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TABLE II 
CONSTRAINED CONTROLLERS 

CONTROLLER 
R.M.S. 

GAIN MATRIX 
SHIFT 
MODAL EIGENVALUES 

-0.0803  -1.3497  0.6512 0. 

0.5598  0.2763  -2.2346  0.5099 

-n.o803 -1.3497  0.6512 0. -1,0108 
0.029 

0 . 5 6 3 3  0. 
0.075 

D I O. 
-1.3478 0.6486 0. -1.1673 

0.5586 0. 0. 0.5172 -1.4252-31.6797 
-2.7177+. 0.106 

0. -1.1783 0.  0. -1.2192 
E 

0.5586 0. 0. 0.5172 -1.257Otj1.4184 
-2.6979 0.150 

TABLE Ill 
CHANGES  IN EIGENVECTORS 

MODE E D C B A 1 Spiral 1 0.9998 1 0.9999 1 0.9994 1 0.9966 1 0.9944 1 
Roll Subsid. 0.9997 0.9996 0.9954 0.9958 0.9953 
Dutch  roll 1.0000 0.8236 0.8347 0.3331 0.2805 

I I I I I I I 

VI. CONCLUSIONS 

We have established a systematic method to design a constrained output 
feedback system by approaching an a priori prescribed eigenstructure. 
The main contribution of this note is the use of residue analysis (based on 
right and left eigenvectors) to estimate the effect on the eigenvalues of 
constraints in the feedback gains. Numeric results show that some 
eigenvectors can be also approximately preserved, although eigenvectors 
sensitivities have not been taken into account. 
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Measuring How Far a Controllable System is from an 
Uncontrollable One 

DANIEL L. BOLEY AND WU-SHENG LU 

Abstract-The main goal  of this note  is  to explore some  of the 
properties of a controllable system wbich, in a precise sense to be defined, 
is near an uncontrollable pair. To do this, we first discuss the notion of 
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the distance between a controllable system and the nearest uncontrollable 
one in both real and complex cases [2]-[51. When this distance is relatively 
small, we show  to what extent this distance corresponds to certain 
properties of the uncontrollability matrix and the reachability Grammian. 

I. I~TRODUCTION 

Consider a linear time-invariant system with mathematical model 

X=Ax+Bu (1.1) 

where A E R""", B E Rflxm. Define the controllability matrix of (1. I) 
byG-[B A B . . . A " - ' B ] . A l s o d e f i n e P ( s ) ~  [ s l - A , B ] . I t i s w e l l  
known that the system (1.1) is controllable if and only if rank G = n, or 
equivalently, rank P(s) = n for all complex s. Also, one may recall that 
for a given n-dimensional pair ( A ,  B),  if rank G = r < n, then there 
exists a nonsingular Q such that 

L 

where A3 = 0, B2 = 0, and ( A  ,, E,) is an r-dimensional controllable 
system 161. Throughout this note, we denote the set of all controllable 
systems by when tn = 1 the  set will  be labeled by Y, .  

The main goal of this note is to  explore  some of the properties of a 
controllable system which, in a precise sense to be defined, is near an 
uncontrollable pair. To do this, we first discuss the notion  of the distance 
between a pair (A, B) E Y and the nearest uncontrollable pair in  both real 
and complex cases [2]-[5]. When this distance is relatively small, we 
show to what extent this distance corresponds  to certain properties of the 
controllability matrix and the reachability Grammian. 

11. THE DISTANCE p ( A .  8) 

Controllability is a generic property [ l ,  p. 1001, which means that if a 
pair (A ,  B) is considered as a point in a finite-dimensional parameter 
space, the set Y of controllable pairs is open and dense in the whole 
parameter space. In some neighborhood of a pair (A ,  B )  E Y ,  however, 
there may  not exist any uncontrollable pair.  Therefore. it makes sense to 
consider the distance to the "nearest uncontrollable pair.'' 

In the remainder of this note, the vector and matrix norms we refer to 
are the 2-norms; the spectrum of a matrix A is denoted by A(A); the set 
of all singular yalues of A is labeled by C(A) = { u,, 1 5 i I n }  where 
u, 2 u2 2 . . . 2 u n  2 0. We also follow the convention of numbering 
the definitions, lemmas, theorems, and examples together in one  series. 

Definition I :  For a given pair (A,  B) E Y ,  define the distance 
between ( A ,  B) and a nearest uncontrollablc pair by 

P(A, B )  = min II[6A, 6BlII 

where 6A E CnX",  6B E C""" such that (A + 6 A ,  B + 6B) is 
uncontrollable. 

6A.68 

If we restrict ourselves to real perturbations, we use 
Definition 2: For a given pair (A, B) E Y ,  define 

where 6A E R""", 6B E R""" such that (A f 6A, B + 6B) is 
uncontrollable. 

These definitions give a characterization of when a system is  "hard to 
control" in a sense that is different from the more classical characteriza- 
tions such as energy or feedback gain.  The definitions are significant in 
certain situations, especially when the data defining the coefficient 
matrices are not known to great accuracy, or when  we are carrying out 
digital computer simulations, which involve the accumulation of roundoff 
error. In addition, if one computes the nearby uncontrollable system, the 
controllable part of that system will  be a lower order approximation to the 
original system. Hence, this concept can be used for model reduction. 
This particular application will be explored in a separate paper. 
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We  are attempting to measure how perturbations to the coefficients 
might affect the  structural properties of the original system model. In this 
note, we explore the relationships that exist between this characterization 
and the more classical points of view. We begin with a formulation 
equivalent to the above definition and then discuss some consequences of 
it. 

Theorem 3 f2J [4J: 

p ( A ,  B)=min un(sZ-A, B )  
5EC 

pr(A, B)=min un(sI-A, B )  
rER 

where aJsI  - A ,  B) is the smallest singular value of [ S I  - A ,  B]. 
Remark: The proof is a direct application of the theory of the singular 

value decomposition. In fact, algorithms to compute the quantities p and 
p r  have been proposed in [2] and [3]. 

In most physical systems, only real coefficients make physical sense. 
hence.  the  need to  consider only real perturbations. However, it is easy to 
demonstrate that in restricting oneself to only real perturbations. one may 
substantially overestimate the distance to the nearest uncontrollable 
system.  The following example shows the necessity of considering 
complex perturbation pairs when finding the nearest uncontrollable 
system. 

Example 4: Consider a pair (A, b) E Y ,  with 

A =  [ y  -A], b =  [A]. 
A straightforward computation indicatz that minSEc uz(sZ - A ,  b) = 
0.6614 is achieved whens = s* = j d W 4  (or, when s = s* = -jv=/ 
4). Since s* is not real, the perturbation 6 A ,  66 to reduce the rank of 
P(s*) will also not be real. To obtain a real 6A, 66, we must restricts to 
be real. In this case,  a Straightforward computation involving P ( s ) P ( s ) ~  
shows that the minimum minSE u2(sI - A ,  b) = 1 is achieved for s = 
0. Hence, in this case, there is no real perturbation of norm 0.6614 that 
yields an uncontrollable system. In fact,  one needs a real pertubation 50 
percent larger. That is, the estimate p r  is over than 50 percent larger than 
p .  This example also shows that the minimum which yields the measure p 
is not achieved when s is an eigenvalue of A ,  so that the minimization 
must be carried out over the whole complex plane. 

111. RELATION TO THE CONTROLLABlLlTY MATRIX 

As mentioned above, complex perturbations to ( I .  1) yield a system 
with complex coefficients which may  not correspond to any physical 
process. To be consistent with many physical situations, we must restrict 
ourselves to real perturbations. Unfortunately. as was discovered in 131. 
finding the value of p r  can be a very involved process. However. we can 
give a simple bound for this quantity, in terms of classical quantities, 
namely the singular values of G .  Contrary to what one may expect. 
however, this bound is not simply based on the smallest singular value of 
G .  In other words, it is nor true that one can obtain a nearby 
uncontrollable system by applying a perturbation 6 A ,  6B with norm 
bounded by the smallest nonzero singular value of G .  

To see what bound one can obtain, we first take the S.V.D. of  the 
controllability matrix G associated with a given pair ( A ,  B) E Y 

G=PTIX(O]Q (3 .1)  

where C = diag { u , ,  ... un), P E R""" and Q E RnntX""' are 
orthogonal matrices. Let A" = PAP' and 8 = PB. Since P is 
orthogonal, it is evident that pA.4 ,  B) = ,,.(A, B), and (3.1) becomes 

6 = [ B  AB . ' .  A - ' B ] = [ C J O ] Q .  (3 4 

We can now state  the following lemma. 

matrix P such that 
Lemma 5: For  a given pair ( A ,  B )  E Y ,  there exists an orthogonal 

where A ,  E R'"', B,  E R r x m ,  with 

Here A ,C denotes the companion matrix for A .  
Proof: By (3.2) 

L A  

where C is as defined in (3.1). Partition 

(3.3) 

Then the second part of (3.3) follows from I)S2JJ 5 I .  To obtain a bound 
for IJA,IJ, notice that 

a[B . . . A^n-lB] = [ E  AB . . . An-'l?](AF[@Im) (3.4) 

where @ denotes the Kronecker product. Equations (3.4) and (3.2) yield 

where t denotes the Moore-Penrose inverse [7]. We  now denote the 
upper left n x n submatrix of Q(AF ,8 I,,?)QT by Z and partition it as 

Then A can be written as 

It is easy to see that ((X;'(( = 0;' and ((AF €3 I,lJ = (IAFll, hence, we 
have the first part of (3.3). Q.E.D. 
We can now state our main result. 

Theorem 6: For a given pair (A ,  B) E Y, 

Proof: In Lemma 5.  by setting and B2 to zero. we commit a real 
perturbation whose norm is bounded by the right-hand side of (3.5). By 
setting those two blocks to zero: we obtain a uncontrollable system, 
hence. this perturbation must be at least pLr .  Q.E.D. 

We recall that uj are the singular values of the controllability matrix G ,  
and  the nonzero entries of A are just the coefficients cyo, . . . , CY, of the 
characteristic polynomial of A ,  so llA~ll I max l o r j ] .  It should be pointed 
out that  the computation of the singular values of G can be a difficult 
numerical problem, but the accuracy can be enhanced by applyin, some 
of the reduction techniques in. e.g., [2]. 151, [9] such as the "staircase 
algorithm" to first reduce the matrices A ,  B to a simpler structure. 

IV. EXAMPLES 

For most systems (1.1). the coefficients of the characteristic polyno- 
mial  of A ,  and hence the entries of the companion form A are larger than 
I .  so the formula (3.5) would be dominated by the second term 
lIAF1(u,,~/ur.This formula shows that the size of the perturbation p r  is 
not bounded by the smallest singular value of G ;  rather it  is bounded by 
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the ratio between two consecutive singular values. To find a small real 
perturbation to obtain an uncontrollable system, one must find a gap 
among the singular values. We illustrate this p i n t  with two examples. 

Examp/e 7: In [8], there was given an 1 1 X 1 lexample with A = diag 
{32, 16,8,  - 6 4 ,  - 32,4,2, - 2, - 4, - 8, 16) and B equal to the vector 
B = (l0-l4,  2.3, 0.4, 1.2, 0.2, 0.5, 3.7, -1 .1,  0.1, 10-14)T. 
The controllability matrix G for this example has singular values with 
orders of magnitude {loo, 1 O - I o ,  lo-”, lo -” ,  lo-”, 

lo-’*, 10-zB,Oj x 10’5.1twasshownin[8]thatonecancannot 
use directly the singular values of the matrix G to decide how close this 
system is to an uncontrollable system.  However, we see that the greatesr 
gap between consecutive singular values is 1 O - I o ,  so we can safely say 
using Theorem 6 that there is a perturbation of the order of 1O-Io to our 
original system that will yield an uncontrollable system. 

Example 8: In [9], a 2 x 2 stable, controllable example was defined by 

where E is a small number. It is easy to verify that for this example the 
singular values of G are on the  order of \ & n d  E ,  yet it was shown in [9] 
that the norm p of the smallest perturbation to an uncontrollable system is 
of the order ,/;;-exactly the ratio between the two singular values of G .  

V. VARIATIONS ON ABOVE RESULTS 

One may give an interpretation of Theorem 6 in terms of the energy 
necessary to control certain modes, as represented by the singular values 
of the reachability or controllability Grammian for the system, For the 
discrete-time system x p A  = AxP + Buk.  the controllability reachability 
Grammian is approximated by GG‘. Hence, the squares of the singular 
values of the matrix G correspond to the eigenvalues of the discrete-time 
controllability Grammian.  Hence, Lemma 5 gives a relationship between 
the energy modes of (5.1) and the distance f i r .  We can  also obtain a 
similar result for the continuous time case (1.1). In case A is a stable 
matrix, we  may also define the continuous-time reachability Grammian 

W =  eAfBBTeATr dt. 
0 

Using this Grammian, we  may obtain a similar bound for the distance p,  
in terms of the energy modes of (1.1) as represented by the eigenvalues of 
W. 

Theorem 9: Given a pair (A,  B) E Y with A stable. Let Q be an 
orthogonal matrix such that Q WQT = diag {Si . Si] 3 A2 with 6 ,  2 
62 2 . * . 2 6 > 0. Then the equivalent pair ( F ,  H )  determined by F = 
Q A Q T  = [;{2], H = QB = [:;I, where F1 E Rrxr ,  HI E R r x m  has 
estimates 

llF3Il sc1 - and llHA (5.1) 

where cI  = IIHlIIv211FIII + IIFJ, c2 = \g211F411. The subsystem ( F , ,  
H I )  has reachability Grammian Af = diag {S: . . . S:]. 

Proof: Define A: = diag {6j!-] . . . Si]. It is known that the 
reachability Grammian W satisfies the Lyapunov equation A W + W A  
+ BBT = 0, or, with  the partitioning given above, 

& + I  

6, 

F I A ; + A ; F : + H I H :  F,A;+A;F:+H,H: 
F , A ; + A ; F : + H ~ H ;  F , A ; + A ; F ~ + H ~ H :  1 =’. 

Solving for F3,  one obtains 

and 

H,H:= - F , A ~ - A ; F : ,  

which immediately gives the second part of (5.1). The estimate (5.1) then 
follows from (5.2). Q.E.D. 

We can also obtain a simple relation between the distance I/. and the 
feedback gain necessary to move a pole of the system. We  will see that 
this relationship is limited in the sense that it holds only as the feedback 

gain applied (or else the distance the pole is moved) becomes sufficiently 
small. 

Theorem IO: Assume the pair (A, B) E Y and that X, is a simple 
eigenvalue of A .  Then  for any sufficiently small h > 0, there exists a 
feedback matrix K with norm bounded by h such that all the eigenvalues 
Y I ,  . * . , v, of the closed-loop matrix A + BK differ from X, by at least 
&(A, B). 

Proof: Let a = 1/2 minlsrsn-l IX, - X,[. Let the Schur 
decomposition of the pair (A,  B )  be 

where P is a unitary matrix, and b, E C1-” is a row vector. It is trivial to 
note that I/. 3 p ( A ,  I?) = p ( A ,  B) ,  and also that llbnll 2 p .  Choose a 
positive h < a / p .  Define K = [0, . . . , 0, k , ] P ,  where k, = b:h/llb,ll. 
then Schur decomposition of A + BK is 

and hence the eigenvalues Y . . . , Y, of A + B K  are, respectively, X I ,  

- . . , X n - l , X n  + b,k,.ItiseasytoseethatX,differsfromvl, - * . , v , - ~  
by at least 2a > h p .  The value X,, differs  from Y, by 11b,k,ll = hllbnll 2 

This theorem relates the distance measure @ to the feedback gain 
necessary to move a pole. Specifically, it says that if we want to move a 
simple pole by E ,  we can find a feedback matrix K whose norm is bounded 
by h = 6/11, In the limit as  the  gains applied become sufficiently small, 
we can say that if we are far from an uncontrollable system, then I/. is 
large, and the gain needed is of the same order of magnitude as the 
amount we move the pole. Conversely, it says that if  we have a “hard-to- 
move” pole, i.e., any feedback of norm h moves the pole by no more than 
~ h ,  then it follows that we have a bound on 11, namely p I E .  In words, if 
the gain needed to move a pole is much larger than the amount the pole is 
moved (by a factor UE), then the original system must  be close (within E )  

to an uncontrollable system. 

hI/. . Q.E.D. 

VI. CONCLUDING REMARKS 

We have given a relationship between the distance from a controllable 
system, as measured by perturbations to its coefficients, and schemes used 
classically to indicate when a system is “hard  to control” in terms of 
energy. We have shown that one cannot blindly interpret the singular 
values of  the controllability matrix in the most direct way  if one is 
interested in perturbations to the coefficients; rather one must look for 
gaps among these singular values. We have concluded with a relationship 
between the distance to the nearest uncontrollable system and  the  state 
feedback gains needed to move a simple pole. These results, although not 
unexpected, provide a more solid foundation on which to interpret the 
distance measures p and I/.,. 
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