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Optimal Design of Frequency-Response-Masking
Filters Using Semidefinite Programming

Wu-Sheng Ly Fellow, IEEE,and Takao Hinamotd-ellow, IEEE

Abstract—Since Lim’s 1986 paper on the frequency-response- then refines the design using an algorithm in [10]. Although the
masking (FRM) technique for the design of finite-impulse response gptimal design of multistage FRM filters was not addressed in
digital filters with very small transition widths, the analysis and [9], the method in [9] appears to be, at least in principle, appli-

design of FRM filters has been a subject of study. In this paper, ; -
a new optimization technique for the design of various FRM fil- cable to such a design. However, as the number of filter stages

ters is proposed. Central to the new design method is a sequence ofncreases, a great many of the subfilters need to be optimized
linear updates for the design variables, with each update carried alternately in the first step of the method, making the design
out by semidefinite programming. Algorithmic details for the de-  process increasingly involved. In this paper, we present a rather
sign of basic and multistage FRM filters are presented to show that jitferent optimization technique in which the set of filter coef-

the proposed method offers a unified design framework for a va- ficients ofall subfilt is treated inale desi t d
riety of FRM filters. Design simulations are included to illustrate ICIENLS Ofall SUDIILEIS IS LIeated as a Singie design vector an

the proposed algorithms and to evaluate the design performance in @n optimal basic FRM filter is designed through a sequence of

comparison with that of several existing methods. linear updates for the design variables, with each update carried
Index Terms—Frequency-response-masking filters, optimal de- out in a semidefinite prqgrammlng (SDP) f.rameyvork. As will
sign, semidefinite programming. be demonstrated by design examples, starting with a reasonable

initial design, the proposed algorithm converges to an optimized
design with performance considerably better than that of [1] and
comparable with that of [9]. An advantage of the proposed de-
INCE the publication of [1], the frequency-responsesign methodology is that with straightforward modifications it
asking (FRM) technique for the design of finite-impulsean be readily extended to multistage FRM filters. We shall elab-
response (FIR) digital filters with very narrow transition bandgrate on this point in Sections IV and V with algorithmic details
has been a subject of study [2]-[9]. As a result, in many casésy, the class of two-stage FRM filters and simulation results.
it has become the method of choice primarily because of theThe second issue to be addressed in this paper is the op-
considerably reduced realization complexity it offers comparéiehal design of FRM filters withreduced passband group delay
with other available options [5], [8]. Linear-phase FIR filters have constant group delay in the en-
Asillustrated in Fig. 1(a), hasicFRMfilter involves a linear- tire frequency band, but for a filter with very narrow transition
phase prototype filteH, () up-sampled by//, a pair of linear- width, the group delay can be exceedingly large, a property not
phase masking filtersH .. (), Hn.(z)}, and adelay line that, desirable in many applications. Note that although linear-phase
together with the prototype filter, helps form a linear-phase cortRM filters have been successful in reducing realization com-
plementary paif H,, H.} [1]. For additional reduction of re- plexity, its group delay is even larger than that of the direct-form
alization complexity, the prototype filter itself may be realize®IR filter with the same approximation accuracy. For a linear-
with a basic FRM filter, yielding anultistageFRM filter [1], phase FRM filter with a large up-sampling factbf, its large
[5], see Fig. 1(b) for a two-stage FRM filter structure. Given agroup delay is dominantly contributed by the prototype filter.
up-sampling factor, lengths of the subfilters involved, and pasBherefore, if the prototype filter has a nonlinear phase response
band/stopband edges, the design of a basic or multistage FRi#th a reduced passband group delay, gapnd if the delay
filter is usually carried out bgeparatelydesigning the subfil- line [the lower-left block in Fig. 1(a)] is accordingly modified
ters [1], [5], [6]. As such, the FRM filter obtained is only subopto 2 =4, then the filter is expected to have its passband group
timal. In [9], a two-step optimization technique for the optimaglelay reduced by/[0.5(N — 1) — d] whereN is the length of
design of basic FRM filters is proposed. In the first step of thfe prototype filter. Hence, the reduction in group delay can be
method, an initial FRM filter is designed by alternately optisignificant especially whei/ is large. In this paper, we pursue
mizing the prototype filter and masking filters. The second stéhis idea and show that, by a joint optimization of the entire set
of subfilters, the prototype as well as masking filters all con-
tribute to minimizing the fluctuation in the reduced passband
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Fig. 1. (a) Basic FRM filter structure and (b) Two-stage FRM filter.

examples will be presented for each class of FRM filters fdf all subfilters have linear phase responses with and N,
performance demonstration and comparison. either both even or both odd af¥ — 1) M even, then the FRM
In the rest of the paper, boldfaced characters dendiier has a linear phase response with the group delay

matrices and vectorsl, represents the identity matrix of D = 0.5(N = 1)M + max{0.5(N, — 1), 0.5(N. — 1)}

dimensionr, diag{ay, ..., a,} denotes a diagonal matrix,
diag{A,, ..., A,} denotes a block-diagonal matrix withprovided that a delay line of appropriate length is cascaded
matricesA,, ..., A, as its diagonal blocksy, andw, de- with either H,,,(z) or Hn.(2). Let us consider the design

note normalized passband and stopband edges, respectilya low-pass filter as an example. Given sampling factor

and 2 denotes the normalized base frequency band, i.84, normalized passband edgg and stopband edge,, a

Q={w: -7 <w< 7w} reasonablanitial design of subfiltersH,(z), H,..(z), and
H,..(z) can be obtained by using a standard method [11] to
design three low-pass filters whose passband and stopband

Il. PRELIMINARIES edges are determined as follows [1].
A. Brief Overview of FRM Filters 1) F_orHab(z), the passband edgeand stopband edgkare
given by
As can be seen from Fig. 1(a), the prototype filter and its com-
plement are upsampled By, yielding sparse filter coefficients 0 =wpM — 2mm (2a)
and a reduced transition width for each. They are then connected ¢ =w M — 2mm (2b)
in cascade to a pair of frequency-response masking filters in ¢
order to approximate a desired sharp frequency response. m = |w, M /27| (2¢)

The transfer functions of the subfilters in a basic FRM filter

are denoted by where|z | denotes the largest integer less thawor by

0 =2mm — w,m (3a)

N-1
H,(z) = Z hpz ™k ¢ =2mT — wpT (3b)
1@_01 m = [w,M /27| (3¢c)
Hpo(z) = Z h,(f),z"c where[z] denotes the smallest integer larger thawnle-
k=0 pending on which set of¢, ¢} satisfies) < 6 < ¢ < .
N._1 2) If (2) is used to determine the values bfand ¢, then

Hpe(2) = Z hi,“)z_k. (1) the passband and stopband edged gf, (z) are.given by
o (2mm+0)/M and[2(m+ 1)7 — $]/ M, respectively, and
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the passband and stopband edged of (z) are givenby  Letr be an upper bound d¥?(w)|H (w, ) — Ha(w)|? on

(2mm — 0)/M and(2mn + ¢)/M, respectively. (2. As the first step of the optimization we convert the problem
3) If (3) is used to determine the values bfand ¢, then in (5) into a constrained minimization problem

the passband and stopband edged gf, (=) are given by L

[2(m —1)7 + ¢] /M and(2m= — ) /M, respectively,and MNIMIz€ 7 (6a)

the passband and stopband edgel gf(z) are given by sypject to: W2(w)|H (w, =) — Ha(w)|> < n, forw € Q.

(2mm — ¢)/M and(2mz + 6) /M, respectively. (6b)

B. SDP Suppose we have a reasonable initial painto start the design,

: . o ._and we are now in thith iteration. For a nonlinear and smooth
SDP is a relatively new optimization methodology Wh'C}H(w ) in a vicinity of z;, we can write

is primarily concerned with minimizing a linear or convex
quadratic objective function subject to linear-matrix inequality H(w, 1, + 6) = H(w, z) + g1 (w)8 + o(]|8]])
(LMI) type constraints that depend on the design variables

affinely [12]. The class of SDP problems most relevant to tHénereg, (w) is the gradient of (w, ) with respect tar and
design problems of interest is expressed as evaluated aic;,. Hence, provided thaté|| is small, withz =
z;, + 6 we have

minimize ¢’z (4a) W2(w)|H(w, ) — Hy(w)|?
SUbjeCt to: F(IL‘) =0 (4b) ~ W2(w) |g£(w)6+ [H(w, zk) _ Hd(w)]|2
F(z) = Fo+ Y aiF (40) = [05:(@)8 + ern(@)]” + [gh(@)8 + (@) (D)
= whereg,..(w) andg,,(w) are the real and imaginary parts of

wherez = [z1 -+ )T, Fi € R"™™fori =0, 1,...,nare W(w)g,(w), respectively, and
known symmetric matrices anfi(z) > 0 denotes thaf'(x) enn(@) = W () [Hy(w, 71) — Hya(w)]
is positive semidefinite a&. Note that the constraint matrix " e "
F(x) in (4) isaffinewith respect taz. SDP includes both linear eir(w) =W(w)[Hi(w, x1) — Hiqg(w)]

and quadratic programming as its special cases and representﬁ, I I I dH bei h
a subclass of convex programming that covers many optimii'é'l'—tI a(.“” z), Hi(w, zk)d,f ra(@), ag ia(w) being tle
tion problems encountered in various engineering disciplind§2 and Imaginary parts (w, zx) andHg(w), respectively.
Many interior-point methods which have proven efficient fol,:rom (6) and (7), it follows that an approximate solution of (6)

linear programming have recently been extended to SDP [1 the kth iteration can be obtained by solving the following

[13] and efficient software implementation of various SDP aIch— oblem:
rithms are available. In particular we mention the LMI Control minimize 1 (8a)
Toolbox [14], SeDuMi [15], and SDPT3 Toolbox [16], all of ) )
which work with MATLAB. subjectto: (g/6-+eqr) +(gib+ew) <n,  forweQ
(8b)
lIl. OPTIMIZATION METHODOLOGY 6] < b (8c)

In this section, we describe the core of the optimization tecihereb is a prescribed bound to control the magnitudé,aind
nique based on which the design algorithms for various FRI@r notation S|mpllq|ty, the dependencegy,, g;, err, ande;
filters will be developed in the subsequent sections. As suéilw has been omitted. _ _
our description will be given in a setting more general than eachBY Using linear algebraic arguments, it can be readily shown
individual algorithm in Sections IV and V. that the constraint in (8b) holds if and only if

Let H;(w) be a desired real-valued or complex-valued func- n gL b+en ghé+ein
tion of frequency variable), and H(w, z) be a real-valued or -

=| g7, -
complex-valued function af, which depends on a real-valued P11, 8, w)=| grabten ! 0 =0
parameter vectat € R™*!. We seek to find a vectar* that ghb6+ei 0 1 3%3
solves the weighted minimax optimization problem forwe Q (9)

and that the constraint in (8c) holds if and only if
b &

v(8) = [6 I
whereW (w) > 0 is a weighting function. With different inter- "
pretations forH (w, ) and H,(w), the problem in (5) covers If we treat the upper boung as an additional design variable
many minimax design problems for digital filters, includingand define an augmented vector&as= [ 6T]T, then the
those to be addressed in Sections IV and V. objective function in (8a) can be expressethas: ¢’ u with

minixmize{maxei?;izew(w)|H(w, x) — H,l(w)|} (5)
=0 (20)
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c=1[1 0 --- 0]%, and the problem in (8) can be formulatecbf FRM filter design, with an initial point generated by the
as method in [1], the number of updates required is typically in
the range of 10 to 30.
minimize c¢"u (11a) It should also be pointed out that although (11) is merely

(11b) an approximationof (6), as the iteration continues and the
local minimizer gets closer, the increment vecéoobtained

where by solving (11) gradually shrinks in magnitude and within a
limited number of iterations it eventually becomes such a value
G.(u) =diag{®(n, §), T(8)} that the updated solution point is practically the same as the

R ) true minimizer.

(1, 8) Zdiag{@k(m 8, wi), ..., Pr(n, 6, wK)} In summary, we have described a method for minimax

optimization of an objective function that is frequently en-

andQq = {w1, ..., wx} C Qis a set of dense grid pointscountered in filter design problems and is allowed to be
in the frequency bands of interest. Note that ma@ix(u) in  highly nonlinear. The method proposed here accomplishes the
(11b) is affine with respect to vectarand the problem in (11) optimization through a sequence of linear updates where each

subjectto: Gi(u) =0

is, therefore, an SDP problem. update is solvable in an SDP setting. The usefulness of this
Having solved the problem in (11) for a minimizer methodology will be demonstrated in the next two sections
N where various FRM filter design problems are addressed.
ul = Vf} We conclude this section with a remark on the scale of the
[ SDP problem in (11). In the general case, as addressed above

where bothH (w, ) and H,(w) are complex-valued functions,
the dimension of the LMI constraint in (11b)d& +n-+1 where
n is the number of design variables alds the total number of
grid pointsinQ2,;. If, however, bothH (w, ) andH;(w) are real-
The iteration continues untjlé}|| becomes insignificant com- valued functions (which is indeed the case encountered in the
pared to a prescribed tolerance. design oflinear-phaseFRM filters), then the gradienj(w, =)

The original problem in (5) and, equivalently, the probleri$ also real-valued and the matex, (1, 8, w) in (9) becomes a
in (6) are highly nonlinear and nonconvex optimization prot X 2 matrix and the constraint in (9) becomes
lems. As such, the above method, if it converges, only provides

vectord;, is used to update;, as

Tp41 =Tk + 6;;

Ui gro+ex

a local minimizer for the problem. Among other things, the perﬁ,k(n‘ 8, w)= ~0. forweQ
formance of such a local solution depends largely on how the™ " gib+ep 1 oxs
initial point is chosen. Fortunately, for FRM filter designs, a (12)

technique that generates a reasonably good initial point is avaiheree, = W(w)[H (w, xx) — Ha(w)]. The size of matrix

able, see [1] and Section II-A. Concerning the convergence@f:(») in (11b) in this case is reduced 8K +n + 1. In a

the method, although a rigorous proof is presently not availabfgpical FRM filter design problem, the “do-not-care” region is

in our simulations when the method was applied to designvary small, hence the grid points in $&f need to be distributed

variety of FRM filters, we had not detected a single failure g¥ver almost the entire base bafidand K is likely in the range

convergence. One might attribute the success of the propo§é8 x 10% to 10°. Thus, for an FRM filter of moderate order, the

method to three factors: 1) the global convergence of each sfimber of constraints can be in the range of £.50° to 3 x

problem in (11) when an interior-point convex programming ak0® (in a variety of FRM filter designs that we have conducted,

gorithm is applied; 2) the use of constraint (8c) that validates tiavas found that as long ds is in the above range, changihg

key approximation in (7); and 3) the use of a good initial poinffom one value to another does not lead to significant changes in
Another related issue is the convergence rate or, in a mdhe performance of the FRM filter). Fortunately, a robust SDP

general term, the computational efficiency. From the abo®@lver (such as those available in the MATLAB LMI Control

description of the method, it is quite clear that the computd0olbox [14]) today can easily handle a SDP problem with the

tional efficiency is determined by how efficient each individua$ize ofG (u) in the range of several thousand on a Pentium PC

SDP problem in (11) is solved and how many linear updat#gthout numerical difficulties.

are needed to reach a minimizer of (6). For the former, most

of the algorithms that are presently available for solving the IV. OPTIMIZATION OF FRM FILTERS: BASIC AND

SDP problem (11) are so-called polynomial-time algorithms, MULTISTAGE STRUCTURES

meaning that the amount of computations required is bounde . )
by a polynomial of the data size [13]. Consequently, tqedl'hroughout the section, all subfilters are assumed to have

computational complexity for problem (11) is affordable fOlJnear-pr_lase responses, and the lengths of the masking filters
today’s computing devices even for designing high-order FR@{ any given stage are either both even or both odd.

filters, and it will increase only moderately when the size of . .

the problem increases. For the latter, with a given botind”- Basic FRM Filters

in constraint (8c), the number of updates needed depends oft) Frequency Response and Its Gradiefite reader is re-
how far the initial point is from the minimizer. In the contexfierred to the structure in Fig. 1 and (1). Without loss of gener-
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ality, the FRM filter can be treated as a zero-phase FIR filtdg chosen, where is a positive scalar to weigh the stopband
and the frequency response of the FRM filter is then given byrelative to the passbhand.
3) Initial Design: Given parameters{, N, N,, N., wp,

H(w, z) = [a"¢(w)] [ag ca(w) — @l c.(w)] + al c.(w) and w,, a reasonable initial design can be obtained by de-
(13)  signing low-passi (z), Huma(z), and H,,.(z) as discussed in
where Section II-A. It is |mportant to stress that although (as will be

[h(N 12 0. 0h(N+1)/2 -+ 0.5hn]T, if N odd demonstrated py simulations s_hortly) the_qptimii_é(jz) does
not at all look like a low-pass filter, the initial design prepared
here worked flawlessly in a variety of FRM designs we have

Slhnya - - hya)?t, if V even

[1 Mw - N-1Mw/21T. if Nodd attempted.
o cosl( JMe /27, 4) Placement of Grid Points and Bounid Our design

{ [cos(Mw/2) -+ cos[(N—1)Mw/2]]", if N even practice hasindicated that relatively denser grid points should be
(a) 5@ (a) . placed in the regions near the band edges in both passband and
{ h —1yy2 09NN Lay 0 - O'ShNa—l]T . if Noodd  stopband so as to avoid using unnecessarily large number of total

T grid points. We recommend that about 25% of the grid points be
0.5 o h h§3>_1} ) if N, even placedinthe 10% of that band nearest to the band edge.
_ As expected, the value of bounhdn constraint (8c) is taken
[l cosw .-+ cos[(N,—1)w/2], if N, odd to be proportional to the dimension of vecter namely,b =
[cos(w/2) --- cos[(Ng—1)w/2]]T, if N, even yn wheren denotes the dimension af and v is a constant
. factor. It was found in our simulations that the norm constraint
(c) (e) i 8c) worked effectively when the value 9fwas in the range of
(A L2 0B sy 0 5th_1} . if N. odd Eo.o)os jys y 9 9
5) Design Examples:
Example 1: The design is a linear-phase low-pass FRM
[l cosw -+ cos[(N.—1)w/2]T, if N, odd fiIer'with the same design parameters as the first example in
[1], i.e., N =45 N, =41, N, = 33, M = 9, w, = 0.67, and
= 0.617. The weight was set t@ = 1, boundb in (8c) was
and the design variables are put together as parameter vectoﬁet tob = 0.005n (n = 61 in this design), and the total number
of grids wasK = 900. In this case the optimization algorithm
a ] in Section Il handles 62 variables with 1862 constraints. With

(e) T .
0.5 o h hN 71} , if N, even

[cos(w/2) --- cos[(N.—1)w/2]]T, if N.even

= |a, ten iterations, the algorithm converges to an FRM filter with
a. the amplitude response of its subfiltdis (), H,..(z), and
H,,.(z) shown in Fig. 2(a) and (b), respectively, and the ampli-
tude response of the FRM filter and its passband ripples shown
(N —1)M in Fig. 2(c) and (d), respectively. The maximum passband ripple
9 +d (14)  was found to be 0.0674 dB and the minimum stopband attenu-
ation was 42.25 dB. By comparison, the passband ripple and
stopband attenuation of the design in [1] were 0.0896 dB and

40.96 dB, respectively.

The group delay of the FRM filter is given by
D=

whered = max((N, — 1)/2, (N. — 1)/2), and the gradient of
H(w, z) with respect tar is given by

y(w)e(w) As can be seen from Fig. 2, the masking filtéfs,,(z) and
T H,,.(z) resulted from the joint optimization remain low pass
9w, z) = | la"c(w)]eq(w) 15)  with very similar passband widths, but the optimized prototype
[1—a’¢(w)]e.(w) filter H,(2*) is not at all a low-pass filter. Note thaf, (2/)

has a sharp drop down precisely at the passband edge [normal-
|zed to 0.3 in Fig. 2(a)].
Example 2: Thisis alinear-phase FRM filer with the same
gn parameters as the example discussed in [9]N.es

o =956, No = 78, M = 21, w, = 04r, andw, =
0.4027r. The scalar weight was set to = 12 and bound) =
0.025n with n = 129. A total number of 1000 grid points was

wherey(w) = alc,(w) — alc.(w).

2) Desired Frequency Response and Weighting Func
tion: For the sake of presentation clarity, we consider the ca, Esi
of designing a low-pass FRM filter with up-sampling facto!'123
M, normalized passband edgg and stopband edge,. The
desiredH,(w) in this case becomes

1, for0<w<uw, used, hence the SDP-based optimization method handles in this
Hy(w) = { 0. forw. <w<n (16)  case 130 design variables and 2130 constraints. It took the pro-
’ == posed algorithm 15 iterations to converge to an FRM filter with
and a staircase weighting function the amplitude responses of its subfilters and the overall filter

shown in Fig. 3. The maximum passband deviation was found to
be 0.0855 dB and the minimum stopband attenuation achieved

Ww)={ w, forw,<w<m (17)  was 60.93 dB. By comparison, the maximum passband ripple
0, elsewhere and minimum stopband attenuation achieved by the design in

1, for0<w<w,
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Fig. 2. Amplitude responses of (a) prototype filféj, (2°); (b) masking filtersH ... (z), andH,,..(z); (c) FRM filter; and (d) passband ripples of the FRM filter,
all in decibels.

[9] were 0.0864 dB(6, = 0.01) and 60 dB(6, = 0.001), similartoc(w), ¢,(w), ande.(w) in (13) except that each is

respectively. replaced by w. The parameter vectarin (18) is defined by
B. Multistage FRM Filters a2
The algorithm in Section Ill also applies to multistage FRM @2a
filters. For the sake of notation simplicity, in what follows we T=|ax|. (19)
focus our attention on the two-stage case and we refer the reader ai,
to the filter structure in Fig. 1(b). However, as we proceed it a
should become apparent as how a similar treatment can be used te
for the design of FRM filters with more than two stages. The group delay of the FRM filter is given by
1) Frequency Response and Its Gradiesince the subfil- (N — 1) M2
ters involved have linear phase responses, they will be treated as D® = 12 + doM + dy (20)
zero-phase filters and the frequency response of the two-stage
FRM filter is given by whereNs; is the length ofHC(LQ)(z) andd; = max((N,; —1)/2,
W - T’ - (Nei — 1)/2) fori = 1, 2 with N,; and N,; being the lengths
H(w, 2) = Hy" (w) [a1,610(w) — 81 c16(w)] + a1 c10(w) of the masking filtersZ %) () and H{:)(z), respectively. Using
(18a) (18), we compute the gradient &f(w, ) with respect tar as
whee . . . VWP @ew) ]
HP(w) = [ag e2(w)] [a34€24(w) — a3 €20(w)] + a2cczzizz)-) [T e2(w)] ¥V ()20 (w)
9w, z) = |1 adde@]yVWew) | (1a)
The vectorsi, a;q, a;. (fori = 1, 2) in (18) are the coefficient Hél)(w)q (w)
vectors for fiIterer(Lz)(z), H,Sf,)a(z), H,Sf,)p(z), respectively, and @
are defined in a way similar to vectogsa,, anda.. in (13), re- I [1 —H, (W)} cie(w)
spectively. The cosine vectors for the first-stage masking filtekghere
namelye;, (w) ande; .(w), are defined in the same wayagw) yV(w) =a],c1a(w) — af c10(w) (21b)

ande.(w) in (13); and the cosine vectors for the second-stage
subfilters, i.e.e2(w), €2q(w), andey.(w) are defined in a way Yy (w) =al erq(w) — al co(w) (21c)
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Fig. 3. Amplitude responses of (a) prototype fil#t, (z2!); (b) masking filtersH.,,..(z), andH .. (z); (c) FRM filter; and (d) passband ripples of the FRM
filter, all in decibels.

andHle)(w) is defined in (18b). 3) Design Example:For illustration purposes, we applied
2) Initial Design: Again, we consider a low-pass filter de-the optimization technique in Section Il to design a two-stage
sign. Given parametet®!, No, No2, Ne2, Nai, Nei, wp, and  FRM filter with Ny = 27, Nyo = 13, N = 27, Ny = 15,
wq, an initial design for a two-stage FRM filter can be readilw,., = 23, M = 4, w, = 0.6, andw, = 0.61. With w = 1,
obtained in a two-stage manner as follows. K = 700, andb = 0.005n (with n = 68), it took the pro-
i) Use parameters/, Ny, N,1, N.1, w,, andw,, where posed algorithm 18 iterations to converge to an FRM filter.
N, is an arbitrary positive integer for the reason thathe amplitude response of various subfilters are shown in
will become apparent shortly, to obtain an initial desigfrig. 4. The maximum deviation in the passband was 0.032 dB
of Hél)(z), H,(,},)l(z), and H,(,}g(z) by the method in and the minimum stopband attenuation was 48.77 dB. From
Section II-A. In doing so, we also obtain the valuegjof Fig. 4(a) and (b), we see that the protot;aﬁéz)(zw) as well
and¢ as the passband and stopband edgeHﬁé}(z). as the masking filterﬂﬁ?,)l(z“) and H$%2(24) do not act like
i) Now, denotew,, = ¢ andw, = ¢ and use parameterslow-pass filters and it seems that they can be obtained only
M, Ns, Nq2, N2, &p, andw, to obtain an initial design through a joint optimization of all subfilters. From Fig. 4(c)
of Hé”(z), Hﬁf}l(z), andH,Sfc)(z) by the same method and (d), we observe that the masking filtefﬁ%(z) and
(in Section 11-A). The coefficients 0H§2)(z), H,(fg(z), Hr(,%z(z) remain low pass in nature but the “prototype” filter
H,(,?C(z), Hﬁ,}g(z), andH,(,}g(z) are now used to form the Hﬁl)(z‘*) synthesized by the second stage of FRM filtering
initial parameter vectat, as in (19). As we can see, filter[see Fig. 1(b)] is not. Note the sharp drop-downHél)(z4)
Hﬁl)(z) was not involved inzy, but just used as an en-precisely at the passband edge (normalized to 0.3 in the
tity to which the values ot/ and ¢ become meaningful figure). Finally, we remark that although the design resulted
parameters, and this is why parametrcan be chosen in a slightly more economical FRM filter compared to the one
arbitrarily. in Example 1, the two-stage filter offers better performance
As can be expected in an-stage FRM filter design, an initial in both passband and stopband as is evident from Fig. 4(e)
design can be generated by repeatedly applying the methodundl (f). Nevertheless, the performance gain is achieved at the
Section II-Am times and extract the coefficients of the subfiltersost of an increased group del&y? = 271 compared to the
obtained to form vectog. group delayD = 218 for the filter in Example 1.
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Fig. 4. Amplitude responses of (a) prototype filtHi{?) (21¢); (b) masking filtersH (2) (z*), and H(2)(z*); (c) “prototype” H(V (z*); (d) masking filters
H( () andH{1(z); (€) FRM filter; and (f) passband ripples of the FRM filter, all in decibels.
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V. OPTIMIZATION OF FRM HLTERS WITH
REDUCED GRoOUP DELAY

As can be seen from (14) and (20), the group delay of an Fko »— H,(zM)
filter is dominantly contributed by the prototype filter, and it is
even more so as the number of stages increases. For this rez
throughout the section, it is assumed that the prototype filter _
the only filter with anonlinearphase response in the entire FRN
filter structure regardless of the number of stages the FRM filt
has. The treatment adopted here, however, is such that it | N . J N o W)
be readily extended to an FRM filter where other subfilters a _ _

. delay =dM delay =4,
allowed to have nonlinear phase responses. Such an extensiu
is made possible because of thimt optimization methodology

we adopt in that all subfilters participate in achieving the design
goal. Fig. 5. Basic FRM filter with reduced group deldy/ + d; .

—> Hma(z)

H,(2)

Y
N
g
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—»—{ MM }

delay = (dM+d)M delay =4,

Fig. 6. Two-stage FRM filter with reduced group delay.

A. Basic FRM Filters errormax |H(w, ) — Hy(w)|, from (23b) it is quite clear that

1) Frequency Response and Its Gradie#t: basic FRM all subfilterg will jointly participate in that effort. o
filter with passband group dela, = dM + d, is illustrated The gradient ofi (w, z) is also complex-valued and is given

in Fig. 5, where the prototype filter has the frequency respon8¥ 9(«: ) = ¢,(w, ) + jg;(w, z) where
| N1 | y(w)e(w)
Ha(e7M) = 3 hye ™M1, (22) 9., 2) = | [ATe(w)ea(w) (24a)
k=0

1—hT »
Assuming the group delays of masking filtefs,,.(z) and LI elw)lec(w)

H,,.(z) have been equalized td, = max((N, — 1)/2, [ y(w)s(w)
(N. — 1)/2), the frequency response of the FRM filter can be gi(w, ) = [hTs(w)]ca(w) (24b)
expressed as i —[hTs(w)]cc(w)
e—JwaH(w7 x) (233) y(w) = a’fca (w) — azcc(w)' (24c)
with 2) Initial Design: The initial design of the masking filters
A T o7 T H,,.(z) andH,,.(z) remains the same as in Section IV-A. As
H(w, 2)=Ha(w) [aq ca(w) ~ac cc(w)]+ac ce(w) (23b) well, one can use the formulas given in Section II-A to predict
ﬁ]ﬂ(w) =p7 [e(w)+is(w)] (23c) the passband and stopband edgasd¢. However, at this point
r one needs a low-pass filtéf, () with w, = 6, w, = ¢ and a
h=[ho hi -+ hy-i] (23d)  reduced passband group delagstrictly less thaf N — 1)/2).

e(w) =[cos M dw cos M(d—1)w- -- cos M(d—N +1)w]T A rea_lsonably g_o_od_initiaHa(z) is the weighted least-squares
solution that minimizes

(23e) ™ 2
VAR &
o)l A Mo i M £ | / W (w) | Hale™) = Ha(w)| dw (25)
(23f)  where
anda,, a., c,(v), ande.(w) defined in (13). Note that because 1, forwe]0,6)
of H,(w) in (23c),H(w, z) in (23b) is a complex-valued func- W(w) = w, forwe [¢/~ 7]
tion, where parameter vectaris defined as 0, elsewhere
h and
T= 6| ~ite forw € [0, 6)
o N _Jem% forw € |0,
Ha(w) = {07 for w € [¢, 7] and elsewhere.

Now if the value ofd is strictly less thatiN —1) /2, then the first

factor in (23a) withD, = dM + d, represents a reduced grougt ¢an be shown that the objective function in (25) is a strictly

delay provided that the second factor in (23H)w, =), best Cconvex quadratic function with a Toeplitz type Hessian matrix..

approximates the zero-phase desired frequency resphyise  Consequently, the least-square solution can be computed effi-

in (16). ciently by solving a Toeplitz system of linear equations [17].
Two remarks before we proceed to compute the gradient . .

of H(w, z): First, obviously the algorithm in Section Il B- Multistage FRM Filters

applies to the current design problem but the number ofl) Frequency Response and Its Gradiefithe design

constraints increases 3& + n + 1 sinceH (w, ) isnow com- method in this case will be illustrated using a two-stage

plex-valued; second, in an effort of minimizing the maximunow-pass FRM filter with reduced group delay shown in Fig. 6,
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where only prototype filte#{* (z*") has a nonlinear phase YD (w) = [hgq(w)} vy P (w) +aler(w)  (28c)
response and its frequency response is given by
Na—1 andy®(w), y?(w) are defined by (21b) and (21c).
H<2 (eJM w) Z hi eI (26) 2) Initial Design: Initial designs of the two pairs of masking

filters {H1) (2), H(2)} and{H2 (z), H? (%)} can be ob-
The frequency response of the tWO stage FRM filter can be X4 in the same way as described in Section IV-B-2. During

pressed as that process, the passband and stopband edges of prototype filter
e—jD(f’wH(w. ) (27a) H§2)(z) can also be identified. One can then perform a least-
' square design oHéQ)(z) with passband group delayby min-
where imizing the convex quadratic objective function in (25), see the
D® =dM? + dy M + dy (27b) discussion. in Section V-A-?. '
Hw, 7) H(l)( ) [alacla( ) — afcclc(w)] +al e (w) 3) Design Example:To illustrate the design method, we

apply the optimization method in Section Ill to design a two-
~ (27c) stage FRM filter withVy = 27, Nyo = 13, Neo = 27, Ny1 =
HP (W) =HP (W) [ag,e24(w) = a5.¢2¢(w)] + a5ee2c(w) 15, N,y = 23, M = 4,d = 9, w, = 0.6m, andw, =
(27d) 0.617. The use ofl = 9 represents a group delay reduction of
H® (w)=hT[es(w) + jsz(w)] (27e) [0.5(N2 —1) —d] x M? = 64, a 24% reduction in group delay
ho=lho hy - hy,_1]T (279 from its linear-phase coqnterpart. With= 1, b = 0.0.171 (Wlth.
n = 68), and K = 700, it took the proposed algorithm 24 it-
erations to converge to a two-stage FRM filter. The amplitude
er(w)=cos M? dw cos M?(d—1)w -+ cos M?*(d—N>+1)w]" responses of the subfilters as well as the overall FRM filter, and
(27g) its passband ripples in magnitude and group delay are depicted
82(w>:[sin M2 dw sin M%(d—1)w --- sin Mz(d—N2+1)w]T inFig. 7. T_h(_e maximum passband arr_1phtude ripple was 0.04 dB
and the minimum stopband attenuation was 46.01 dB. The rel-
(27h) ative deviation in passband delay was 0.0132. Compared with
Vectorsaq, a;c, ciq(w), ande;.(w) fori = 1, 2 are the same asits linear-phase counterpart which was the design discussed in

in (18), and vector is defined by Section IV-B, slight performance degradation in terms of pass-
h, band ripple and stopband attenuation were observed, a cost for
as, having a considerable reduction in group delay.
xr = as.
Qg
VI. CONCLUDING REMARKS
ajc

With a value ofd strictly less than N, — 1)/2, (27a) rep-  In this paper, we have attempted to lay out a methodology for
resents a frequency response with reduced group déféi/ optimal design of various FRM filters. To conclude, we high-
provided thatH (w, =) in (27c) approximates the zero-phaséight several features of the design method as follows: a) it is
desired frequency respongg(w) in (16). To proceed, we com- an optimization method that treats the coefficients of all subfil-
pute the gradientdf (v, =) asg(w, z) = g,.(w, £)+jg;(w, ®) ters as a single set of design variables regardless of the number

where i of stages the FRM filter has. As a result, the joint optimization
y D (w)y? (w)ez(w) of all participating subfilters leads to improved design perfor-
[hgcg(w)} ¥ (w)esa(w) mance; b) it is a method based on SDP which is a special class
of convex programming equipped with efficient interior-point
g, (w, z) = [1 — hgq(w)] y M (w)ee(w) (28a) solvers for large scale problems, and as such the proposed de-
(1) sign algorithms are able to handle designs of high order, mul-
Yo ' (w)era(w) tistage FRM filters with linear or nonlinear phase responses;
[1 _ f@(l)(w)} cie(w) c) it is_a method in _v_vhich various types of FRM filters can
- - be designed in a unified manner. Consequently, the coding of
r 1/(1)(w)1/(2)( ) (u)) 7 the design algorithms is substantially simplified, with a set of
|:h2 82(w } w)eza(w core codes in common plus small size routines to fit the set of
core codes into a specific class of FRM filters; and d) it is a
_ method that works well as long as it starts with a reasonable ini-
9i(w, =) = [ ? SQ(W)] v @)en(w) (28b) tial point. Finally, we stress that the class of FRM filters with
[ Tso(w)| ¥y (w)erae(w reduced group delay offers the designer an additional option for
the tradeoff between realization complexity, performance, and
_—[ 282(w)] Yy (w)ere(w) | system delay.
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()

Fig. 7. Amplitude responses of: (a) prototype filtg£2) (2'°); (b) masking filtersH (2) (z*) and H(2)(=*); (c) prototype filterH (1) (=*); (d) masking filters
HD (z)andH{N(2); (e) FRM filter; (f) passband amplitude ripples of the FRM filter; and (g) passband group delay of FRM filter.
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