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Optimal Design of Frequency-Response-Masking
Filters Using Semidefinite Programming
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Abstract—Since Lim’s 1986 paper on the frequency-response-
masking (FRM) technique for the design of finite-impulse response
digital filters with very small transition widths, the analysis and
design of FRM filters has been a subject of study. In this paper,
a new optimization technique for the design of various FRM fil-
ters is proposed. Central to the new design method is a sequence of
linear updates for the design variables, with each update carried
out by semidefinite programming. Algorithmic details for the de-
sign of basic and multistage FRM filters are presented to show that
the proposed method offers a unified design framework for a va-
riety of FRM filters. Design simulations are included to illustrate
the proposed algorithms and to evaluate the design performance in
comparison with that of several existing methods.

Index Terms—Frequency-response-masking filters, optimal de-
sign, semidefinite programming.

I. INTRODUCTION

SINCE the publication of [1], the frequency-response-
masking (FRM) technique for the design of finite-impulse

response (FIR) digital filters with very narrow transition bands
has been a subject of study [2]–[9]. As a result, in many cases,
it has become the method of choice primarily because of the
considerably reduced realization complexity it offers compared
with other available options [5], [8].

As illustrated in Fig. 1(a), abasicFRM filter involves a linear-
phase prototype filter up-sampled by , a pair of linear-
phase masking filters , and a delay line that,
together with the prototype filter, helps form a linear-phase com-
plementary pair [1]. For additional reduction of re-
alization complexity, the prototype filter itself may be realized
with a basic FRM filter, yielding amultistageFRM filter [1],
[5], see Fig. 1(b) for a two-stage FRM filter structure. Given an
up-sampling factor, lengths of the subfilters involved, and pass-
band/stopband edges, the design of a basic or multistage FRM
filter is usually carried out byseparatelydesigning the subfil-
ters [1], [5], [6]. As such, the FRM filter obtained is only subop-
timal. In [9], a two-step optimization technique for the optimal
design of basic FRM filters is proposed. In the first step of the
method, an initial FRM filter is designed by alternately opti-
mizing the prototype filter and masking filters. The second step
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then refines the design using an algorithm in [10]. Although the
optimal design of multistage FRM filters was not addressed in
[9], the method in [9] appears to be, at least in principle, appli-
cable to such a design. However, as the number of filter stages
increases, a great many of the subfilters need to be optimized
alternately in the first step of the method, making the design
process increasingly involved. In this paper, we present a rather
different optimization technique in which the set of filter coef-
ficients ofall subfilters is treated as a single design vector and
an optimal basic FRM filter is designed through a sequence of
linear updates for the design variables, with each update carried
out in a semidefinite programming (SDP) framework. As will
be demonstrated by design examples, starting with a reasonable
initial design, the proposed algorithm converges to an optimized
design with performance considerably better than that of [1] and
comparable with that of [9]. An advantage of the proposed de-
sign methodology is that with straightforward modifications it
can be readily extended to multistage FRM filters. We shall elab-
orate on this point in Sections IV and V with algorithmic details
for the class of two-stage FRM filters and simulation results.

The second issue to be addressed in this paper is the op-
timal design of FRM filters withreduced passband group delay.
Linear-phase FIR filters have constant group delay in the en-
tire frequency band, but for a filter with very narrow transition
width, the group delay can be exceedingly large, a property not
desirable in many applications. Note that although linear-phase
FRM filters have been successful in reducing realization com-
plexity, its group delay is even larger than that of the direct-form
FIR filter with the same approximation accuracy. For a linear-
phase FRM filter with a large up-sampling factor, its large
group delay is dominantly contributed by the prototype filter.
Therefore, if the prototype filter has a nonlinear phase response
with a reduced passband group delay, say, and if the delay
line [the lower-left block in Fig. 1(a)] is accordingly modified
to , then the filter is expected to have its passband group
delay reduced by where is the length of
the prototype filter. Hence, the reduction in group delay can be
significant especially when is large. In this paper, we pursue
this idea and show that, by a joint optimization of the entire set
of subfilters, the prototype as well as masking filters all con-
tribute to minimizing the fluctuation in the reduced passband
group delay. Furthermore, we extend the design method to the
multistage FRM filters with reduced group delay.

The paper is organized as follows. Section II gives a brief
overview of the FRM filtering and some basic elements of SDP
that we need in the rest of the paper. Section III describes the
core of the design methodology based on which our algorithms
are developed in Sections IV and V, respectively. Illustrative
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(a)

(b)

Fig. 1. (a) Basic FRM filter structure and (b) Two-stage FRM filter.

examples will be presented for each class of FRM filters for
performance demonstration and comparison.

In the rest of the paper, boldfaced characters denote
matrices and vectors, represents the identity matrix of
dimension , denotes a diagonal matrix,

denotes a block-diagonal matrix with
matrices as its diagonal blocks, and de-
note normalized passband and stopband edges, respectively,
and denotes the normalized base frequency band, i.e.,

.

II. PRELIMINARIES

A. Brief Overview of FRM Filters

As can be seen from Fig. 1(a), the prototype filter and its com-
plement are upsampled by , yielding sparse filter coefficients
and a reduced transition width for each. They are then connected
in cascade to a pair of frequency-response masking filters in
order to approximate a desired sharp frequency response.

The transfer functions of the subfilters in a basic FRM filter
are denoted by

(1)

If all subfilters have linear phase responses with and
either both even or both odd and even, then the FRM
filter has a linear phase response with the group delay

provided that a delay line of appropriate length is cascaded
with either or . Let us consider the design
of a low-pass filter as an example. Given sampling factor

, normalized passband edge and stopband edge , a
reasonableinitial design of subfilters , , and

can be obtained by using a standard method [11] to
design three low-pass filters whose passband and stopband
edges are determined as follows [1].

1) For , the passband edgeand stopband edgeare
given by

(2a)

(2b)

(2c)

where denotes the largest integer less than, or by

(3a)

(3b)

(3c)

where denotes the smallest integer larger than, de-
pending on which set of satisfies .

2) If (2) is used to determine the values ofand , then
the passband and stopband edges of are given by

and , respectively, and
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the passband and stopband edges of are given by
and , respectively.

3) If (3) is used to determine the values ofand , then
the passband and stopband edges of are given by

and , respectively, and
the passband and stopband edges of are given by

and , respectively.

B. SDP

SDP is a relatively new optimization methodology which
is primarily concerned with minimizing a linear or convex
quadratic objective function subject to linear-matrix inequality
(LMI) type constraints that depend on the design variables
affinely [12]. The class of SDP problems most relevant to the
design problems of interest is expressed as

minimize (4a)

subject to: (4b)

(4c)

where , for are
known symmetric matrices and denotes that
is positive semidefinite at . Note that the constraint matrix

in (4) isaffinewith respect to . SDP includes both linear
and quadratic programming as its special cases and represents
a subclass of convex programming that covers many optimiza-
tion problems encountered in various engineering disciplines.
Many interior-point methods which have proven efficient for
linear programming have recently been extended to SDP [12],
[13] and efficient software implementation of various SDP algo-
rithms are available. In particular we mention the LMI Control
Toolbox [14], SeDuMi [15], and SDPT3 Toolbox [16], all of
which work with MATLAB.

III. OPTIMIZATION METHODOLOGY

In this section, we describe the core of the optimization tech-
nique based on which the design algorithms for various FRM
filters will be developed in the subsequent sections. As such,
our description will be given in a setting more general than each
individual algorithm in Sections IV and V.

Let be a desired real-valued or complex-valued func-
tion of frequency variable , and be a real-valued or
complex-valued function of , which depends on a real-valued
parameter vector . We seek to find a vector that
solves the weighted minimax optimization problem

minimize maximize (5)

where is a weighting function. With different inter-
pretations for and , the problem in (5) covers
many minimax design problems for digital filters, including
those to be addressed in Sections IV and V.

Let be an upper bound of on
. As the first step of the optimization we convert the problem

in (5) into a constrained minimization problem

minimize (6a)

subject to: for

(6b)

Suppose we have a reasonable initial pointto start the design,
and we are now in theth iteration. For a nonlinear and smooth

in a vicinity of , we can write

where is the gradient of with respect to and
evaluated at . Hence, provided that is small, with

we have

(7)

where and are the real and imaginary parts of
, respectively, and

with , , , and being the
real and imaginary parts of and , respectively.
From (6) and (7), it follows that an approximate solution of (6)
in the th iteration can be obtained by solving the following
problem:

minimize (8a)

subject to: for

(8b)

(8c)

where is a prescribed bound to control the magnitude of, and
for notation simplicity, the dependence of , and
on has been omitted.

By using linear algebraic arguments, it can be readily shown
that the constraint in (8b) holds if and only if

for (9)

and that the constraint in (8c) holds if and only if

(10)

If we treat the upper bound as an additional design variable
and define an augmented vector as , then the
objective function in (8a) can be expressed as with
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, and the problem in (8) can be formulated
as

minimize (11a)

subject to: (11b)

where

and is a set of dense grid points
in the frequency bands of interest. Note that matrix in
(11b) is affine with respect to vectorand the problem in (11)
is, therefore, an SDP problem.

Having solved the problem in (11) for a minimizer

vector is used to update as

The iteration continues until becomes insignificant com-
pared to a prescribed tolerance.

The original problem in (5) and, equivalently, the problem
in (6) are highly nonlinear and nonconvex optimization prob-
lems. As such, the above method, if it converges, only provides
a local minimizer for the problem. Among other things, the per-
formance of such a local solution depends largely on how the
initial point is chosen. Fortunately, for FRM filter designs, a
technique that generates a reasonably good initial point is avail-
able, see [1] and Section II-A. Concerning the convergence of
the method, although a rigorous proof is presently not available,
in our simulations when the method was applied to design a
variety of FRM filters, we had not detected a single failure of
convergence. One might attribute the success of the proposed
method to three factors: 1) the global convergence of each sub-
problem in (11) when an interior-point convex programming al-
gorithm is applied; 2) the use of constraint (8c) that validates the
key approximation in (7); and 3) the use of a good initial point.

Another related issue is the convergence rate or, in a more
general term, the computational efficiency. From the above
description of the method, it is quite clear that the computa-
tional efficiency is determined by how efficient each individual
SDP problem in (11) is solved and how many linear updates
are needed to reach a minimizer of (6). For the former, most
of the algorithms that are presently available for solving the
SDP problem (11) are so-called polynomial-time algorithms,
meaning that the amount of computations required is bounded
by a polynomial of the data size [13]. Consequently, the
computational complexity for problem (11) is affordable for
today’s computing devices even for designing high-order FRM
filters, and it will increase only moderately when the size of
the problem increases. For the latter, with a given bound
in constraint (8c), the number of updates needed depends on
how far the initial point is from the minimizer. In the context

of FRM filter design, with an initial point generated by the
method in [1], the number of updates required is typically in
the range of 10 to 30.

It should also be pointed out that although (11) is merely
an approximationof (6), as the iteration continues and the
local minimizer gets closer, the increment vectorobtained
by solving (11) gradually shrinks in magnitude and within a
limited number of iterations it eventually becomes such a value
that the updated solution point is practically the same as the
true minimizer.

In summary, we have described a method for minimax
optimization of an objective function that is frequently en-
countered in filter design problems and is allowed to be
highly nonlinear. The method proposed here accomplishes the
optimization through a sequence of linear updates where each
update is solvable in an SDP setting. The usefulness of this
methodology will be demonstrated in the next two sections
where various FRM filter design problems are addressed.

We conclude this section with a remark on the scale of the
SDP problem in (11). In the general case, as addressed above
where both and are complex-valued functions,
the dimension of the LMI constraint in (11b) is where

is the number of design variables andis the total number of
grid points in . If, however, both and are real-
valued functions (which is indeed the case encountered in the
design oflinear-phaseFRM filters), then the gradient
is also real-valued and the matrix in (9) becomes a

matrix and the constraint in (9) becomes

for

(12)
where . The size of matrix

in (11b) in this case is reduced to . In a
typical FRM filter design problem, the “do-not-care” region is
very small, hence the grid points in set need to be distributed
over almost the entire base bandand is likely in the range
of 5 10 to 10 . Thus, for an FRM filter of moderate order, the
number of constraints can be in the range of 1.510 to 3
10 (in a variety of FRM filter designs that we have conducted,
it was found that as long as is in the above range, changing
from one value to another does not lead to significant changes in
the performance of the FRM filter). Fortunately, a robust SDP
solver (such as those available in the MATLAB LMI Control
Toolbox [14]) today can easily handle a SDP problem with the
size of in the range of several thousand on a Pentium PC
without numerical difficulties.

IV. OPTIMIZATION OF FRM FILTERS: BASIC AND

MULTISTAGE STRUCTURES

Throughout the section, all subfilters are assumed to have
linear-phase responses, and the lengths of the masking filters
at any given stage are either both even or both odd.

A. Basic FRM Filters

1) Frequency Response and Its Gradient:The reader is re-
ferred to the structure in Fig. 1 and (1). Without loss of gener-
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ality, the FRM filter can be treated as a zero-phase FIR filter,
and the frequency response of the FRM filter is then given by

(13)
where

if odd

if even

if odd

if even

if odd

if even

if odd

if even

if odd

if even

if odd

if even

and the design variables are put together as parameter vector

The group delay of the FRM filter is given by

(14)

where , and the gradient of
with respect to is given by

(15)

where .
2) Desired Frequency Response and Weighting Func-

tion: For the sake of presentation clarity, we consider the case
of designing a low-pass FRM filter with up-sampling factor

, normalized passband edge and stopband edge . The
desired in this case becomes

for

for
(16)

and a staircase weighting function

for

for

elsewhere

(17)

is chosen, where is a positive scalar to weigh the stopband
relative to the passband.

3) Initial Design: Given parameters , , , , ,
and , a reasonable initial design can be obtained by de-
signing low-pass , , and as discussed in
Section II-A. It is important to stress that although (as will be
demonstrated by simulations shortly) the optimized does
not at all look like a low-pass filter, the initial design prepared
here worked flawlessly in a variety of FRM designs we have
attempted.

4) Placement of Grid Points and Bound: Our design
practice has indicated that relatively denser grid points should be
placed in the regions near the band edges in both passband and
stopband so as to avoid using unnecessarily large number of total
grid points. We recommend that about 25% of the grid points be
placed in the 10% of that band nearest to the band edge.

As expected, the value of boundin constraint (8c) is taken
to be proportional to the dimension of vector, namely,

where denotes the dimension of and is a constant
factor. It was found in our simulations that the norm constraint
(8c) worked effectively when the value ofwas in the range of
[0.005, 0.05].

5) Design Examples:
Example 1: The design is a linear-phase low-pass FRM

filer with the same design parameters as the first example in
[1], i.e., , , , , , and

. The weight was set to , bound in (8c) was
set to ( in this design), and the total number
of grids was . In this case the optimization algorithm
in Section III handles 62 variables with 1862 constraints. With
ten iterations, the algorithm converges to an FRM filter with
the amplitude response of its subfilters , and

shown in Fig. 2(a) and (b), respectively, and the ampli-
tude response of the FRM filter and its passband ripples shown
in Fig. 2(c) and (d), respectively. The maximum passband ripple
was found to be 0.0674 dB and the minimum stopband attenu-
ation was 42.25 dB. By comparison, the passband ripple and
stopband attenuation of the design in [1] were 0.0896 dB and
40.96 dB, respectively.

As can be seen from Fig. 2, the masking filters and
resulted from the joint optimization remain low pass

with very similar passband widths, but the optimized prototype
filter is not at all a low-pass filter. Note that
has a sharp drop down precisely at the passband edge [normal-
ized to 0.3 in Fig. 2(a)].

Example 2: This is a linear-phase FRM filer with the same
design parameters as the example discussed in [9], i.e.,

, , , , , and
. The scalar weight was set to and bound
with . A total number of 1000 grid points was

used, hence the SDP-based optimization method handles in this
case 130 design variables and 2130 constraints. It took the pro-
posed algorithm 15 iterations to converge to an FRM filter with
the amplitude responses of its subfilters and the overall filter
shown in Fig. 3. The maximum passband deviation was found to
be 0.0855 dB and the minimum stopband attenuation achieved
was 60.93 dB. By comparison, the maximum passband ripple
and minimum stopband attenuation achieved by the design in
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(a) (b)

(c) (d)

Fig. 2. Amplitude responses of (a) prototype filterH (z ); (b) masking filtersH (z), andH (z); (c) FRM filter; and (d) passband ripples of the FRM filter,
all in decibels.

[9] were 0.0864 dB and 60 dB ,
respectively.

B. Multistage FRM Filters

The algorithm in Section III also applies to multistage FRM
filters. For the sake of notation simplicity, in what follows we
focus our attention on the two-stage case and we refer the reader
to the filter structure in Fig. 1(b). However, as we proceed it
should become apparent as how a similar treatment can be used
for the design of FRM filters with more than two stages.

1) Frequency Response and Its Gradient:Since the subfil-
ters involved have linear phase responses, they will be treated as
zero-phase filters and the frequency response of the two-stage
FRM filter is given by

(18a)

where

(18b)

The vectors , , (for ) in (18) are the coefficient
vectors for filters , , , respectively, and
are defined in a way similar to vectors, , and in (13), re-
spectively. The cosine vectors for the first-stage masking filters,
namely and , are defined in the same way as
and in (13); and the cosine vectors for the second-stage
subfilters, i.e., , , and are defined in a way

similar to , , and in (13) except that each is
replaced by . The parameter vector in (18) is defined by

(19)

The group delay of the FRM filter is given by

(20)

where is the length of and ,
for with and being the lengths

of the masking filters and , respectively. Using
(18), we compute the gradient of with respect to as

(21a)

where

(21b)

(21c)
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(a) (b)

(c) (d)

Fig. 3. Amplitude responses of (a) prototype filterH (z ); (b) masking filtersH (z), andH (z); (c) FRM filter; and (d) passband ripples of the FRM
filter, all in decibels.

and is defined in (18b).
2) Initial Design: Again, we consider a low-pass filter de-

sign. Given parameters , and
, an initial design for a two-stage FRM filter can be readily

obtained in a two-stage manner as follows.

i) Use parameters , and , where
is an arbitrary positive integer for the reason that

will become apparent shortly, to obtain an initial design
of , , and by the method in
Section II-A. In doing so, we also obtain the values of
and as the passband and stopband edges for .

ii) Now, denote and and use parameters
, and to obtain an initial design

of , , and by the same method
(in Section II-A). The coefficients of , ,

, , and are now used to form the
initial parameter vector as in (19). As we can see, filter

was not involved in , but just used as an en-
tity to which the values of and become meaningful
parameters, and this is why parametercan be chosen
arbitrarily.

As can be expected in an-stage FRM filter design, an initial
design can be generated by repeatedly applying the method in
Section II-A times and extract the coefficients of the subfilters
obtained to form vector .

3) Design Example:For illustration purposes, we applied
the optimization technique in Section III to design a two-stage
FRM filter with , , , ,

, , , and . With ,
, and (with ), it took the pro-

posed algorithm 18 iterations to converge to an FRM filter.
The amplitude response of various subfilters are shown in
Fig. 4. The maximum deviation in the passband was 0.032 dB
and the minimum stopband attenuation was 48.77 dB. From
Fig. 4(a) and (b), we see that the prototype as well
as the masking filters and do not act like
low-pass filters and it seems that they can be obtained only
through a joint optimization of all subfilters. From Fig. 4(c)
and (d), we observe that the masking filters and

remain low pass in nature but the “prototype” filter
synthesized by the second stage of FRM filtering

[see Fig. 1(b)] is not. Note the sharp drop-down in
precisely at the passband edge (normalized to 0.3 in the
figure). Finally, we remark that although the design resulted
in a slightly more economical FRM filter compared to the one
in Example 1, the two-stage filter offers better performance
in both passband and stopband as is evident from Fig. 4(e)
and (f). Nevertheless, the performance gain is achieved at the
cost of an increased group delay compared to the
group delay for the filter in Example 1.
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(a) (b)

(c) (d)

(e) (f)

Fig. 4. Amplitude responses of (a) prototype filterH (z ); (b) masking filtersH (z ), andH (z ); (c) “prototype”H (z ); (d) masking filters
H (z) andH (z); (e) FRM filter; and (f) passband ripples of the FRM filter, all in decibels.

V. OPTIMIZATION OF FRM FILTERS WITH

REDUCED GROUPDELAY

As can be seen from (14) and (20), the group delay of an FRM
filter is dominantly contributed by the prototype filter, and it is
even more so as the number of stages increases. For this reason,
throughout the section, it is assumed that the prototype filter is
the only filter with anonlinearphase response in the entire FRM
filter structure regardless of the number of stages the FRM filter
has. The treatment adopted here, however, is such that it can
be readily extended to an FRM filter where other subfilters are
allowed to have nonlinear phase responses. Such an extension
is made possible because of thejoint optimization methodology
we adopt in that all subfilters participate in achieving the design
goal. Fig. 5. Basic FRM filter with reduced group delaydM + d .
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Fig. 6. Two-stage FRM filter with reduced group delay.

A. Basic FRM Filters

1) Frequency Response and Its Gradient:A basic FRM
filter with passband group delay is illustrated
in Fig. 5, where the prototype filter has the frequency response

(22)

Assuming the group delays of masking filters and
have been equalized to ,

, the frequency response of the FRM filter can be
expressed as

(23a)

with

(23b)

(23c)

(23d)

(23e)

(23f)

and , and defined in (13). Note that because
of in (23c), in (23b) is a complex-valued func-
tion, where parameter vectoris defined as

Now if the value of is strictly less than , then the first
factor in (23a) with represents a reduced group
delay provided that the second factor in (23a), , best
approximates the zero-phase desired frequency response
in (16).

Two remarks before we proceed to compute the gradient
of : First, obviously the algorithm in Section III
applies to the current design problem but the number of
constraints increases to since is now com-
plex-valued; second, in an effort of minimizing the maximum

error , from (23b) it is quite clear that
all subfilters will jointly participate in that effort.

The gradient of is also complex-valued and is given
by where

(24a)

(24b)

(24c)

2) Initial Design: The initial design of the masking filters
and remains the same as in Section IV-A. As

well, one can use the formulas given in Section II-A to predict
the passband and stopband edgesand . However, at this point
one needs a low-pass filter with , and a
reduced passband group delay(strictly less than .
A reasonably good initial is the weighted least-squares
solution that minimizes

(25)

where

for
for
elsewhere

and

for
for and elsewhere.

It can be shown that the objective function in (25) is a strictly
convex quadratic function with a Toeplitz type Hessian matrix.
Consequently, the least-square solution can be computed effi-
ciently by solving a Toeplitz system of linear equations [17].

B. Multistage FRM Filters

1) Frequency Response and Its Gradient:The design
method in this case will be illustrated using a two-stage
low-pass FRM filter with reduced group delay shown in Fig. 6,
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where only prototype filter has a nonlinear phase
response and its frequency response is given by

(26)

The frequency response of the two-stage FRM filter can be ex-
pressed as

(27a)

where

(27b)

(27c)

(27d)

(27e)

(27f)

(27g)

(27h)

vectors , , , and for are the same as
in (18), and vector is defined by

With a value of strictly less than , (27a) rep-
resents a frequency response with reduced group delay
provided that in (27c) approximates the zero-phase
desired frequency response in (16). To proceed, we com-
pute the gradient of as
where

(28a)

(28b)

(28c)

and , are defined by (21b) and (21c).
2) Initial Design: Initial designs of the two pairs of masking

filters , and , can be ob-
tained in the same way as described in Section IV-B-2. During
that process, the passband and stopband edges of prototype filter

can also be identified. One can then perform a least-
square design of with passband group delayby min-
imizing the convex quadratic objective function in (25), see the
discussion in Section V-A-2.

3) Design Example:To illustrate the design method, we
apply the optimization method in Section III to design a two-
stage FRM filter with , , ,

, , , , , and
. The use of represents a group delay reduction of

, a 24% reduction in group delay
from its linear-phase counterpart. With (with

), and , it took the proposed algorithm 24 it-
erations to converge to a two-stage FRM filter. The amplitude
responses of the subfilters as well as the overall FRM filter, and
its passband ripples in magnitude and group delay are depicted
in Fig. 7. The maximum passband amplitude ripple was 0.04 dB
and the minimum stopband attenuation was 46.01 dB. The rel-
ative deviation in passband delay was 0.0132. Compared with
its linear-phase counterpart which was the design discussed in
Section IV-B, slight performance degradation in terms of pass-
band ripple and stopband attenuation were observed, a cost for
having a considerable reduction in group delay.

VI. CONCLUDING REMARKS

In this paper, we have attempted to lay out a methodology for
optimal design of various FRM filters. To conclude, we high-
light several features of the design method as follows: a) it is
an optimization method that treats the coefficients of all subfil-
ters as a single set of design variables regardless of the number
of stages the FRM filter has. As a result, the joint optimization
of all participating subfilters leads to improved design perfor-
mance; b) it is a method based on SDP which is a special class
of convex programming equipped with efficient interior-point
solvers for large scale problems, and as such the proposed de-
sign algorithms are able to handle designs of high order, mul-
tistage FRM filters with linear or nonlinear phase responses;
c) it is a method in which various types of FRM filters can
be designed in a unified manner. Consequently, the coding of
the design algorithms is substantially simplified, with a set of
core codes in common plus small size routines to fit the set of
core codes into a specific class of FRM filters; and d) it is a
method that works well as long as it starts with a reasonable ini-
tial point. Finally, we stress that the class of FRM filters with
reduced group delay offers the designer an additional option for
the tradeoff between realization complexity, performance, and
system delay.
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(a) (b)

(c) (d)

(e) (f)

(g)

Fig. 7. Amplitude responses of: (a) prototype filterH (z ); (b) masking filtersH (z ) andH (z ); (c) prototype filterH (z ); (d) masking filters
H (z) andH (z); (e) FRM filter; (f) passband amplitude ripples of the FRM filter; and (g) passband group delay of FRM filter.
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