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This correspondence also opens up the possibility of considering “step 
response” energy approximants, which would appear better suited for 
producing good step response approximation. This would require 
reduction of the transfer function H(s) = [as) - G(O)]/s by the technique 
described in this correspondence with the exception that the first rows in 
the D and N tables are formed from the highest powers of s first (no 
reciprocal transformation). It is necessary that the first Markov parameter 
of H(s) (now Pl/al) be retained in the reduced model n(s) to ensure that 
the final reduced model, given by G(s) = s@s) + G(O), is a proper 
rational transfer function. However, initial work in this direction seems to 
indicate that step energy approximants are not significantly better for step 
responses than impulse energy approximants (when the first time moment 
is preserved), taking into account the  extra computation involved. 
Nevertheless, further work is needed to  form more definite conclusions. 

REFERENCES 

[I]  M.  F.  Hutton and B. Friedland, “Routh approximations for reducing order of 
linear, time-invariant systems,’’ IEEE Trans. Automat.  Contr., vol.  AC-20,  pp. 
329-337, June 1975. 

[2] A. S. Rao, S.  S. Lamba, and S. Vittal  Rao,  “Routh-approximant timedomain 
reduced-order models for single-input single-output systems,” in Proc. IEE, vol. 

[3] Y. Shamash, “Stable biased reduced order models using the Routh method of 
125, pp.  1059-1063, Oct. 1978. 

[4] Y. Bisnitz and U. Shaked, “Stable linear systems  simplification  via  Pad6 
reduction,” Int. J. Syst. Sci., vol. 11, pp. €4-654, 1980. 

1apulse 
r e s p m s s  

approximants to Hunvitz polynomials.” J .  Dynam.  Syst. Meas. Contr., vol. 
103, pp.  279-284, Sept. 1981. 

[5] G. Hwang  and K. Y. Wang, “Optimal Routh approximations for continuous-time 
systems,” Int. J .  Syst. Sci.. vol. 15, pp. 249-259,  1984. 

[6] Y. Shamash, “Critical review of methods for deriving stable reduced-order 
models,” in IFAC Symp.  Proc. Idem$. Syst. Param. Estimat., Washington, 

[7] Y. Shamash, “Failure of the Routh-Hurwie method of reduction,” IEEE  Trans. 

[8] G.  J. Lastman, N. K. Sinha, and P. R6m, “On the  selection of states to be 
Automot.  Contr., vol. AC-25,  pp.  314-315, Apr. 1980. 

retained  in a reduced-order model,” in IEE Proc. Part D, vol. 131,  pp.  15-22, 
Jan. 1984. 

[9] T. N. Lucas and A. M. Davidson, “Frequency-domain reduction of linear systems 
using  Schwarz approximation,” Int. J. Contr., vol. 37, pp. 1167-1178,  1983. 

DC, 1982, pp.  1519-1523. 

Model Reduction Via a Quasi-Kalman Decomposition 

WU-SHENG LU AND E. BRUCE LEE 

Abstract-A system  theoretic  model  reduction  algorithm is proposed 
which  appears to be  simple to work  with.  The  algorithm is based on a 
quasi-Kalman  decomposition. 

I. INTRODUCTION 

Approximating linear systems by simple models has been of concern 
for  engineers  and system-theorists for a long time; see [1]-[;1 and the 
references therein. 

Here we  deal with model reduction via an explicit structural property of 
Linear time-invariant systems, the so-called quasi-Kalman decomposition 
(QKD) which was initiated in a recent study [8] and will be further 
developed now. 

One may recall the well-known Kalman controllability decomposition 
which is a claim that for  an uncontrollable system S = (A,  B, C) of 
dimension n, there exists a nonsingular T such that the algebraically 
equivalent triple (a, B ,  C?) has  the  form 

where (Al, B1) is a controllable pair of dimension r < n. Thus, the 
system has an rth-order  extemal description C, ( z l  - A I ) - ’ B I  rather 
than an nth-order  one. A similar decomposition holds for an unobservable 
pair (A, C). Further,  one ndtices that, in spite of the genericity of 
controllability and observability for finite-dimensional linear systems, the 
performance of a controlled system depends heavily on its representative 
from among the set of all controllable systems. At this point, it is natural 
to consider the distance between a given controllable and observable 
system (A, B, C )  and the nearest uncontrollable (and/or unobservable) 
system, denoted by p ( A ,  B) (and p ( A ,  B, c) or p ( A ,  C), respectively). 
Roughly speaking, the QKD for a given minimal triple (A,  B, C )  (a 
system is called minimal if it is both controllable and observable) is an 
algebraic equivalent triple with appropriate partitioning 

where IIAzll, (IA311, IIB2II, and IIC211 are closely related to the distance 
p(A,  B, C). In other  words, in the QKD of a given minimal triple (A,  B, 
C) the distance p(A,  B, C) is structurally “visible.” Concerning the 
model reduction issue, it will become clearer [2], [9] that a system can 
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successfully be approximated by a lower order model if it is near an 
uncontrollable and unobservable one in the same state space. It seems 
obvious tc consider the QKD to  provide a simple tool to deal with the 
model reduction question. 

In the next section, the QKD and  some related ideas are described. As 
an application, a model reduction algorithm along with its L"-error bound 
are given in Section III. Several examples then follow in Section IV to 
illustrate the  approach. 

In what follows,  we shall denote  the largest singular value of a matrix F 
by $F),  and the corresponding norm 11ql is assigned to be the 2-norm, 
Le., 11ql = 3 F ) .  

11. THE QUASI-KALMAN DECOMPOSITION OF A MINIMAL (A ,  B, c) 

L e t  S = (A, B, C) be a minimal realization of the transfer function 
G(z) E RPXm(z) with A E R n x n .  

Definition 2. I: The distance between Sand the nearest uncontrollable/ 
observable, the nearest controllable/unobservable, the nearest uncontrol- 
lablelunobservable system are defined by 

r ( A ,   B )  = min Il[SA, 6BIII 
&4, &E 

(2.1) 

respectively, where 6A E RnXn,  6B E R n X m ,  6C E Rpxn such that (A 
+ 6 A , B + 6 B ) , ( A  + 6 A , C + S C ) , ( A  + 6 A , B + S B , C + G C ) a r e  
uncontrollable, unobservable, and uncontroUable/unobservable, respec- 
tively. 
In [lo],  [l 11, [SI, the computation of &l, B) as well as d A ,  C) has 

decomposition is the algebraically equivalent triple (TA T-I ,  TB, C T -  I )  

where T i s  given by (2.6) [or (2.8)]. 
A remarkable property of the QKD is described in the following. 
Theorem 2.3: For a fixed integer 0 < r < n, let 

where Br = 4 4 , ) / ~ f / ~ ,  A, is the observer form of the matrix A 
511, and T is given by (2.6). 

Proof: Note that B = TP[Z,O] T, (2.5) then gives 

been described. It turns out that p ( A ,  B;C) is a. model-reduction-related where VI is the upper left n X m submatrix of V. Since Vzl is a submatrix 
quantity whose tight estimate can be found through a quasi-Kalman of the orthogonal matrix V, we have 11 V z l ~ ~  6 1, and therefore llBzll < 
decomposition of the system S which will be defined later. ~~~~~z~~ = u::~. Similarly, = [Z, OIQT-I, (2.7) then yields 

Let 

P = [ B   A B  ... A"-'B], Q = 

(2.14) 

and H = QP. Notice that rank P = rank Q = rank H = n, hence, the 

QI', exist. Next obtain the singular value decomposition (SVD) of H (2-12). To prove (2.10) set Tp = ' and Observe that 
fight inverse of P,  denoted by P; 1, and the  left inverse of Q, denoted by where uI is the upper leftp x submatrix Of '3 which gives the 

H = U [ E  001 V (2.4) 

with Wand Vorthogonal and C = diag {ul . . un},  u1 2 . . . 2 an > 0. where A ,  is the controllability form of A [12, p. 511 and 8 represents 
Observe that the matrix equation the Kronecker product; (2.5) then modifies the above expression to be 

TP= [C"2 01 v 
has solution 

T= [X 01 VP; 

and that T i s  an n X n nonsingular matrix. Thus, (2.4) gives 

H = Q T - 1 T P = Q T - 1 [ C 1 / 2  O]V=u[C1" O]r[C1'2 01V. 

so 

and 

Let the upper left n X n submatrix of V ( A ,  8 Im)VT be F = (Fv), 1 6 
(2.6) i ,  j 6 2 withFII E R r x r  and Fu E R(n-r)x(n-r).  , one then rewrites A as 

(2.15) 

Definition 2.2: For a given minimal triple (A,  B, C),  its quasi-Kalman where  the last equality is because A ,  = A i .  To show (2.9), let = 
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QT-I and note that 
I /2 

Qa= (Ao@I~)Q=(Ao@I~)U [ 0 ]  ' 0 0  
CY2 

which gives 

(2.16) 

For  a minimal realization S = (A,   B,  C )  define the equivalence  class E, 
= {(A, i?, 01 nonsingular L such  that A = LAL - I ,  2 = LB, 2. = 
CL - I } .  Then we have  the  following. 

Theorem 2.4: If the singular values of H are  distinct, then every 
system in E, has  the  same  QKD. 

Proof: It is known that when the  singular values of H are  distinct, 
the  matrix VI in (2.13) is uniquely determined by the  sets of orthogonal 
eigenvectors  for  the  nonzero  eigenvalues of HTH,  and hence UI in (2.14) 
is also uniquely determined (see, e.g., [15, p. 61). The  expressions (2.13), 
(2.14), and (2.15) thus  show  that  the QKD of the given S is unique. 
Further, let P and 0 be the  controllability and observability  matrices  for s 
= (A, i?, 0 E E,, respectively. Thus, P = LP, 0 = QL - I ,  P;  I = 
P;lL- ' ,  0;' = LQ;I, and I? = = QP = H .  So  the 
transformation  matrix which brings s to its QKD  is P = [C l i Z  01 VPr- I = 

01 VP; IL - I  = TL - I .  Therefore,  the QKD  of the system s is 
(FAT- I ,  i%, CT-l) which is the  QKD of the system S. C 

The QKD of a  given minimal ( A ,  B, C )  also provides an appropriate 
framework to obtain an upper bound on p ( A ,  B, C). First  rewrite A by 
mixing its two expressions (2.15) and (2.16) as 

which, in the  special  case r = n - 1, becomes 

(2.18) 

where 2, = diag {q, * ,  u, , -~ } ,  el, E R(n- l )x l ,  FZl E R 1 x ( n - l ) ,  and 
& E R .  Correspondingly, by (2.13) and (2.14), 

(2.19) 

where fzl E RIxmand  o12 E RPxl .  Thus, (A + SA, B + SB, e + Sa 
with 

is  neither  controllable nor observable, so that  for  the  triple (A, 8, i?) 
given in (2.18) and (2.19) 

where 0, - I = 6(A , ) / u ~ ~ ~  Therefore, 

p ( A ,  8, 04( l+j3"- l )u /2 .  

Based  on the  above  estimate, we  now have the following. 
Theorem 2.5: Given a minimal realization (A,  B,  C), then 

p ( A ,  B, C)4mnd (TI ) (~+&-I )UY (2.21) 

where cond ( T I )  is  the condition number of diag { T, 1) with T given in 
(2.6). 

Proof: Since 

so if (Sa SB So is a  disturbance of (A l? i?) such that (a + SA, l? + 
SB, e + Si?) is neither  controllable nor observable, then 

will be  the  same kind of disturbance  for (A ,  B ,  C). The estimate (2.20) 
then immediately yields (2.21). 0 

We conclude  this section with a  remark on the  relationship between 
QKD and the well-known balanced realization 121,  131. By (2.5) one has 

n- I 

A'BB'(A7)'=TP(TP)'=C. (2.22) 
i = O  

Similarly, (2.7) gives 

" - 1  

(A^7)'er(a)'=(QT-')'~T-'=C. (2.23) 
, = O  

In other  words,  the  transformation Tdefined in (2.6) that  gives  the QKD 
for  a given discrete-time  system (A,  B, C )  is  the one that makes the 
"truncated"  controllability  and  observability  Gramians be equal and 
diagonal. 

m. A MODEL REDUCTION ALGORITHM AND ITS L=-ERROR BOUND 

Based on the  QKD theory as developed  above,  a  suggested model 
reduction  algorithm  for  a  given  multivariable  discrete-time system S = 
(A, B, C )  is  the  following. 

Algorithm 3.1: 
1) Form the controllability  and  observability  matrices P and Q; 
2) Form  the  Hankel  matrix H = QP and take its singular value 

3) Calculate  the  transform  matrix T by (2.6); 
4) Compute  the QKD of the  system S and partition  it as 

decomposition (2.4); 

r r-m 
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where A ,  E R r x r ,  B1 E R r X m ,  and CI E Rpxr. Take as the  rth-order 
reduced model of S the subsystem S ,  = ( A  B I ,  CJ. 

One of the most important issues for model approximation is stability. 
If the considered triple is associated with a discrete-time system, then we 
have the following. 

Theorem 3.2: Assume that i)  the discrete-time system (A, B, C) is 
(BIBO) stable, ii) BBT - A"BBT(A3" 2 0, or, ii') CTC - 
(A 7)"CTCAn 2 0 then the subsystems S, = (A ,, B1, C,) and Si = (A4, 
B2, C2) are stable. 

Proof: Denote BBT - A"BBT(A3" = RRT, CTC - 
(A qnCTCA" = WTW if the condition ii) and ii') hold. By means of 
(2.22) and (2.23), one has 

The following examples also indicate the closeness of the  two 

Example 4.1 [3]: Given a third-order system with transfer function 
approaches. 

G(z) = z - ~  + z - ~  and the following minimal realization: 

A =  

for which 
[: : I] [:I 1 0 0 , b= 0 , c=[O 1 I] 

w,= I and w,= r' 1 2 O' 1 
L o  1 1 

AMAT-C= -(TR)(TR)'and A%a-E= -(wT-')T(wT-l) The standard computation procedure [5] gives th6 

which means that C is the controllability Gramian (if ii) holds) or the G(z) as (Ab' bb' ") with 

J 
balanced realization of 

observability Gramian (if ii') holds) of the triple (A, TR, WT-I) .  By 
[14, Theorem 3.21, both systems S, and Si are stable. 0 

In the rest of this section it will be assumed that the triple S = (A,  B,  
C) is associated with a stable, discrete-time system and that the matrices 
A and A 4  obtained by Algorithm 3.1 are  stable,  Le., the eigenvalues of 
A and A4 are in the unit circle of the complex plane. 

Let G(z) = C ( z I  - A )  -IB, let W, and W, be the controllability and 
the observability Gramians, respectively. The Hankel-singular-values 
[7l of G(z)  are defined by 

U~(G)=[X,(W,W,)]~ '~,  1 < i < n  (3.3) 

where {Xi( W, W,)} are eigenvalues of W, W,. The L"-norm of G(z) is 
defined by 11 G(e'")ll =  SUP,^^ 5(G(ejw)). In a recent paper by Glover 
17, Corollary 9.31, it has been shown that 

llG(P)llm62(01+ . - .  +uJ (3.4) 

where u;s are those given in (3.3). We will use this estimate in the 
following error analysis. 

Let Gl(z) = C,(zI  - AI)- 'BI  and R(z) = G(z) - Gl(z). Simple 
manioulation Pives 

R(Z)=G(Z)-GI(Z)=[C~+CI(ZI-AI)-'A~I[ZI-A~-A~(ZI-AI)-'A~]-' 

. [E~+AJ(zI-AI)- 'BI ] .  (3.5) 

By estimates (2.9)-(2.12), an intuitive inspection of expression (3.5) 
indicates that one  has no difficulty obtaining the estimate 11 G(z) - G1(z)ll 
< yu,, I by a routine norm-estjmation technique, where y is a constant 
relevant to  the system data (A, B,  0. On the other hand, one may 
observe that R(z) given in (3.5) is itself a strictly proper rational matrix so 
that there exists a minimal triple (F, G, H )  of dimension [such that R(z) 
= H(z1 - F )  -IG. Therefore, by (3.4), a better error bound is 

0.6773  0.5236 &l$] [ 0.79331 
-0.5236 -0.04788 , bb= 0.8230 , 

0.09633 - 0.4046 - 0.6294  0.2188 

and ~bzt0.7933 -0.8230 0.21881 

On the  other hand, from G(z) = z - ~  + z - ~ ,  one can write 

The rest of  the Algorithm 3.1 then gives its QKD as 

0.6773  0.4356 0.0%33], [,":E:] 
-0.6294  -0.04788  0.4864 6= 0.9893 , 

0.09633  -0.3366 - 0.6294 

and e= [0.7933  -0.6846  0.21881. 

Hence, both approaches yield the  same first-order approximation 

GI (2) =- z - 0.6733 
0.6293 

and the same second-order approximation 

G2 (z) = 
-0.048~+ 1.1726 

z2-O.6294z+0.2417 ' 

Example 4.2: Consider the second-order discrete-time system de- 
scribed by G(z) = (z + O.l)/(z* + 0.lz - 0.3) with minimal realization 
(A,  b, c) where 

A =  [ '031, b= [ i], and c=[l  0.11. 

1 One now computes 

where the Hankel-singular-values {ui(R), 1 < i < I }  can be computed 
through triple {F,  G, H ) .  Q = [ I  0 O ' l ] , p = [ i  0.3 - p ' I ] , " = [ '  0 0.3 '1 ' 

N. EXAMPLES AND CONCLUDING  REMARKS so 

Bearing in mind the relations (2.22) and (2.23), it is expected that the [ i $33, V = I ,  and T= 
QKD reduced model will be quite close to the one obtained by the [i 4 -  
balanced-realization-based technique. For instance, the discrete-time Thus, 
triple (A ,  b, c) with 

A =  [ I f ] ,  6 =  [ i] =cT 

is stable, minimal, and balanced. It is easy to check that the above (A,  B,  and the first-order approximation due  to  the QD approach is 
C )  is already in its QKD form.  Therefore,  both approaches give the same 
first-order reduced model Gl(z) = l / z  which is close  to  the optimal (in 1 
L" sense) first-order approximation ( W 1 5 )  z [3]. G,(z)=-. 

Z 
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In order  to use the balanced-realization-based approach,  one calculates 

1.2281 -0.17541 and wo= [ 1.1010 0.09567 
0.09567 0.1091 wc= [ -0.1754 1.2281 1 

and then the algorithm given in [5] yields the balanced realization of as 

Ab= [ -0.03779 

-0.5498 ] , bb = [ -0‘9708 ] -0.5498 -0.06221 0.03442 ’ 
cb = [ - 0.9708 0.034421 

which gives  the first-order reduced model 

0.9425 
G’(z)=~+0.03779 ’ 

Clearly, G,(z) is quite close to el(z). 
Remark: One may compare the error bound given in (3.6) and the 

error bound for a reduced model via a balanced realization. For instance, 
in Example 4.2 the error function R(z) has a minimal realization (F, G ,  
H )  with 

F=[: x 1, .=[!I, andH=[0.3 0 01 

which yields the Hankel-singular-values uI = 0.3741, u2 = 0.3741, and 
u3 = 0.2; thus (3.6) becomes I IG( jw)  - ~ , ( j w ) I l , ,  < 1.8964. On the 
other hand, it is known [6], [7l that the L”-error bound for balanced- 
realization-based reduction is given by I IG ( jw)  - G ~ ( j w ) l l ~  < 2u*(G) = 
0.7023 which is considerably smaller than the former even though G,(z)  
is fairly close  to Gl(z). An improvement of the error bound for the QKD- 
based reduction and a further study on the comparison to  the balanced- 
realization-based method is therefore needed. 

It can now be concluded that the QKD of a linear time-invariant system 
gives a way to structurally separate the poorly controllable and poorly 
observable subspace from the well controllable and well observable part. 
We have also shown that this decomposition provides for discrete-time 
systems the possibility to reduce a high-order mathematical model to a 
lower order one with g o d  response characteristics. The reduction 
algorithm appears to be simple to work with since it does not require 
solving Lyapunov type equations and at the same time the reduced model 
is close to the corresponding one obtained by the balanced realization 
approach.  This approach is also promising in simplifying some distribu- 
tive systems, for  example, delay systems and two-dimensional systems. In 
this regard a further study is now underway and will be reported on later. 

0 0.3 -0.1 

REFERENCES 

E. I. Davison, “A method for simplifying linear dynamic systems,” IEEE Trans. 
Automat.  Contr., vol. AC-II. pp. 93-101, 1966. 
B. C. Moore, “Principal component  analysis  in linear systems: Controllability, 
observability, and  model reduction,” IEEE Trans.  Automat.  Contr., vol.  AC- 
26, pp.  17-32, 1981. 
L. M. Silverman and M. Bettayeb, “Optimal approximation of linear system,” in 

S.-Y. Kung  and D. W. Lin, “Optimal Hankel-nom model  reductions: Multivaria- 
Proc. I980 JACC. 

A. I. h u b ,  “Computation of  balancing transformations.” in Proc. 1980 JACC. 
ble systems,” IEEE Trans.  Automat.  Contr., vol. AC-26, pp. 832-852,  1981. 

D. E m ,  “Model reduction based on frequency  response  for control system 
design,” in Workshop on Identification  Contr. of Flexible  Space  Structures, 

K. Glover, “All optimal Hankel-nom approximations of linear multivariable 
San Diego, CA, 1984. 

systems and their L”-ermr bounds,” Int. J.  Contr., vol. 39, pp. 1115-1193, 
1984. 
D. &ley  and W . 4 .  IN, “Quasi-Kalman  decomposition  and its relationship to 
state feedback,” 1984. 
P. Harshavardhana, E. A. Jonckeere. and L. M. Silverman, “Open and  closed 
loop approximation techniques-An overview,” in Proc. IEEE  1983 Int.  Symp. 

G. S. Miminis, “Numerical algorithms for controllability  and eigenvalue 
Circuits and Syst., 1983, pp.  126-129. 

allocation,” MS. thesis, School Comput. Sci., McGill Univ.. M o n d .  Canada, 
1981. 

[ I  11 R.  Eking, “The distance between a system  and  the  set  of uncontrollable systems,” 

[I21 T. Kailath, Linear Systems. Englewood-Cliffs, NJ: Prentice-Hall, 1980. 
[I31 S. Barnett, Polynomials and  Linear Control  Systems. New York: Marcel- 

[I41 L. Pernebo and L. M. Silverman, “Model reduction  via  balanced state space 
Dekker. 1983. 

representations.” IEEE Trans.  Automat.  Contr., vol.  AC-27.  pp.  382-387. 
1982. 

[I51 F. M. Callier and C. A. Desoer, Multivariable Feedback Systems. New York: 
Springer-Verlag. 1982. 

Eindhoven  Univ. Technol., Eindhoven, Memo.  COSOR 82-19, 1982. 

Singular  Perturbation for the Dynamic Interaction 
Measure 

Abstract-The singular perturbation technique is used for the dynamic 
extension of the RGA (relative gain array) based on the state-space 
model. The dynamic  interaction measure derived serves as a means of 
pairing input and  output variables for the systems having substantially 
different time scales. 

I. INTRODUCTION 

One of the powerful tools that has appreciated in chemical industry is 
the relative gain  array (RGA) which was originally proposed by Bristol 
[l] as a means of measuring control loop interactions [7]. The RGA gives 
a steady-state measure of interaction and, in many cases, the steady-state 
RGA analysis is useful for the problem of pairing between the input and 
output variables. 

However,  there is a need in some cases to account for the dynamics, 
and several attempts have been made for  the dynamic extension of the 
RGA [2], [3], [8],  [9]. Among these is the approach taken by Tung  and 
Edgar [8] based on the state-space model. State-space formulation is 
useful in getting insight into the control problem of many chemical 
processes such as distillation, extraction, etc. (see [6] ,  for example). 

On the other hand, it has long been recognized that the flow, level, and 
pressure control loops are substantially faster than the composition control 
loops, and in  many cases the dynamics of the former are neglected for the 
analysis of the latter. The singular perturbation technique is known to be a 
useful tool for treating such systems having substantially different time 
scales (see [4] and [SI, for example). 

In this correspondence, we apply the singular perturbation technique to 
the dynamic extension of the RGA proposed by Tung and Edgar [8] for 
the analysis of such processes whose time constants are substantially 
different. 

II. SINGULAR PERTURBATION 

Consider a singularly perturbed  linear time-invariant system 

X=Allx+A~$+Blu (1) 

= AZIX+ A s  + B ~ u  

y=c,x+c2p 

where E is a small positive parameter, x and p are n X 1 and m X 1 state 
vectors, u is an I X 1 input vector, y is an I X 1 output vector,  and Aij, 
Bi, Ci are constant matrices of appropriate dimensions. It can be shown 
that the system equations (1) and (2) have n slow eigenvalues and m fast 
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