IEEE, ANDREAS ANTONIOU, FELLOW, IEEE, AND 

PANAJOTIS AGATHOKLIS, MEMBER, IEEE 

Abstract -The relationship between the stability margins of a 2-D 
digital filter (or discrete system) and the norm of the transition matrix of 
its minimum-norm realization is considered. Upper bounds on parameter 
variations, which guarantee the stability of a perturbed 2-D digital filter, 
are then derived in terms of the minimum norm. The results obtained are 
illustrated by two examples. 

I. INTRODUCTION 

I N THE DESIGN of two-dimensional (2-D) digital 
filters and discrete systems in general, the designer 

is interested not only whether the system is stable or not 
but also whether the system will remain stable in the 
presence of system parameter variations. This type of 
stability analysis can be carried out in terms of stability 
margins which are measures of the degree to which a 
system will tolerate system parameter variations without 
becoming unstable. Such parameter variations may be due 
to parameter quantization in digital filters or to system 
uncertainties in control systems. 

In [l], a sensitivity analysis of 2-D systems, including 
analytical expressions for the variations of the characteris- 
tic roots of a 2-D filter, has been presented. The definition 
and calculation of stability margins as well as the interrela- 
tion of stability margins with the settling time of the 
impulse response have been considered in [2], [3]. In [4], 
lower bounds for the stability margins have been obtained 
by using the positive-definite solutions of the 2-D 
Lyapunov equation. 

In this contribution, the stability margins defined in [2] 
are related to the norm of the transition matrix of the 
state-space minimum-norm realization. Upper bounds on 
parameter variations, which guarantee the stability of a 
perturbed 2-D digital filter (or discrete system), are then 
derived in terms of the minimum norm of the filter. The 
results obtained are illustrated by two examples. 

Minimum-norm realizations are of considerable interest 
in practice since they lead to 2-D digital-filter implementa- 
tions which are free of overflow oscillations when imple- 
mented using finite-wordlength arithmetic [5]. 
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II. NOTATION 

The 2-D digital filters considered in this paper are 
quarter-plane causal filters with support on the first 
quadrant of the (m, n) plane. The open unit disk, the open 
unit bidisk and the distinguished boundary of the latter are 
denoted by U, U2, and T2, respectively. The closure of a 
set S is denoted by ,?. The singular values of a matrix M 
are defined as the eigenvalues of matrix M’M where M’ 
denotes the transpose of M. The spectral norm of M, i.e., 
the largest singular value of M, is denoted by llM[j. The 
condition number of a nonsingular matrix M is given by 
K(M) = IWII IW’II. 

III. STABILITY MARGINS FOR 2-D DIGITAL FILTERS 

IN STATE-SPACE REPRESENTATION 

A single-input, single-output 2-D digital filter (or dis- 
crete system) can be represented by the Roesser model [6] 
as 

where h and u are real vectors of dimensions M and N, 
respectively. The 2-D z-transform of (3.1) gives the trans- 
fer function of the digital filter as 

ff(z,, z2) = 
i&l, z2) 

4% z2) 

where 

u( zl, z2) = det 
I, - ZIA, - z,A, 

- Z24 IN - Z2A4 1 
= t E ajjz:zi, a,=l. (3.3) 

i=CJj=O 

In the rest of the paper, it is assumed that a(~,, z2) and 
g(zl, z2) in (3.2) are factor coprime and that there exists a 
block-diagonal positive-definite matrix G = G,@ G, such 
that 

W = G - A’GA (3 -4) 
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is positive definite, where G, E R MX M, G, E R NX N, and @ 
represents direct sum. It can readily be shown that this 
assumption implies the bounded-input bounded-output 
(BIBO) stability of the filter [5], [7], [8]. 

The stability margins, denoted by ui, u2, and (I, are 
defined to be the largest values of ui, u2, and u for which 

a(~,,~~)#0 in Uz= {( z1~z2)1Iz1I<~+% lz2W) 

(3.5) 

u(z1,z2)#0 in Uz= {( Z1~Z2)11~1l<L lzzl<l+fi2) 

(3.6) 

a(z,,z,)#O in U,“= {( z1,4p114+% Iz,l<l+fJ} 
(3.7) 

respectively, [2], [3]. 
We now consider the norm of the transition matrix in 

(3.1) under all nonsingular state-variable transformations 
T= TI@T2 with TIN RMxM, T2 E RNxN. The minimum 
norm of the state-space realization is defined as 

p = n$llTAT-‘11. (3.8) 

Although a nonsingular minimizer T = F such that 

p = lI?+A~-‘II 

and for 
a1 2 (Y.2 > 0, and &>P2>0 

~(l+(Yi,l) >EL(l+a,,l) 

iq1,1+P,) 3Fi(1,1+/32). (3.10) 

The stability margins can now be related to p and ,iI as 
follows. 

Theorem 1 
If the digital filter (or discrete system) represented by 

(3.1) satisfies (3.4), then 

(9 

(ii) 

1 
a>--1. 

P 
(71 > cr 

(3.11a) 

(3.11b) 

where (Y is the smallest positive number such that 
#i$1+ a,l) =l. 

(iii) 02 >P (3.11c) 

where j3 is the smallest positive number such that 

F(l+P,l) =l. 

Proof: For any v such that v > CL, if we pick vi in the 

may not exist (see Example l), an approximate solution of 
the minimization problem is always possible [5]. This is 
similar to the 1-D case where the minimum-norm realiza- rnin 
tion for a given transfer function may not exist, but can be T 

approximated [ 9 1. 
Consider now a 2-D digital filter characterized by (3.1) 

and assume that 2-D Lyapunov equation (3.4) is satisfied. In other words _ ._ 

range v > vi > p, we have 

1 T-’ 

By applying 2-D similarity transformation T = G’lL, where I z. z, \ 
G is the positive-definite matrix in (3.4), we obtain 

lITAT-‘11 < 1 (3.9) 
and, therefore, p < 1. Conversely, since the singular values 
of a given matrix are continuous functions of its entries, 
p < 1 implies that there is a nonsingular T = T,@T, such 
that [[TAT-‘/ ~1. In other words, an approximate solu- 
tion of the optimization problem (3.8) will lead to a 
state-space realization (AT 6, C) = (TAT-‘, Tb, CT-‘) in 
which I] ATI < 1. Such a realization is free of overflow oscil- 
lations [5], [8]. 

-1 
a 

t I 
- 2 #O for(z,,z2)EU2 
Vl ’ Vl 

With the minimum norm of a state-space realization 
defined as in (3.8), stability margin u can be related to p. 
On the other hand, ui and a2 can be related to parameter ji 
given by 

,ii(a,@ = ~nlldiag(cYI,,PI,)TAT-‘ll 

where (Y and /I are real parameters and diag(cYI,, PIN) = 
CUI, cTq31N. 

Parameters p and ji are closely related. For instance, 
one may easily show that 

iqL1) = p 

i+ 4 = l4P 

cl. 

and, thus 

a(:,:) 20 in {(z~,~~)II~~I~~~I~~I~~)- 

But for fixed v, 

{t~~~~2~ll~ll~~(~+(J~~ Iz,l<4+4 
is the largest bidisk in which 

# 0. 

Hence v(l+ a) > v/vi, which gives 
1 

V>-- 
1+u’ 

We have shown that 
1 

v>iA*v>r 1+u 
and, therefore, (3.11a) is established. 

To prove (ii), assume that ui < (Y. In such a case, there 
exists an 6 such that 
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By the definition of cy and (3.10), we have 

jI(1+ &,l) -Cl 
which implies that 

a(zl,z2)+0 in {( z,,z,)llqld+a, lz2ld): 
This contradicts the fact that {(zi, z2)] ]zl] Q 1 + ul, ]z2] < 
l} is the largest bidisk in which a(~,, z2) # 0. Therefore, 
u1 > (Y. A similar argument can be applied for the proof of 
(3.11c). 0 

If M = N = 1, then stability margins cr, ul, and u2 can be 
determined exactly in terms of p and ,ii, as stated in the 
following corollary. 

Corollary 1.2 If M = N =l, then inequalities (3.11a)- 
(3.11~) become equalities. 

Proof: For any fixed v such that v >l/(l+ a), (3.7) 
implies that 

Zl z2 
a-- 

i 1 v’ v 
20 for( zl, z2) E V2. (3.12) 

It was shown in [lo] that 

4% z2) # 0 for(z,,z2)EU2 

if, and only if, (3.4) holds. Hence (3.12) implies that 

Al J42 - - 

min T 
T 

I 1 

AyJ A”, 
T-’ = 1 minI1TAT-‘Il<l 

V T 
- - 

V V 

i.e., v > p. Therefore, 
1 

- >p. 1+u 
By combining this inequality with (3.11a), we have 

1 
a=--1. 

El 
Furthermore, u1 must be the smallest number for which 

,G(l + (Y, 1) = 1 since if this were not the case, one would be 
able to find a point (zl, z2) E vu: such that a(~,, z2) = 0, 
which contradicts (3.5). Therefore, (3.11b) becomes an 
equality. A similar argument can be applied to show that 
(12 =p. 0 

We conclude this section with a brief discussion of the 
above results. In the 1-D case, a digital filter with eigenval- 
ues { Xi, 1~ i < k } is called a minimum-norm filter if the 
norm of its transition matrix F satisfies 

IFI = I~lmx 
where IX],, is the largest value of ]hi] for 1~ i < k [9]. 
The name “minimum norm” originates from the fact that 
for any fixed square matrix F with eigenvalues {hi, 1~ i 
Gk}, we have 

n$$llTFT-‘II= I&,,. (3.13) 

In the 2-D case, relation (3.13) no longer holds since the 
nonsingular transformations are restricted to be block 
diagonal. Therefore, minimum-norm realizations of system 

(3.1) are those in which transition matrix’d satisfies ]]A]] = 
CL a Nnnx. 

If a 1-D digital filter is stable, then its stability margin 
[ll] is 

1 1 

u=(xI,,-l= m:llTFT-‘ll 
-1. 

On the other hand, if a 2-D digital filter is stable and 
satisfies (3.4), then (3.11a) gives 

1 
” rr$$llTAT-‘11 

-1. 

It should be pointed out here that the results presented 
in Theorem 1 can easily be extended to the N-dimensional 
case, where N 2 3, provided that the general state-space 
model proposed in [12] is used. 

IV. BOUNDS ON PARAMETER VARIATIONS 

In this section we use the concept of the minimum-norm 
of a 2-D state-space digital filter to obtain an upper bound 
on parameter variations, which guarantees the stability of 
a perturbed system. In addition, various special cases are 
considered in which tighter bounds are possible. 

Assume that a stable 2-D digital filter or (discrete-time 
system) is represented by (3.1) and let 

(4.1) 

be variations of the transition matrix A in (3.1), where 
AA, E RMxM, AA, E RNxN. Such variations occur when a 
digital filter is implemented by finite-wordlength arith- 
metic. If, on the other hand, model (3.1) represents a 
control system, AA may be caused by inevitable errors in 
estimating the parameters of the system. 

As can be seen in Section III, if state-space characteriza- 
tion (3.1) satisfies (3.4), then p ~1 and one can find 
numerically a nonsingular F= F1@p2 such that ~~~A~-‘~~ 
= p. Denoting the transition matrix of a perturbed 2-D 
digital filter by A= A + AA, one may observe that 

IIfl~-‘Il < ll~A~-‘II+ @AA~-‘ll = p + llTAAp-l(l. (4.2) 

Thus 
I II 

lITAT-‘11 < 1 when ll~AA~‘-‘ll<l- ~1. (4.3) 
In particular, if 

1-P 
IWII < jqq (4.4 

where K(F) is the condition number of r?, then .(4.2) and 
(4.4) lead to 

n$$l(TAT-‘II < l@%~-‘II ~1 

and, therefore, the perturbed digital filter is stable. We 
thus have the following theorem. 

Theorem 2 
Assume that the 2-D digital filter (or discrete system) 

represented by (3.1) satisfies (3.4). Any perturbed version 
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of digital filter with A= A + AA will remain stable pro- Corollary 2.2: If matrix A in (4.6) satisfies (3.4), then the 
vided that parameter variations AA satisfy (4.4). More- perturbed polynomial ii(z,, z2) in (4.7) remains stable if 
over, the state-space realization with transition matrix variations AA in (4.8) satisfy inequality (4.4), where p is a 
FAT- ’ is free of overflow oscillations. nonsingular block diagonal matrix such that 

By applying Corollary 1.1, we can prove the following 
corollary. 

Corollary 2.1 If M = N = 1, then any perturbed 2-D 
digital filter described in Theorem 2 will remain stable 
provided that parameter variations AA satisfy 

‘lAA’l < (1+ e;K(F) * (4.9 

A 2-D polynomial 

a(z,, z2) = ; 2 aijz;z:‘, a,=1 
i-0 j-0 

is said to be stable if a(~,, z2) # 0 in’U2. One may seek a 
bound for the coefficient variations of a stable polynomial 
such that the perturbed polynomial will remain stable. For 
the transfer function l/a(z,, z2) one can find a 
controller-form realization with minimal order in which 
the transition matrix has the form [13] 

r -alo . . . --UMO[ -1 
1 0 I 

I 0 I 
A= 0 101 ------------------- ,----------------- 

a,, -*- ‘Ml ] - a01 1 0 

where 
Zij = aij - aioaoj, ‘l<i,<M; l,<j,<N. 

Thus a perturbed 2-D polynomial 

ll?Af-lll = n$$llTAT-~ll. 

Several special cases can be considered through the 
above corollary, as follows. 

Corollary 2.3: If { iiio, 1~ i G M} are the only perturbed 
coefficients, then ii(z,, z2) remains stable if 

[ 1 f si2, l’* < l--P 
o+ Il~lllMn 

(4.10) 
i=l 

where ]]a,]] is the Euclidean norm of vector a, = [sol . . . 
aON I* 

Proof: In this case 

-a,, **- -a,, I 
AA= 

I 
where sij = - aoj6,,. Thus 

( gij) = - Ur[ 610 ’ ’ * SMo] 

which leads to 
M [ 1 l/2 

IIWI G c 4% o+ II4 
i=l 

Therefore, the inequality (4.4) will be satisfied if (4.10) 
holds. 17 

Corollary 2.4: If {d,, 1 Q j < N} are the only per- 
turbed coefficients, then ii(z,, z2) remains stable if 

[ 1 f gj 1’2 < 1-p 

o+ Ila,ll)m) 
(4.11) 

i=l 

ii(z,,z,) = f 2 iiijz;z:’ 
where a2 = [al0 9 . * aMo]. 

i=Oj-0 
Corollary 2.5: If coefficients { aio, 1 < i d M} and { aoj, 

1~ j < N) are not perturbed, then ii(z,, z2) remains sta- 

= 5 2 (aij+6ij)zi’z:’ 
ble if 

(4.7) 
i-Oj=O 1-p 

ll~4ll< jqq (4.12) 
has a controller-form realization with transition matrix 
A= A + AA, where whereAA,=(6ij), l<i<M, l<j&N. 

Proof: In this case ai = S, = 0 for 1~ i < M, 1~ j < 
N and sij = aij which gives [IbAll = llAA3jl. Therefore, this 
corollary follows from Corollary 2.2. 0 

Example 2: Consider a first-order 2-D digital filter char- 
acterized by 

1 1 
wz,, 3) = = 

4% z2) 1 + uzl +. bz, + czlz2 . 
(4.13) 

AA= 

and 

-s,, -** -s,,; 

0 
I 
I 0 -=----------=---f---------- 

6 11 **. 6 Ml ; - 601 

* I : 
0 

a;, ** * BiN j -a,, 

The transition matrix of its controller-form realization is sij = sij - siotsoj - ( aiosoj + aoj6io). 
It is now evident that the following corollary is an 

immediate consequence of Theorem 2. 
1; . 1 
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We can write By expression (4.16), it is easy to see that the smallest 
positive number ul that makes F(l+ u,,l) =l is the 
minimum positive value of 

=n$J[tlj :]A[: ,“l]~j=~~~[ (&(lc)t ‘z]ii. and, therefore, i]““-“b4’bc’1 

Simple algebra indicates that the above minimum is 
achieved when 

ul=min(l~l,~~l}-l. (4.18) 

t = lab - ~1-l’~ 

p = I$IIITAT-‘11 

= a2+b2+2~ab-cl+[(a2+b2+2~ab-cl)2-4c2]1’2 

2 
(4.14) 

and pi;= 1 0 
0 I lab-~j-“~ ’ 

(4.15) 

We now conclude that the first-order filter (4.13) is stable 
if, and only if, p given in (4.14) is less than one; the 
state-space realization with transition matrix 

-a .lab - c1112 
TAT-‘= c-ab 

lab-cl1’2 -b I 
has minimum norm and is, therefore, free of overflow 
oscillations if, and only if, /.L < 1. 

To obtain ul, we note that for any fixed CY > 0 

The minimum is achieved if 
112 

and 

Similarly by (4.17), the smallest positive number that makes 
jI(1, 1 + u2) = 1 is the minimum positive value of 

lab-cl+Ib-ml 

c2 - b2 

and, therefore, 

u2=min{1~1,~~l}-1. (4.19) 

Evidently, these results coincide with the results reported 
in [2]. 

It should be mentioned that if ab = c, matrix i; in (4.15) 
is no longer nonsingular and so a minimum-norm realiza- 
tion does not exist. However, one may pick 

T= ’ ’ [ 1 0 t 
and if t is chosen to be large enough, the norm of 

-t-l 
-b I 

will be close to the minimum norm given by p = 
mad I4 PI>- 

We now assume that ab - c # 0 so that FAT-l, where ? 
is given by (4.15), represents a minimum-norm realization 
of WZl, z2). 

Since 
K(f) = max { lab - c1112, lab - c(-~/~} (4.20) 

Corollaries 2.2-2.5 can be used to obtain variation bounds 
on coefficients a, b, and c. The method is illustrated by 

a2a2+b2+2alab-cJ+[( a2u2 + b2 + 2cxJab - cI)~- 4a2c2] 1’2 
l/2 

2 

Similarly, one can compute 

cL(l> PI = 
a2+p2b2+2&b-cl+[( a2+/32b2+2j+zb-c~)2-4j32~2]1’2 1’2 

2 I . 

(4.16) 

(4.17) 
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considering the following transfer function [2]: 
1 

fqz,, 4 = 1+ o.5z1 + O.Olz, + o.4z1z2 
. (4.21) 

Equations (4.14), (4.18), and (4.19) give the stability 
margins of H(z,. z2) as u =0.083, ul = 0.122, and a2 = 
0.282. The digital filter has a controller-form realization 
with transition matrix 

A= -0.5 -1 
0.395 1 -0.01 . 

By (4.15) one may compute the transition matrix of a 
minimum-norm realization as 

/f= TAT-’ 

= [ii :.,,,I[-:::95 ~:.,,I[: :.,,,I 
-0.5 = 

[ 
-0.628 

0.628 -0.01 I, 
whose norm is p = 0.923. Finally, (4.20) gives K(p) = 
1.591. Thus the allowable single variations of the coeffi- 
cients in (4.21) denoted by aa, 6b, and 6c are 

ISa] -C 0.048, JSbl -C 0.032, and ]6c] < 0.048 
respectively. 

Example 2: We now consider a second-order filter 
designed in [14] and characterized by 

where r is a nonzero real parameter. Note that the condi- 
tion number of T is fairly large, i.e., K(T) = 545.016 so 
that the bound given by (4.10) will be quite conservative. 
However, one can obtain tighter bounds for many special 
cases by directly using inequality (4.3). For example, if we 
suppose that no variations occur except in the coefficient 
of zfz,’ in (4.22) then (4.3) becomes 

+-f---j+. <l_ p = 0.018 

which leads to 
IS,,1 < 0.0031. 

V. CONCLUSIONS 

The stability margins defined in [2], [3] have been related 
to the norm of the state-space minimum-norm realization. 
The results obtained are given in Theorem 1. 

Then by using the concept of the minimum norm of a 
2-D state-space digital filter (or discrete system), upper 
bounds on parameter variations have been derived which 
guarantee the stability of a perturbed digital filter. 

H(z,, 4 = 
1 

- 1.88899 
(4.22) 

b =1 3.59599 
- 1.74892 

L 

The transition matrix A of its controller-form realization is 
given by 

I 

1.88899 -0.91219 ; -1 0 
A = _ -; 02771 - -z;~j580 ; - - ;,99 _ -f . (4.23) 

- 0:02580 
I 

0:02431 1 -0:91219 0 I 
By the use of their computation approach, Lodge and 

Fahmy [5] were able to find a similarity transformation 
T = T,CB T2 such that 

A = TAT-’ 
0.95776 -0.14277 ; - 0.02571 0.16849 
0.14215 0.93123 ; 0 0 = --___-_______---- 

I 

----_------ 
0.02466 0 08282 :----- 

- 0.16070 0:01245 ; 
0.93168 0.13884 

- 0.14609 0.95731 I 
(4.24) 

with norm p = lITAT-‘II = 0.982 in contrast with llA[l = 
7.609. Having done this, one can verify that the ab&e 
transformation matrix has the form 

1 -0.93123 ; 
I 0 1 

T = !- ____-_ o_.1_4_2_‘_5mi ____ - _-______ 40811121i 
1 38.88864 

.,- 
0 I I 

L I 0 6.22868 1 
(4.25) 

The results obtained were illustrated bv considering two 
low-order 2-D digital filters. They are thought to be of 
practical significance since minimum-norm realizations are 
known to be free of overflow oscillations. 

The main results presented in this paper can be ex- 
tended to the N-dimensional case where N > 3 in a 
straightforward manner, provided that the general state- 
space model proposed in [12] is used. 

PI 

PI 
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@I 

[71 
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