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Stability Analysis for Two-Dimensional 
Systems via a Lyapunov Approach 

WU-SHENG LU AND E. BRUCE LEE, FELLOW, IEEE 

Ahsfruct -Some necessary and sufficient conditions are given for stabil- 
ity analysis of two-dimensional (2-D) systems based on a Lyapunov ap- 
proach. The study was carried out using the Roesser state-space model, 
which when combined with the Lyapunov theory provides the new check- 
able tests for stability. Also, the results lead to techniques for selecting 
stabilizing state feedback gain matrices for the 2-D systems. 

I. INTRODUCTION 

A N IMPORTANT aspect of a 2-D digital filter is its 
BIB0 (Bounded-Input Bounded-Output) stability 

(meaning that a bounded input always yields a bounded 
output). A 2-D filter cannot be adopted in practice unless 
its stability is guaranteed. Many publications have ap- 
peared in this area [l], most of which were carried out in 
terms of the stability of a related polynomial in two 
complex variables. On the other hand, recent progress on 
internal descriptions of the 2-D systems has provided the 
possibility to describe the stability question in a state-space 
version. We mention [2], where an appropriate state-space 
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model for the 2-D filters was suggested known as Roesser 
model; [3] where a simple scheme is given to get a minimal 
realization of a 2-D transfer function of the form 
l/a( z;‘, z;‘) so that one could discuss the stability of the 
2-D polynomial a( z; l, z; ‘) in a state-space version without 
loss of generality; and [4], [5] which set forth a counterpart 
of the 1-D Lyapunov stability theorem for the 2-D case. 

In [6], some observations on the stability issue in state 
space form have been given. This paper is its continuation 
with emphasis on the Lyapunov approach. 

Consider Roesser’s state-space model [2] for a SISO 2-D 
system: 

EA Xh [ I +Bu 
X” 
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where xh and xv are ni-dimensional and n ,-dimensional 
vectors, respectively. The 2-D z-transform yields the sys- 
tem transfer function 

b(z;l, z;‘) 
f+,‘,z,‘) = -1 _ 

4Zl J2l) 
(1.2) 

Equation (1.2) where z;‘, z;’ are delay operators and 

In1 - z;‘A, - z11A2 1 (1.3) - zi1A3 In2 - z;lA‘, 

Throughout this paper, the polynomials a( z; ‘, z;‘) and 
b(z;‘, z;‘) are assumed to be factor coprime and there are 
no nonessential singularities of second kind [7]. A poly- 
nomial a(~;‘, z;‘) is said to be a Shanks’ polynomial 
whenever a( z; ‘, z;’ ) # 0 in the closed bidisc U2 = 
w’9 z;‘)] ]z;l] ~1, ]z;‘] al}. It is well known that the 
system (1.1) is BIB0 stable if and only if a(~;‘, z;‘) is a 
Shanks’ polynomial [l]. 

In 1-D case (state-space version) the Lyapunov theory 
has been playing a crucial role in stability analysis. The 
stability question for a 2-D system is reduced to the 
existence of positive definite Hermitian (P.D.H.) solution 
of a 1-D Lyapunov equation with a complex parameter in 
the next section. As a result, a new stability criterion is 
given. In the particular cases when n, = 1 or n2 = 1 this 
criterion becomes quite simple and computationally attrac- 
tive when certain conditions are satisfied. A couple of 
sufficient conditions are also given. 

A 2-D Lyapunov theorem as established in [4] and [5] 
can be stated as follows. 

Theorem 1.1 [4], [5]: a(~;‘, z;‘) in (1.3) is a Shanks’ 
polynomial if and only if there exists a positive definite 
(P.D.) matrix G = G,@G, such that the matrix 

W=G-ATGA (1.4) 

is P.D., where @ denotes the direct sum of matrices 
G, E R “1Xnl and G E R”z~“z 

Differing from i-D case, one may have difficulty in 
using this theorem to check the stability of a given 2-D 
system since G in (1.4) must have a special structure. 
However, the theorem has been shown to be a good 
starting point to get some insight into the stability proper- 
ties. In Section III, necessary conditions as well as a 
sufficient condition are derived from the 2-D Lyapunov 
equation (1.4). 

Moreover, some stabilization could also be obtained by 
the 2-D Lyapunov approach. Actually, a related algebraic 
Riccati equation is derived and a stabilizability criterion, 
using some results in [lo], is given. 

II. 1-D LYAPUNOV EQUATION WITH A COMPLEX 
PARAMETER 

In [6], the following theorem was given: 
Theorem 2.1 [6]: The following statements are equiv- 

alent 
1) System (1.1) is BIB0 stable; 

2) (i) A, is stable,’ 
(ii) A, + A,(z,I,, - A1)-lAZ with ]zi] = 1 stable; 

3) (i) A, is stable, 
(ii) A, + A,(z,I,, - A4)-Q3 with (z2] =l is stable. 

Define 

P,(z)=A,+A~(zI,~-A~)-~A, (2-l) 

P,(z) = A,+ A,(zZ,, - A,)-‘A,. (2.2) 
Note that for each fixed z ET = { zI IzI =l}, Pi(z) is in 
general a complex matrix. The following lemma gives a 
condition for Pi(z) to be a stable matrix for each z E T. 

Lemma 2.2: A matrix F(z) with a complex parameter 
z E T is stable if and only if for any given P.D.H. matrix 
W(z) with z E T, there exists a unique P.D.H. matrix G(z) 
such that 

G-F*GF=W. (2.3) 
Proof: The proof is similar to that of [8] where a 

Lyapunov theorem for a complex matrix related to a 
continuous system was shown. 

I) Sufficiency: For any fixed z E T, let h and u be any 
eigenvalue and eigenvector of F, respectively, i.e., Fv = Au, 
v*F * =xv* where v* = UT, F * = FT. Premultiplying (2.3) 
by v* and post-multiplying (2.3) by v yields 

u*Gu - v*F*GFv = v*Gu(l- IhI’) = u*Wv. 

Hence, 

which shows F is stable. 
2) Necessity: Suppose that for any fixed z E T, F is 

stable and a P.D.H. matrix W is given. Set 

G= f (F*)~wF~. (2.4 
k=O 

Note that G in (2.4) is well defined since F is stable and G 
is clearly a P.D.H. matrix. Moreover, we have 

G-F*GF= E (F*)kw~k- f (F*)k+l~~k+l=~. 
k=O k=O 

Assume now that G, is another solution of (2.3) then 

G= 5 (F*)~wF~= 5 (F*)~@,-F*G~F)F~ 
k=O k=O 

= kEo(~*)k~,~k- f (F*)~+‘G~F~+~=G~ 
k=O 

By this lemma, Theorem 2.1 has following equivalent form. 
Theorem 2.3: System (1.1) is BIB0 stable if and only if 
1) (i) A, is stable, 

(ii) The matrix equation 

G,(z,)-P;C(z,)G,(z,)P,(z,) = W,(z,> 

(2.5) 

‘A square matrix A is stable in case all its e&endues lie in the interior 
of the unit circle in the complex plane. 
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has a P.D.H. solution G,(z,) for any given 
n2 x n2 P.D.H. matrix W,( zi) and any zi E T, 

or 
2) (i) A, is stable, 

(ii) The matrix equation 

G2(z,)-P,*(z,)G,(z2)P2(z,) = W,(z2) 

(2.6) 
has a P.D.H. solution G,(z,) for any given 
n, x n, P.D.H. matrix W,(z,) and any z2 E T. 

For a given Wl(zl), say Wl(zl) = Iv*, one may solve the 
linear matrix equation (2.5) to obtain a rational matrix 
solution G,(z,) which is obviously a Hermitian matrix. 
Representing zi = eje with 0 < B Q 2~ and denoting the 
k th-order principal minor of G,( zi) by gk( 0), we note that 
gk(0) (1 f k < n2) are real rational functions of one real 
variable 8 over the closed interval [0,2m]. We thus have 

Corollary 2.4: System (1.1) is BIB0 stable if and only if 
1) (i) A, is stable, 

(ii) gk(8)>OforO<8<2~,1<kkn2; 
or 

2) (i) A, is stable 
(ii) hk(0) for 0 < 0 & 2a, 1 d k f n, where hk(d) is 

the kth-order principal minor of G2(eje) which 
is the solution of (2.6) for a given P.D.H. matrix 
W,( e”). 

where a, E R, A, E RlX”2, A, E R”lX1, A, E R”lX”2. As- 
sume that A, is a diagonalizable matrix with eigenvalues 
{pi} which are all real, i.e., there exist nonsingular T2 such 
that A, = TT1A4T2 = diag { pi}. Thus the transformation 
T =l@T, gives 

J=T-~AT= al A2 [ 1 A3 4 

where 

a2 = A2T2 = (d, . . . dn2) 

L,=T,-~A,=(~, ..- f,,). 

Define 

6, = difi, l<i<n,. (2.10) 

We claim the following 
Theorem 2.6: Assume that n, = 1, A, is a diagonaliz- 

able matrix with real eigenvalues (pi, 1 Q i Q n2 } and all ai 
given in (2.10) have the same sign. Then the system (1.1) is 
BIB0 stable if and only if 

(i) (pi]<l, l<i<n,. 
(ii> Max {la, + A2(ln, - &-&I, Ia, - A2(ln2 + 

AJ1A31} ~1. 
Proof: The necessity is obvious. To show the suf- 

ficiency, we note that 

Example 2.5: Consider the case n, = n 2 = 1, (1.1) then 
IS(z2) I= 

becomes 
al + A2(z2L2 - 4r4 

u1 + a,( zJn2 - 2,) -‘A, 1 

n2 6. 
a,+ c A I I 

PI 
i=lz2-Pi 

= u,+sgn(&) 2 e 
i=lz2 I 

Taking Wl(eje) = 1, (2.5) gives 

gl(l-lur+f$-~2)=l withz=eje wherewe~~~~~~~~‘;“““i’ 

thus g, > 0 if and only if 

‘2’3 u4 + - <l for z = eje. 7 - n. (2.8) 

Note that l(z) = u4 + (u2u3/(z - al)) is a bilinear trans- 
formation which maps the unit circle in the z-plane onto a 
circle in the c-plane which is symmetric with respect to the 
real axis. Therefore, the minimum and the maximum of ]{I 
may be achieved only when z is real. That is, (2.8) is 
equivalent to 

mm { Ia, + b2W0 - 4) Iv Ia4 - b241+ 4) I} 4. 
(2.9) 

Namely, system (2.7) is BIB0 stable if and only if Iail < 1 
and (2.9) hold. This example motivated us to pursue the 
following stability criterion for the special class of 2-D 
systems with n, =l or n2 =l. 

In case n, =l, 

A= a’ A2 [ 1 A, A, 

which maps the unit circle in the z,-plane onto the circle 
with real center. Thus 3(z2) could achieve its maximum 
only when z2 =lorz,=-1. cl 

Remark: A similar result could be obtained in case 
n2= 1. 

In case ai in (2.10) have different signs, we have the 
following sufficient condition. 

Corollary 2.7: Assume n, =l, A, is a diagonalizable 
matrixwithrealeigenvalues{~i,1~i~n2},Si(1~i~t) 
in (2.10) have same sign and so do ai (t + 1~ i 6 n 2). The 
system (1.1) is then BIB0 stable if (i) Ipi] ~1, 1 <i =S n2, 
and (ii) max { (pi + pi, (pi + p2, a2 + Pi, a2 + P2} < 1 where 

q= a,+ i: L PI 
I I 

t IS.1 
r=l l-Pi ’ 

cQ= a,- c L 
i=l l+Pi 

&=lij!!j. P2=li$+ly. 
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Proof: Note that 

~l+~*h4z- 

(2.11) gives 

- 9.97 10 max 0.7+ ~ 
z2 E T z2 -0.5 + z -0.495 

Remark: One may tighten the condition (ii) in Corollary 
2.7 by combining each two terms having opposite signs in 
Si to obtain a more accurate estimate. Suppose, for in 
stance, sgn 8, = 1, sgn 8, = - 1, we consider 

tihere 

~l(z)~‘(~,+~2)z-(~2p1+s1pz) {2(z)= _’ 

Z-P1 z P2' 

Note that [i(z) is a bilinear transformation which maps 
the unit circle on the z-plane onto a circle in the S,-plane 
with real center. Thus [{i(z)1 may reach its maximum at 
z = 1 or z = - 1 only. Therefore, for z E T, 

61’ 62 
-+- 
z - CL1 z-P‘2 

-9.97 + 10 dO.7+ max ~ 
Z,ET 22 -0.5 z - 0.495 

= 0.7 + 0.141= 0.841 

which with a, = 0.7 implies stability of the system. 

III. STABILITYRESULTS RELATEDTO A 2-D 
LYAPUNOVTHEOREM 

An important result associated with the 2-D Lyapunov 
equation (1.4) has been described in theorem 1.1, from 
which some necessary conditions as well as some sufficient 
conditions could be derived for a 2-D systems without 
restriction of the dimension of its state space. 

To begin with, we rewrite the right-hand side of (1.4) in 
detail: 
G-ATGA 

[ 

G, - A;G,A, - A;G2A, - A;G,A, - A;G,A, 
= 

- A;G,A, - A;G,A, 1 G,-A:G,A,-A;G,A, . 

‘(3.1) 
Taking 

T= 

In, (G,-A:G,A,-A;G,A,)-‘(A:G,A,+A;G2A4) 

0 I “2 1 
(3.2) 

1 
= l-(y,lmax 

al+ 62 - ~2l-Q - bP2 for which the involved inverse matrix is assumed to exist, we 
l-111 ’ then have 

a,+ 82 - 62PL1- 4P2 (2.11) TT(G - ATGA)T= 

I+/% 
. 1 G, - A;G,A, - A,G,TA, 0 1 

Interchanging the roles of pi and p2, we also have 1 0 G, - A;G,A, - A;G,A, - Q] 

(2.12) 

where 
(3.3) 

Q = ( A;G,A, f A;G2A,) TQ;‘( ATG,A, + ATG,A,) 

(3.4) 

Equations (2.11) and (2.12) may be useful in testing for 
stability as exhibited in the following example. 

Example 2.8: Consider a 2-D system with 

I 

0.7 ; 1.0 5.0 -_--- 
A= -9.975j50--5--- 

2.0 I 0 0.495 1 
Condition (ii) in Corollary 2.7 is not satisfied, however, 

and 

Q, = G, - A;G,A, - A;G,A,. (3.5) 

Theorem 3. I: The following conditions are necessary for 
BIB0 stability of the system (1.1): 

(i) A, is stable, 
(ii) A, is stable, 
(iii) A is stable. 
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Proof: By Theorem 1.1, if (1.1) is BIB0 stable, then 
WI = G, - ArG,A, - AyG,A, > 0 which implies G, - 
ATG,A, = W, + ATG,A, > 0 i.e., A, is stable. Similarly, 
G, - AzG,A, = W, + ATG,A, > 0 has a positive definite 
solution G, so that A, is stable. Finally, the fact that 
G - ATGA = W for W > 0 has positive definite solution G 
leads to the stability of A. 0 

In [6] we obtained the same necessary conditions using a 
different approach. 

Theorem 1.1 and (3.3) immediately lead to the following: 
Theorem 3.2: The system (1.1) is BIB0 stable if and 

only if there exist positive definite matrices G, and G, 
such that Q, in (3.5) and G, - AzG,A, - ATGZG,A, - Q 
with Q in (3.4) are positive definite. 

We now partition W in (1.4) as 

w= Wl w2 [ 1 w;’ w4 
where W, E R”lx”l, W, E R”zXn2, (1.4) then gives 

WI = G, - A;G,A, - A;G,A, (3.6) 

W, = G, - A;GG,A, - A;G,A, (3.7) 

W,,= - A;G,A, - A;GG,A,. (3.8) 

One may reduce solving the 2-D Lyapunov equation 
(1.4) to asking the following questions. 1) Given W, > 0 
and W, > 0, do (3.3) and (3.4) have positive definite solu- 
tions G, and G, under certain conditions? 2) If they do, 
under which conditions does the matrix Wi obtained by 
substituting the positive definite solutions G, and G, of 
(3.6) and (3.7), make W > O? 

The way we answer the first question is to construct two 
iterative P.D. solution sequences { G$k)} and { Gik)} which 
could be determined from the following recursive equa- 
tions: 

Gik’ - A;Gik)A, - A;Gik-‘)A, = W, (3.9) 

Gik’ - A,Gjk)A, - A;Gik-l)A, = W, (3.10) 

for k =1,2; . 0, with initial data Gj”) = In, and G$‘) = I,,,, 
provided that A, and A, are stable matrices. 

Define the error sequence 
E(k) = (G{k+l) +k))$ (G$“+l)-G$k)). 

By (3.9) and (3.10) we have 

where 

EC“) - ATE( = rT,y(k-‘jr (3.11) 

0 A2 
A=A,$A, and I?= A [ 1 3 

o 

To estimate E , (k) let F=+(A-I,)(A+I,)-’ and H= 
I’(A + I,)-’ with n = n, + n2, then (3.8) becomes 

E(k)F+ FTE(k)= - HTE(k-l)H. (3.12) 

In [9], some results involving estimate of a Lyapunov-type 
operator were given. Let BE C’x’, C E CmX”‘, define a 
linear operator T: Cmx’+Cmxl by TP = PB - CP. The 

separation of B and C is then defined by 
sep, (B, C) = inf llTPlld = inf l[PB - CPII, 

bi,d = 1 lIplId = 1 

where d = 2 or d = F which refer to the spectral norm and 
Frobenius norm, respectively. 

Theorem 3.3 [9]: Let the columns of X and Y form the 
complete system of eigenvectors for B and C, respectively, 
then 

sep,(B q > m+(B)-h(c) 1 9 , 
NxP(y) 

(3.13) 

(3.14) 

where X(B) and X(C) are spectra of B and C, respec- 
tively, IA(B)- X(C)1 = {(X - XI Ih E h(B), x’ E X(C)}, 
D( .) is the condition number of the involved matrix with 
Frobenius norm. 

In our case (3.13) and (3.14) mean that 

sep, (F, - FT) > mdX(F)-X(-F)l (3 15) 
DYX) 

sep, (F, - FT) 2 mdh(F)-X(-F)I t3 16) 
~I”~D~(Y) . ; 

By (3.15) and (3.12), we obtain 

llE(k)ll~ 6 
llHll;D2(X) 

minIX(F)--X(-F)1 
llE(k-l)ljF (3.17) 

similarly, 

IIE(k)ll < 
n”211H2112D2(X) 

2’ minIX(F)-X(- F)I 
I,E(k-‘)l, (3 ls) 

2’ . 

The following theorem gives an answer to question 1). 
Theorem 3.4: Assume that A, and A, are stable 

matrices. For given W, > 0, W, > 0, (3.6) and (3.7) have 
unique P.D. solution G, and G, if 

IIHll;D’(X> E 
FE minIh(F)-h(- F)I <’ 

(3.19) 

where X is the complete system of eigenvectors for F. 
Proof: Equations (3.19) and (3.17) imply IIEck)ll,g 

e~]]E(“)]].and IIEck)ll ~+Oask-+co.Namely{G~k)}and 
{Gik’> are two convergent sequences and G, = 
lim k+ooGjk)aO G,=lim k-m GJk’ > 0. Letting k + 00 in 
(3.9) and (3.10) keld (3.6) and (3.7), respectively. Further- 
more, G, = W, + ATG,A, + ATG,A, > 0 and G, = W, + 
A,G,Az+ ATG,A, > 0. To show the uniqueness, suppose 
that {G,, G2} and { Gi, G2} are the solutions of (3.6) and 
(3.7). Same procedure as done for Eck) gives 

KG - W@ w2 - 62) II F~EFII(G~-~~)~(G~-G~)IIF 

which would be impossible unless G, = Gi and G, = G2. 0 
Now we are in a position to deal with question 2). We 

first define a linear operator L: Cnx” + CnXn by 
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where 

K=+(A-zn)(A+zn)-l (3.20) 

provided that A is stable. Equations (3.6) and (3.7) could 
now be written as 

= -(A+Zn)-T 7 ;d (A+Z,)-’ [ 1 
Thus Theorem 3.3 yields 

2 

PZ”~D~( Z) 

’ minIh(K)-h(-K)I 

(3.21) 

where Z is the complete system of eigenvectors for K. We 
also note that (3.8) may be written as 

W, = - [A; A;](G,BG,)[A; A;lT 

which with (3.21) lead to 

Il%llz 6 1[::11,1l[::1ll ~z”~D~( Z) 

,minjh(K)-h(-K)j 

.ll(A+Z~,-TtWl~W4)tA+1,)-1112 
=s(w,, w,). (3.22) 

For any nonzero x E R”, let 

Xl 
x= I 1 X.l with xi E R”1, x2 E Rn2, 

As an example to illustrate the use of the theorem, we 
consider a 2-D system with 

for which 

F= -0.21 0 
0 - 0.21 1 

- 0.042 
0 I 

and X=Z,. 

Thus 

EF= 2~0.042~~2 =. 017<l 
2x0.21 * . 

To check the condition (3.26), we compute 

-0.4 
-0.8 1 

(A+Z,)-‘= [ -;‘; f;]. 

Also note that A is normal so that the matrix Z in (3.25) is 
orthogonal, i.e., D2( Z) = 2. Hence 

s( In,, I,,) = (0.42 +0.22)x 
21’2 x2x0 5 . o 4 

= 0.71 Cl. 
It is also seen that A,, A,, and A are stable. Theorem 3.5 
now implies the stability of the system. 

IV. STABILIZATIONOFA 2-D SYSTEMBY STATE 
FEEDBACK 

In case the system (1.1) is unstable, one may ask whether 
L LJ 

XTWX = x;w,x, + x2w4x;+ 2xTW2x2 
a state feedback 

a xTwPbb - Il%ll2llxll: u(i, j) = -K XYi, j> 
~XT[(Wl~W4)-~(Wl,W4)zn]X (3.23) 

[ I x’ti, j) 

exists such that the closed-loop system 
which indicates that the matrix W will be positive definite 
if [(Wl@W2)- S(W,, W,)Z,] is a P.D. matrix. We now 
choose W, = In,, W, = In*, (3.23) then becomes [::I:~~~~~]=tA--,[:21:::i 

(4.1) 

1 
xTWxbXT(l-S(z~l,z~,))X (3.24) is stable. The same question for MIMO 2-D systems may 

also be considered. In the rest of this section we assume 
with that B E R(“lf”~)xP ad K E RPx(n~+“z). 

s(z~1~z~2)=l~[::]H,~[::]l~2~n~~~~’~’,,~ 

Replacing matrix A in (1.4) by A - BK gives 

(BTGA)TK+ KT(BTGA)-KTBTGBK 

#A+zJ-‘(A+ZJ’II, (3.25) +(G- ATGA- W) =0 (4.2) 

Thus xTWx will be strictly greater than zero if 

al, L,> <l. 

or 

(3.26) 
ATK+~TA-~T~~+Q=O (4.3) 

where 
The main result in this section could now be stated as 
Theorem 3.5: Assume that A, A,, and A, are stable, 

a=BTGA D=BTGB and Q=G-ATGA-W. 

then the system (1.1) is BIB0 stable if cF ~1 and (4.4 
S(Z,,, Zn2) < 1 where Ed and S(Z,,, I,,) are defined by Notice that, in case p = n, + n2, (4.3) is a matrix Riccati 
(3.19) and (3.25), respectively. equation with D > 0 and QT= Q. 
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The following lemma is now an immediate consequence 
of Theorem 1.1. 

Lemma 4.1: A 2-D system (A, B) E R(“1+“2)x(“1+“2) X 
R(“1+“2)x(“1+“2) is stabilizable by state feedback (4.1) if 
and only if there exist two (n, + n 2)-dimensional positive 
definite matrices W and G = G,@G, with G, E R”1 X”l, 
G, E R nzxn2 such that algebraic Riccati equation (4.3) has 
a real solution K. 

Concerning the solvability of (4.3), one may construct 
the following 2(n, + n,)~2(n, + n2) matrix: 

(4.5) 
We now use the notation 

a, = bi [ 1 ci ’ 12gi<n,+n, 

for the 2(n, + n,)-dimensional eigenvector of M corre- 
sponding to the eigenvalue hi in which a, is partitioned 
into two (ni + n,)-dimensional vectors b, and ci. Follow- 
ing [lo] we then have 

Theorem 4.2 [IO]: Let a,; . . , an,+,,, be eigenvectors of 
M corresponding to eigenvalues Xi,. . . , A “1 + n2 and assume 
Lb,,. . -2 bnl+n21- ’ exits. If xj# - h,, 1 Q j, k < n, + n2, 
then 

K= [cl ... cnl+n2][bl --. bnl+,2]-1 (4.6) 

is a solution of (4.3). Moreover, if all eigenvectors 
al~--~a,+n2 are real, then the matrix K given in (4.6) is a 
real solution of (4.3). 

Lemma 4.1 and Theorem 4.2 enable one to choose a 
feedback matrix K so that the resulting closed-loop system 
is stable: 

Corollary 4.3: A 2-D system (A, B) E R(“1+“2)x(“1+“2) 
x R(nl+n2)x(nl+nz) is stabilizable if W > 0 and G = G,@G, 
> 0 could be chosen such that M in (4.5) has n, + n2 real 
eigenvectors a,; . a, an,+n corresponding to the eigenval- 
ues A,,-. -) A,,,, with i.#-A, for l< j, k<n,+n, 
and [b,; . 0, b,l+,:]-l exist/s. 

Example 4.4: Consider an unstable 2-D system with 

A=[; -:] B=[_: -:] 
wheren,=n,= 1. One may choose G = (YZ~, W = pZ2 with 
(Y > 0 and /3 > 0 so that 

r -1 -2 2 -21 

I q-; 2 -2 2 M=-a -1 1 -1 
-2 

I =-aR 
-1 q-2 2 

where q = 1 - (/?/a). 
Note that det [ AZ - A] = X2[ A2 - (4q - l)], so choosing 

a = 1, p = 0.5 yields the eigenvalues of M: 

x,.,=0, A,,,=+1 

for Xi = 0 and X2 = 1, one could find the corresponding 

eigenvectors are 

Thus 

K= [;” ;:;I[; -;I-‘= [ie5 -;.,] 
which is a real symmetric solution of (4.3). In fact the 
resulting 2-D system matrix is 

which is stable [6]. 
Remark: In case p < n, + n,, let the matrix K in (4.1) 

be of the form K = l?P with r E Rpx(nl+nz) and P E 
R(n~+n~)x(n~+n~), then equation Riccati (4.3) becomes 

$P + PTA, - PTD,P + Q = 0 (4.7) 
where 

/i 1 = rTBTGA D 1 = rTBTGBr. (4.8) 
Thus the stabilization procedure could be carried out for a 
general 2-D system. 

As an illustrative example, we consider a SISO unstable 
2-D system (A, b) with 

A=[; -:I b=[-:] 
where n, = n2 = 1. It is seen that if we choose r = [l - 11, 
then 

br=[-; -;] 

and in the light of the previous example, we know that 
(4.7) has a real solution 

P= i-5 
[ -;.,I 

that is, the state feedback with 

K=rp= ;.; [.I 
will stabilize the system (A, b). 

V. CONCLUSIONS 

Based on the 1-D Lyapunov theory with a complex 
parameter and a 2-D Lyapunov theorem, several stability 
results have been developed for the 2-D systems in state- 
space form. The results given in Section II indicate that to 
obtain a more accurate and checkable sufficient condition 
one needs to perform a deeper study of the geometric 
properties of the bilinear mapping. The results given in 
Section III could be applied to general 2-D systems, while 
the condition (3.26) seems to be quite restrictive. However, 
this condition might be improved by choosing the matrices 
WI and W, in (3.23) in an “optimal way” which may be 
accomplished by means of, for example, a programming 
approach. It is known that stabilizing a 2-D system by a 
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local state feedback is very difficult. The results presented 
in Section IV shows that one could reduce the stabilization 
problem to a solvability problem of an algebraic Riccati 
equation in which the matrix e may not be nonnegative 
and there are two “parameter matrices” W and G, the 
choice of which are directly related to the resolution of the 
stabilization problem. 
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Explicit Formulas for Lattice Wave Digital Filters 
LAJOS GAZSI, SENIOR MEMBER, IEEE 

A/w~act -Explicit formulas are derived for designing lattice wave digital 
filters of the most common filter types, for Butterworth, Chebyshev, 
inverse Chebyshev, and Cauer parameter (elliptic) filter responses. Using 
these formulas a direct top down design method is obtained and most of the 
practical design problems can be solved without special knowledge of filter 
synthesis methods. Since the formulas are simple enough also in the case 
of elliptic filters, the design process is sufficiently simple to serve as basis 
in the first part (filter design from specs to algorithm) of silicon compilers 
or applied to high level programmable digital signal processors. 

I. INTRODUCTION 

W AVE DIGITAL filters (WDF’s) [l] have some nota- 
ble advantages [2]: excellent stability properties even 

under nonlinear operating conditions resulting from over- 

Manuscript received May 26, 1983; revised December 8, 1983. 
The author is with Ruhr-Universitat Bochum, Lehrstuhl fur Nachrich- 

tentechnik, D-4630 Bochum 1, West Germany. 

flow and roundoff effects, low coefficient wordlength re- 
quirements, inherently good dynamic range, etc. All these 
properties are essentially a consequence of the fact that 
WDF’s, if properly designed, behave completely like pas- 
sive circuits. 

For a proper design the full apparatus of the classical 
filter synthesis techniques (including those for microwave 
filters) can be made use of, which guarantees a solid 
mathematical basis of the WDF’s. This fact, however, 
could be a serious hindrance when the designer is not 
familiar with the intricate techniques of the classical net- 
work theory (e.g., in the case of signal processing applica- 
tions in medical, seismic, image, speech area etc, where the 
companies and institutions may not have available for this 
purpose specialized filter design groups, as well as pro- 
gramming and computer facilities). 
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