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3) Image of def: If juyis arootof p + p’, it must be a root of both p
and p’. Let jwo be a root of p such that p(s) = (s — jug)*g(s), gUwe) +
0. Then gq is either quasi-real or quasi-imaginary. Further,

ka0
(s—Joo)  qls)

Ondef, s — juwp = ee® with £s:7/2 ' — /2, and g’ (5)/g(s) will
be nearly equal to g’ ( jug)/g(jwp) which is purely imaginary. Hence, the
image of def will be close to a large semicircle in the RHP, traversed
counterclockwise and it will not cross the negative-real axis.

From 1)-3) we conclude that F(C) does not encircle the origin at all.

Fis)=1+
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Stabilization of Two-Dimensional Systems
E. BRUCE LEE AnD WU-SHENG LU

Abstract—Several new results on stabilization of discrete two-dimen-
sional systems are presented. If the horizontal (or vertical) part of the
system in the Roesser model is controllable, then the stabilizability
question is the same as that for a related discrete delay system.

1. INTRODUCTION

There is interest in the Roesser two-dimensional model, which was
originally motivated by image processing, as a model for certain
multipass processes (such as machining of metal). Recent results [1] have
demonstrated that stability along the pass is equivalent to certain two-
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dimensional stability criteria. The interest here is in acquiring stability by
the use of local feedback control.

Stabilizing a discrete two-dimensional (2-D) system by state feedback
or output feedback has long been of interest; see, e.g., [2]-[8]. It is now
becoming clear [3]-(8] that stabilizing a discrete 2-D system by a constant
state feedback is, in general, very difficult. Intuitively speaking, this is
because the state in the Roesser model (12] is only a kind of local
information of an infinite dimensional system.

In this paper, we present several new results dealing with stabilization
of a discrete 2-D system having the following model:

i+, N | _ | A A | | XD
¥ j+) | | A A 26D

+ [B'] uli, Y=AXG, j)+But, /)
B

Y, H=1C CGIXG, H)=CXG, j) (1.1
with boundary conditions x*(0, j) = 4(j) and x*(#, 0) = v(i) fori,j > 0
by a polynomial state feedback

u(i, j)=1K(z, w) Koz, wXC, )=Kz, w)X(, j) (1.2)

where x* € R*, x¥ € R™, u € R?, y € R’, i and j are integers, and z,
w are delay operators in the horizontal and vertical directions, respec-
tively. K(z, w) € Re*¢0+miz wl, i.e., K(z, w) is from the polynomial
ring in two variables.

In light of an earlier work [71, the problem is reduced to the question of
controllability of a 1-D pair {(A4,, B)), and then, if it is so controllable,
checking stabilizability of a relevant discrete delay system. Consequently,
it is seen that the stabilizability of a discrete 2-D system by polynomial
state feedback is a generic property when p > 1. Moreover, if p = 1 and
n = 1 (or m = 1), some well-known properties of an analytic function
will immediately lead to a condition for stabilizing such a discrete 2-D
system. Two examples illustrating the results are included in Section II.

II. MAIN RESULTS

A 2-D z transform applied to (1.1) gives the transfer function matrix
corresponding to (1.1):
_ Q& w)

Hiz, W)= a(z, w)

where
In_zAl
—wA;

—z4,
In—wA, |~

It may be noted that the variables z and w in (1.2) and (2.1) are
consistent so that (1.1) and (1.2) give a closed-loop system with
characteristic polynomial as follows:

a(z, wy= det [ 2.1

I,-z(A\+ BiK))
- w(4;+ B:K))

iz, w)= det [ . _zf;z;:’ fg;é)] . e

The main result on stabilizability (i.e., ensuring that (z, w) is a
Shanks’ polynomial) is as follows.

Theorem 2.1: System (1.1) is stabilizable by state feedback u(i, j) =
KX(i, j) with K = [K,; Kx)(2)], K1 € R?*", Kx(2)RP*™[z} if: 1) the pair
(A,, B)) is a 1-D controllable, and 2) the parametrized pair (F(z), G(z))
with |z| < 1 and

F2)=As+2"(A; + B.K)Adjlz ', - (A, + BK)A,
G(2) =B+ 2"(A; + ByK))Adjlz 1, — (A, + BiK)1B,

2.3)
2.4

is stabilizable by polynomial state feedback Ky(z) € R?*™[z] where K|
€ Rp*7 gatisfies

det [Z_Iln—(Al'FB]K])]:Z_". (2.5)
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Proof: The polynomial d(z, w) in (2.2) may be written as [7]
a(z, wy= det I, —z(A, + B,K\] det {In—w[(4:+B,K3)
+(A3+ BK))z ', — (A, + BiK)) (A + BiK))I}

= det [I,—z(A,+ BiK))] det [In— wiFi(2) + Gi(D)K))]
where

Fi@)=As+(A;+BK) [z7,— (A, + BiK)] A, (2.6)

and

Gi(@) =B+ (A3 + BK )z 'L, — (A1 + BK)] 'B.. 2.7

By virtue of {7, Corollary 4.2 and Theorem 4.3}, one concludes that (1.1)
is stabilizable by K = [K; Kx2)] if A, +B K is stable and K(z)
stabilizes (¥}, Gy) with |z] < 1. Note that the controllability of (4;, B))
implies the existence of a K| € RP*" such that (2.5) holds. Doing this,
the rational matrices F,(z) and G(z) become F(z) and G(2) in (2.3) and
(2.4), respectively; condition 2) then completes the proof of the
theorem. (|

Notice that F1(z) and G(z) defined in (2.6) and (2.7) are, in general,
rational matrices, which makes the stabilization question of (#,(G), G1(2))
by a polynomial feedback difficult. However, by choosing constant
feedback gain K such that (2.5) holds, the resulting matrix pair (¥(z),
G(z)) given in (2.3) and (2.4) now are polynomial matrices in z so that the
well-known theorem of Morse [9] leads to the following conclusion.

Corollary 2.2: System (1.1) is stabilizable by (1.2) with X} &€ R?*",
K, € RP*7[z] if (A,, B)) is a 1-D controllable pair and (F(z), G(2)) is
controllable over R[z].

Remark 1: Using a similar argument, it is seen that Theorem 2.1 is also
valid under the following conditions: 1°) the pair (4, B) is 1-D
controllable, and 2°) the parametrized pair (P(w), Q(w)) with |{w] < 1
and

P(w)=A;+ w"(A,+ B Ky)Adj[w I, — (As+ BK3)As
Q(w) =B+ w™(Ay+ BIK)Adj[w I, — (As+ BK))1 By

is stabilizable by polynomial state feedback K,(w) € RP*"[w] where K,
€ R#> gatisfies

det [w=',— (Ay+ B,K)l=w™™.

Corollary 2.3: In the case p > 1, the stabilizability of the 2-D system
(1.1) by polynomial state feedback (1.2) is a generic property.
Proof: 1t is known [13] that the controllability of the 1-D pair (A,
B)) in (1.1) is generic. Further, for a given controllable pair (4,, By),
once the feedback gain K| is chosen such that (2.5) holds, the entries of
A,, A3, A4, and B, which appear in F(z) and G(2) relate the pair (F(z),
G(z)) to a point of a Euclidean parameter space in a natural way. Now
repeat the second part of the proof of [14, Theorem 2} (also using [14,
Lemmas 1 and 2]) where the continuous functions f;, i = 1, -, m + p
— 1 of [14] are now given by

glw I, ~F(2)]=0 and qG(z)=0

with ¢ = (g1, '**, gm) * 0 to conclude the genericity for the
controllability of the pair (F(z), G(z)). This, along with Corollary 2.2,
completes the proof. O

We now look at a special case of a single-input 2-D system, namely,
we consider the case m = 1. Denoting the pair given in (2.3) and (2.4) by
(A2), g(2)), one may ask when there exists a polynomial k,(z) such that
{(z) = f(z) + g(2)ky(z) maps the closed unit disk into the open unit disk
in the ¢ plane. In case g(z) has no zeros in |z| < 1, 1/g(z) could be
expressed as a convergent (uniformly in |z| < 1) power series £2 ; B2/,
[z] < 1 since [f(z)| and |g(z)| are bounded in [z]| < 1; by taking £x(2) =
—-f(z) Z¥, Bz’ with a sufficiently large N, one has

> Bz

i=N+1

f@)

@) =122 @ ki(2)| = [f)g(2)] <1 for |z|<1.
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If g(z) has some zeros in |z| < 1, but f(z) also vanishes at these points, the
same argument implies that there exists a k»{z) € R[z] such that |{(2)]| <
1 for |z] € 1. We thus have the following.

Corollary 2.4: Inthe case p = 1, m = 1, system (1.1) is stabilizable
by K = [Ki, k{2)] with K; € R, kyz) € RIz] if (4, B)) is
controllable and f(z)/g(z) (after possible cancellation) is analytic in |z] <
1 where fiz)(=F(z)) and g(z)(=G(z)) are given by (2.3) and (2.4),
respectively.

Remark 2: A similar assertion to Corollary 2.4 holds in the case p = 1
and n = 1.

Remark 3: If g(z) has some zeros, say z;, in the unit disk, and f{(z;) #
0, then {(z)) = Az) + 2(Z)kxz) = Az); the maximum modules
theorem thus gives |f(z1)] < max.,;,¢;|{(z)|. Therefore, in order to have a
kx(z) € Riz] such that |{(z)] < 1 for |z] < 1, it is necessary to have
[f(z1)] < 1. This necessary condition may be useful for checking the
possibility of having such a polynomial kx(z).

. EXAMPLES

Example 3.1

Consider an unstable 2-D system (1.1) with

1 0 : 0 1 g -1
-1 : -1 0 1 0
A= : , B= 3.1
1 -1 I - 0 1
0 1 -1 0

The instability of the system could be easily checked by a necessary
condition developed in [7]. Notice that (A,, B)) here is controliable in a 1-
D sense, and using K; = [, givesdet [z27 '], — (4; + B\K))] = 272 The
pair (F(z), G(2)) in (2.3) and (2.4) thus becomes®
1-z-72
z+7?

| I+ —1+z+22 _l -2

F‘(Z)—[ l_z_zz ] ’G(Z)_[_1+Zz
1-2z+73
z-z2-73

—z2
i.e., (F(z), G(2)) is R[z] controllable. Therefore, for any desired poles s,
and s, in R[z], there exists a k»(z) € R2*2[z] such that det [sf — F(z) +
G@)KA2)] = (s — s;(s — s3). A procedure to construct such a
polynomial state feedback matrix is available in [10) (also see [11]). For
instance, if s; = —0.5, s = 0.5, some straightforward manipulations

for which

rank <FENGE)>

—z2
= rank
[—1+z2

=2 forall z € C,

1-z-322+73
—14+z+2z2-73

I-z-2?
z+73?

yield
—5z5-13z* - 14.52° —-5z°- 1374 - 4.57°
~7.522~6z-0.5 +3.5z22—z+5
Kx2)=| 2027+ 5225+332%+2.52 2027+ 522¢ +232° - 18.52°

—723-5.75z*—5.752%
—5.75z+6.25

—6z3+ 11.752*-7.75z -2

Thus, state feedback u(i, j) = KX(i, j) with K = [, Ky(2)] stabilizes 2-D
system (3.1).

Example 3.2: Consider an unstable single-input 2-D system with m =
1 as follows:

-2 0: 3 1
-1 1: -2

A=) N 3.2)
-2 -4 2 3
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Note that (4, b,) is controllable and X; = [1 1] makes det [z71/, — (4,
+5K)] = 772, and f(z2)(= F(z)) and g(z)(= G(2)) in (2.3), (2.4) are
fz) = z + 2and g(z) = z + 3. To find k(2), we estimate |g(z)] = |z +

3| < 4 for |z] < 1 and expand
T
3 9 ’
Note that for |z] < 1,

1 LoNen
7+ \ 2@ z

fle)_z2+2 z+2 i
@ z+3 3

1
(3+z)14-2

1
<2—,+—2.

=

and [f(z)] = |z + 2| € 3. Thus, by taking / = 2 and

— Z+2 2 zz — 1 3 2
ky(z) = 3 <1—3+ >— 27(z —z2+3z+14)

we have

szl +kx(z)

|f(2) + g(2)kx2)| = | g(2)]| 2@

1
<4V(Z)|5;< 1,

namely, state feedback u(i, j) = [K k@) = [1 1 —1/27(z% — 22 + 32
+ 14)] will stabilize system (3.2).

IV. CONCLUSIONS

Theorem 2.1 and the corollaries indicate that stabilizing a 2-D system
will become easier if one uses certain past history of the local states
instead of static state feedback. Moreover, it has been seen that such a task
can almost always be done if p > 1. For the single-input case, R[z]
controllability and thus the present way of stabilizing a 2-D system is
clearly nongeneric. On the other hand, some recent observations on the
coefficient assignability question for retarded delay systems have made it
possible to deal with the problem in a larger system class. The interested
reader may peruse the recent paper [15].
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A Simplified Derivation of the Zeheb-Walach 2-D
Stability Test with Applications to Time-Delay Systems

JOHN N. CHIASSON, STEPHEN D. BRIERLEY, anD E. BRUCE
LEE

Abstract—Zeheb and Walach gave a stability test for N-D systems. For
2-D systems, a simpler derivation is presented here using the results of
DeCarlo ef al. 1t is then shown how the method may also be used to test
for stability (independent of delay) of retarded time-delay systems.

I. STABILITY OF 2-D POLYNOMIALS

71] 2

0@, @)=, Y, ayzizs,

i=0 j=0

with @; € RV i, J. Note n; = deg,, a(z,, z,), and n, = deg,, a(z1, 22).
The 2-D polynomial a(z,, z,) is said to be stable iff a(z,, 22} #0 |z,| < 1,
Iz2] € 1, (z1, z2) € C x C. For convenience, we assume that a(z;, z,) is
irreducible. Now, by DeCarlo et a/. [2] (a similar criterion is given in [3])
it follows that a(z;, zo) is stable iff

a(z, z)#0v(z, ) € T?

£{(zi, @) ECXC |z| =|z| =1} )]

and

a(z, z)#0vz € C such that |z|<1. )

This result of DeCarlo e af. was apparently first noted by Rudin [14]
and is quoted by Bose [15, p. 173]. Condition (1) is still, however, a two-
variable problem. We can simplify this by using the ideas given in [1,
Theorem 4]. Define

@z, 2) & 2Pz a(l/z,, 1/2)
Hy nz
= E" s T
ny—np—J 2"
i=0 j=0

Now we note that a(z3, z8) = 0 for (2%, 28) € T?iff a(1/z§, 1/z8) = O for
(1729, 1/28) = (&7, ) € T? where 7 denotes the complex conjugate of z,
i.e., a(zy, 28) = 0 on TZiff 4(z{, 28 = Oon T2

We have thus established the following.

Theorem 1: a(zy, 7,) is stable iff

a(z;, z») and &(z;, Z») have no common zeros on the unit bidisk 72

a’
and
a(z, D+0  |z|<1, z € C. @
Zeheb and Walach [1] proposed a test consisting of condition (1°)
above along with
a(zf, z)#0)z2| <1, z9 any element of C satisfying |z¢|=1, and

29

a(z;, z9#0 |z:] <1, z¢ any element of C satisfying |z8] =1.
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