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3) Image of defi If jm0  is a root of p + p I ,  it  must be a root of both p 
and p ' . Let jw, be a root  of p such that p(s) = (s - jo)O)kq(s), q(iwo) # 
0. Then q is  either quasi-real or quasi-imaginary. Further, 

On def, s - j w o  = €e@ with LS :T /~  -% - 912,  and q'(s)/q(s) will 
be nearly equal  to q'( jwo)/q( jwo) which is purely imaginary. Hence, the 
image of def will be close to a large semicircle in the RHP, traversed 
counterclockwise and it will not cross the negative-real axis. 

From 1)-3)  we conclude that F(c) does not encircle the origin at all. 
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Stabilization of Two-Dimensional Systems 

E. BRUCE LEE AND WU-SHENG LU 

Abstract-Several new results on stabilization of discrete twodimeo- 
sional systems are presented. If the horizontal (or  vertical)  part of the 
system in the Roesser model is controllable, then the stabilizability 
question is the same as that for a related discrete delay system. 

I. INTRODUCTION 

There is interest  in  the Roesser two-dimensional model, which  was 
originally motivated by image processing, as a model for certain 
multipass processes (such as machining of metal). Recent results [l]  have 
demonstrated that stability along the  pass  is equivalent to certain two- 
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dimensional stability criteria.  The interest here is  in acquiring stability by 
the use of local feedback control. 

Stabilizing a  discrete two-dimensional (2-D) system by state feedback 
or output feedback has long been of interest;  see, e.g., [2]-[8]. It is now 
becoming clear [3]-[SI that stabilizing a discrete 2-D system by a constant 
state feedback is, in general, very difficult. Intuitively speaking, this is 
because the state in the Roesser model [12] is only a kind of local 
information of an infinite dimensional system. 

In this paper, we present several new results dealing with stabilization 
of a discrete 2-D  system  having  the following model: 

y(i, j)=[Cl Cz]X(i, j )=CX( i ,  j )  (1.1) 

with boundary conditions ~ ~ ( 0 ,  j )  = h ( j )  and xu(i, 0) = u( i )  for i ,  j 2 0 
by a polynomial state feedback 

u(i, j ) = [ K l ( z ,  w) KAz, w)lX(i, j )=K(z,  w)X(i, j )  (1.2) 

where xh E R", xv E Rm, u E RP, y E R', i and j are integers, and z, 
w are delay operators in the horizontal and vertical directions, respec- 
tively. K(z, w) E RPx("+"')[z, w], i.e., K(z,  w) is from the polynomial 
ring in two variables. 

In light of  an earlier work [7l, the problem is reduced  to  the  question  of 
controllability of a 1-D pair (A l ,  Bl), and  then, if it  is so controllable, 
checking stabilizability of a relevant discrete delay system. Consequently, 
it is seen that the stabilizability of a discrete 2-D system by polynomial 
state feedback is a generic property when p > 1. Moreover, if p = 1. and 
n = 1 (or rn = l), some well-known properties of an analytic function 
will  immediately lead to a condition for stabilizing such a discrete 2-D 
system. Two examples illustrating the results are included in Section III. 

II. MAIN RESULTS 

A 2-D z transform applied  to (1.1) gives the transfer function matrix 
corresponding to (1.1) : 

where 

It may be noted that the variables z and w in (1.2) and (2.1)  are 
consistent so that (1.1) and (1 2 )  give a closed-loop system with 
characteristic polynomial as follows: 

r 

The main result on stabilizability (i.e., ensuring that &z, w) is a 
Shanks' polynomial) is as follows. 

Theorem 2.1: System  (1.1) is stabilizable by state feedback u(i, j )  = 
KX(i, j )  with K = [K ,  K2(z)], K I  E R p x n ,  K2(z)RPxm[z] if  1) the pair 
(A ,, B, )  is a 1-D controllable,  and  2)  the parametrized pair (F(z), G(z)) 
with (z( < 1 and 

F(z)=A,+z"(A~+B~K~)A~~[z-'I.-(A,+B,KI)IAI (2.3) 

G ( z ) = B ~ + z ~ ( A ~ + B z K I ) A ~ ~ z - ~ I ~ - ( A I + B I K I ) I B I  (2.4) 

is stabilizable by polynomial state feedback K2(z) E Rpxm[z]  where XI 
E RPxn satisfies 
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Proof: The polynomial 6(z, W )  in  (2.2) may be written as [7l 

i ( z ,  w)= det [ In-z (Al+BIKI]  det {I , -w[(A4+B2K2)  

+(A~+B~KI) (Z- ' I , - (AI+BIKI) ) - ' (AZ+BIK~)~~  

= det [ I ,  - z(A I + BIKJ det [ I ,  - w(Fdz) + Gl(z)b)l 
where 

FI(Z)=A~+(A~+B~KI)[Z-'I~-(AI+BIKI)I"A~ (2.6) 
and 

G,(Z)==B~+(A~+B~KI)[Z-'I,-(AI+BII(I)]-'BI. (2.7) 

By virtue of 17, Corollary 4.2 and Theorem 4.31, one concludes  that (1.1) 
is  stabilizable by K = [Kl K2(z)] if AI  + BIKl is stable  and K ~ ( z )  
stabilizes (F,,  GI) with (21 < 1.  Note  that  the  controllability  of (A ], B l )  
implies the existence of a KI E R p x "  such  that (2.5) holds.  Doing this, 
the rational  matrices Fl(z) and Gl(z) become F(z) and G(z) in (2.3) and 
(2.4),  respectively;  condition 2) then  completes the proof  of the 
theorem. 0 

Notice  that FI(z) and GI(z) defined  in (2.6) and (2.1) are, in  general, 
rational  matrices,  which  makes the stabilization  question of (Fl(G),  G,(z)) 
by a  polynomial  feedback  difficult. However, by choosing  constant 
feedback  gain K I  such  that (2.5) holds, the resulting  matrix  pair ( f lz) ,  
G(z)) given  in  (2.3) and (2.4)  now are polynomial  matrices  in z so that the 
well-known theorem of Morse [9] l e a d s  to the following  conclusion. 

Corollary 2.2: System  (1.1) is stabilizable by (1.2) with Kl E Rpxn, 
Kz E RPxm[z] if (Al, B l )  is a  1-D  controllable  pair  and ( f l z ) ,   G(z) )  is 
controllable over R [z] . 

Remark I :  Using  a similar  argument, it is seen  that  Theorem  2.1  is also 
valid  under the following  conditions: 1') the  pair (A4, B2) is 1-D 
controllable,  and 2') the  parametrized  pair (P(w),  Q(w)) with ( w I  < 1 
and 

P(w)=AI+ w " ( A ~ + B I K ~ ) A ~ ~ [ w - ' I , - ( A ~ + B ~ K L ) I A I  

Q(w)=B,+ W ~ ( A ~ + B I I ( ~ ) A ~ ~ [ W - ' Z , - ( A ~ + B ~ K Z ) I ~ ~  

is stabilizable  by  polynomial state feedback Kl(w)  E Rpx"[w] where K2 
E Rpxm satisfies 

det [w-lI,-(A4+B2KL)]=w-". 

Corollary 2.3: In the  case p > 1, the stabilizability of the 2-D system 
(1.1) by polynomial state feedback ( I  .2) is a  generic  property. 

Proof: It is known [13]  that the controllability  of  the  1-D  pair (AI ,  
B,) in  (1.1) is generic.  Further,  for a  given  controllable  pair (Al,  Bl) ,  
once the  feedback  gain K l  is chosen  such  that (2.5) holds,  the  entries  of 
Az,  A, ,  Ad, and B2 which appear in F(z) and G(z) relate  the  pair ( f lz) ,  
G(z)) to a  point  of  a  Euclidean  parameter  space  in  a  natural  way. Now 
repeat the second part of  the  proof  of 114, Theorem 21 (also  using [14, 
Lemmas 1 and 21) where  the  continuous functionsf;, i = 1, . . . , m + p 
- 1 of [I41 are now given by 

q[ w - ' I ,  - F(z)] = 0 and qG(z) = 0 

with q = (ql. - * .  , qm) # 0 to  conclude the genericity  for  the 
controllability  of  the p i r  (F(z), G(z)). This, along with  Corollary 2.2, 
completes  the proof. CI 

We now  look at a  special case of a single-input  2-D  system,  namely, 
we  consider the  case m = 1. Denoting  the  pair  given  in (2.3) and (2.4) by 
If(z), g(z)), one may ask  when there exists  a  polynomial k2(z) such  that 
nz) f(z) + g(z)k2(z) maps the closed  unit  disk  into  the  open  unit  disk 
in the < plane.  In case g(z) has no zeros  in Iz( < 1, l /g(z)  could  be 
expressed as a  convergent  (uniformly  in IzI < 1) power series CEO pit', 
17.1 < 1 since mz)[  and Ig(z)l are bounded  in ( z (  < 1; by taking k&) = 
-f(z) q?', &' with a sufficiently large N ,  one has 

If g(z) has some zeros in ( z (  Q 1,  butf(z) also vanishes  at  these  points, the 
same  argument  implies  that there exists  a k2(z) E R[z] such  that I &)I < 
1 for 1zI Q 1. We thus  have the following. 

Corollary 2.4: In the case p = 1, m = 1 ,  system  (1.1) is stabilizable 
by K = [K l ,  k2(z)] with Kl E RIx",  k,(z) E R[z] if (A,,  Bl) is 
controllable  and f ( z ) /g(z )  (after  possible  cancellation) is analytic  in IzI < 
1 where f ( z ) ( = f l z ) )  and g(z)(=G(z)) are given by (2.3) and (2.4), 
respectively. 

Remark 2: A similar  assertion to Corollary 2.4 holds  in  the casep = 1 
a n d n  = 1. 

Remark 3: If g(z) has  some zeros, say zI, in the unit disk, and&,) # 
0, then nz1) = f(zl) + g(zl)k2(z1) = f(zl); the maximum  modules 
theorem  thus  gives mzl)l < man,, 1 Mz) I. Therefore, in order  to have  a 
k2(z) E R[z] such  that 1Mz)l < 1 for 121 < 1, it  is  necessary to have 
mzl)l < 1. This necessary  condition  may be useful for checking the 
possibility of having  such  a  polynomial k,(z). 

IU. EXAMPLES 

Example 3. I 

Consider an unstable  2-D  system  (1.1)  with 

1 0 :  
0 - 1  : 

1 - I  : 
0 0 :  

The instability of the  system  could  be  easily  checked  by  a  necessary 
condition  developed  in 13. Notice  that (A  I ,  B l )  here is controllable  in  a  1- 
D sense, and  using K I  = 1, gives  det [z-lZ2 - (Al + BIKI)] = z - ~ .  The 
pair (F(z), at)) in (2.3)  and  (2.4)  thus becomes' 

r 

L 

for which 
J L 

rank <F(z)IG(z)> 
1 - ~ - ~ 2  1 - ~ - 3 3 t 2 + ~ 3  1-2+23  

= rank [ -;fz2 z+z2 - 1 + z + 2 2 - 2 3  2 - 2 - 2 3  1 
= 2  for all z E C,  

i.e., (F(z), G(z)) is R[z] controllable. Therefore, for any  desired p o l e s  SI 
and s2 in R [ z ] ,  there exists  a k2(z) E R 2 x z [ ~ l  such  that  det [SI - F(Z) + 
G(z)Kz(z))] = (s - sl)(s - s2). A procedure to construct  such  a 
polynomial state feedback  matrix is available  in [ I O ]  (also see [111). For 
instance,  if sI = -0.5, s2 = 0.5, some straightforward  manipulations 
yield 

i 
- 525 - 13z4 - 14.52' -Si?- 13z4-4.5z3 

- 7 . 5 ~ ~ - 6 ~ - 0 . 5  +3.5z2-2+5 

K~(z)=  2oz7+52z6+33zs+2.5z4  20~'+52Z~+232~-18.5z~ 
-6z3+  11.15~2-1.15z-2 - 7 ~ ' - 5 . 7 5 ~ ~ - 5 . 1 5 2 ~  

-5.75~+6-25 I 
Thus, state  feedback u(i, j )  = KX(i, j )  with K = [I2 K2(z)1 stabilizes  2-D 
system  (3.1). 

Example 3.2: Consider an unstable  single-input 2-D system  with m = 
1 as follows: 
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Note  that (A ,, b,) is  controllable  and K I  = [ I  I] makes  det [z-’Zz - (A,  
+ blKJ] = z - ~ ,  and f(z)( = f l z ) )  and g(z)(=G(z)) in (2.3), (2.4) are 

f ( z )  = z + 2 and g(z) = z + 3. To find k2(z), we  estimate lg(z)l = Iz + 
31 < 4 for IzJ < 1 and  expand 

Note  that  for ( z I  4 1, 

and F(z)l = ( z  + 21 Q 3.  Thus, by taking 1 = 2  and 

kz(z)= -- ( I - -+-  :) = -- d7 (z  3 -  2 + 3 ~ + 1 4 )  3 

we have 

namely,  state  feedback u( i , j )  = [K, k2(z)] = [I 1 - 1/27(z3 - z2 + 3z 
+ 14)] will  stabilize  system (3.2). 

rV. CONCLUSIONS 

Theorem 2.1 and  the  corollaries indicate that stabilizing  a 2-D system 
will become  easier  if one uses certain  past  history  of  the  local  states 
instead  of static state  feedback. Moreover, it has  been  seen  that  such  a task 
can almost  always  be done if p > 1. For  the single-input  case, R[z] 
controllability  and thus the  present  way  of  stabilizing  a 2-D system is 
clearly  nongeneric.  On the  other  hand, some  recent  observations  on  the 
coefficient  assignability  question for retarded  delay  systems  have  made it 
possible to deal  with  the  problem  in  a  larger  system  class. The interested 
reader may peruse the  recent  paper [15]. 
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a(zl,  z2) and ci(zl, z2) have  no  common zeros on the unit bidisk T2 

(1 7 
and 

a(z,  z)#O lzl<l, z E C .  (2) 

Zeheb  and  Walach [I] proposed  a  test  consisting of condition (1’) 
above  along  with 

a(zi’, zz) #o  lz2lG I ,  zp any  element of C satisfying ( E ? (  = 1 ,  and ( 2 ‘ )  

a(z1, z$)#O ] z l ] < l ,   z f  any  element  of C satisfying 1zf]= 1. 
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