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where is a Hessenberg matrix. The  vector 16,- ,, 0, * . , 
01 r€l"-r is reduced to [ X ,  6r+2, b;t3,  0, . . , 0IT and  the  complete 

controllability ensures that cr+3 # 0. 
Now  (12)  may be used  to determine the elements k,+ ,, kr+2 of  the 

transformed  gain  matrix EQl . . . Qr+I,r+2. As a result one obtains 

b ; + 2 k , + l = a , + 2 , ~ + l + q : ~ ~ - , l ~ ~ ~ + l , l ,  

~ + 2 k r + 2 = a , + z r + 2 - P I - 4 : ~ ~ ~ 1 , 1 ~ ~ ~ - , , 1  (13) 

6 , + 3 k + ,  =art3.r+1, 

b;+Zkr+2=ar+3 , r+2  (14) 

where Q , + ~ , ~ + ~ ;  i = 2, 3, j = 1, 2 are elements of the  transformed  open- 
loop system  matrix Q f + 1 , r + 2  . * * QTAQI . * .  Qr+ i J + 2 .  

The  equations  (13)  and (14) are algebraically  consistent  and may  be 
solved as (7) and (8) in the real case. 

It may be  observed  that at this step the  real  and  the imaginary parts of 
the  eigenvectors are obtained as a solution of a fourdagonal system of 
linear equations. 

In this way the  complex  conjugate  poles are treated in a similar  manner 
as the real poles at the  cost of a small  increase in the  number of the 
computational  operations  (an  additional  subdiagonal of the  open-loop 
system  matrix is used). 

The next  steps are performed  in the same  way. At steps (n - I ) ,  n the 
vector x,€ B2  is transformed  only  once.  No  element of y,E R2 is to be 
annihilated. The  elements k,- k, are obtained  from  equations of type 
(13)  which  cannot be zero identities  since  the  closed-loop  system  must be 
completely  controllable, 

Finally,  one  obtains k = [kl, * - . , kJQT and k = kPT, where Q = 

The  algorithm  presented  has much  in  common  with the deflation 
techniques [5]  used to eliminate a known eigenvalue  from  an  eigenvalue 
problem. For example, if  an approximate  eigenvector  is  known  it  is 
possible to construct  an  orthogonal  transformation in order to  produce a 
matrix of order one less than  the  original matrix that  does  not  contain  the 
corresponding  eigenvalue.  It is shown in [5]  that this technique  is  very 
stable,  although  the  approximate  eigenvector may  be far from  the  accurate 
one. This is because  the errors in the  transformed  matrix  depend not  on 
the errors in  the  eigenvector ui, but on the residual Aui - u$i which  may 
be very smal l  even if the  eigenvector  is  not  very  accurate. 

It may  be  shown that  the  algorithm  proposed  also  has  very  good 
numerical  properties due to the fact  that  the  computation of an 
eigenvector,  its transformation, and  the  determination of a gain  matrix 
element  correspond to a small  residual  in  the  equation for this eigenvec- 
tor. In this way  it is possible to prove  that  the  subdiagonal  elements of the 
triangular form obtained are negligible  and  since  it  is  exact for a matrix 
which  is  close  to  the  closed-loop  system matrix, this ensura the  numerical 
stability of the  algorithm  (the  full  proof  is  available  from  the authors). 

The  presentation of the  algorithm will be  concluded  with  an  approxi- 
mate  operation  count (as usual only  the t e r n  of order n 3  are considered). 

QI Q r + l J + 2  &"-I,,.  

operations 
1) Row transformations  of A 2n3/3 
2) co~umn transformations of A 4n 3/3 
3)  Accumulation  of  the  transformations 2n3 

Total 4n3 
Adding to this figure  the  number of necessary operations for reducing 

the  system  into  orthogonal  canonical  form  one can find 17n3/3 
operations.  With  respect to the  array storage the  algorithm  requires 2n2 
+ 6n words. 

The  algorithm is implemented as a Fortran program which  is carefully 
tested  with  various  problems of order up  to 50. 

m. CONCLUSIONS 

An efficient  computational  algorithm  for  pole  assignment  of  linear 
single-input  systems  based on orthogonal  triangularization of the  closed- 
loop  system  matrix is proposed. The algorithm is numerically  stable  with 

respect to the  determination of the  gain  matrix  and  performs  equally  well 
with real  and  complex, distinct, and  multiple  desired  poles. It is applicable 
to illconditioned and  high-order  problems  and may be used for  synthesis 
of continuous- as well as discrete-time  systems. 
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Coefficient Assignability for Linear Systems with Delays 

E. BRUCE LEE AND WU-SHENG LU 

Abstract-Using  canonicai  forms for the  linear  delay  systems with 
commensurate  delays, an approach to coefficient  assignment of the 
characteristic polynomial nuder feedback control of polynomial  delay 
type is given. The results are achieved  under quite weak requirements of 
controllability. 

I. INTRODUCTION 

We present  some new results on coefficient  assignment by state 
feedback control for linear  systems with commensurate  time delays. Such 
a system  may  be  characterized in state-space  version by a pair (A(z) ,  
B(z)) E R"""[z] X R n x m [ z ]  where R[z] is  the  ring  composed of all 
polynomials  in  the  delay  operator z with real coefficients.  Define X = 
{ (A,  B) E R"""[z] X Rnxm[z]lrank  [AIB] = n for all but finitely many 
z E C }  which will be labeled by XI when rn = 1 where [AIB] = [B, 
AB, ..., An-'B] .  Also Iet Y = { ( A ,  B) E Rnxn[z ]xRnX"[z ]  
(spanR,&41B] = R n [ z ] }  which is denoted by Y,  if m = 1 .  In the 
literature a pair (A,  B) E X is a system  controllable  over R(z), where 
R(z) is the  set  of all rational  functions  in z with real coefficients,  and (A,  
B) E Y means  controllability  over R[z] .  

There have been quite a few  publications  related to coefficient 
assignment for delay  systems.  It seems that Morse's result  given in [l] is 
still one of the best;  being a claim  that for each set of  polynomials {ai,  1 
C i < n) in R[z] there exists K E R"""[z] such  that  det [SI - (A + 
BK)] = II:=, (S - a,) if and  only if (A,  B) E Y.  It is  evident  that for the 
single-input  case  the n coefficients of det [sZ - (A + bk)] can be 
assigned arbitrary values in R[z] if  and  only  if (A ,  b) E Y, .  However, for 
(A, B) E Y, the  question  of  coefficient  assignability is still open [2]. 
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Using certain types  of canonical forms of  delay  systems,  we  look at this 
question in a broader system class, Le., in X .  Canonical  forms  play  a 
crucial role in  establishing  coefficient  assignability for linear time- 
invariant  systems.  One may expect  to  get  similar  insight for the  delay 
systems if various  canonical forms in X are searched. 

For single-input  systems in X , ,  this approach  combined  with  a 
powerful  lemma  from [3, Lemma 6.6-1, p. 4711 leads to a  complete 
characterization of the  possible  coefficients  of  det [sl - (A + bk)] when 
k varies in R'""[z]. For multiinput  systems in X ,  one may  use a  canonical 
form similar to that  developed  in  [4]  to  reduce it to  the  coefficient 
assignment  problem for m  single-input  R(z)-controllable  subsystems.  The 
use of  the  result  obtained for the single-input  case  then  gives  a  solution. In 
case (A, B) E Y, a  direct  extension  of  Popov's  canonical  form makes it 
possible  to  obtain  a  sufficient  condition  yielding  coefficient  assignability. 

II. THE CASE (A, b) E X I  

Let [AI&] be  the  controllability  matrix  of (A,  b), 

then 

1 0 ... 
A = ToA or;' = 

where a& E R[z] are determined by computing  det [sl - A(z)] = sn + 
En a#'-'. Notice  that To E RnX"(z) ,  a E Rnxn[z], and the 
ci~acteristic  quation of  the  closed-loop  system  when applykg a 
polynomial state feedback u(t) = k(zrw(t) is A(s, z) E det [sZ - (A(z) 
+ b(z)k(z))] = det[sZ - (A + 6k)] where  k(z) = k(z)To-I = [k,(z), 
. e, kn(z)]. Namely, A(s, z) = sn + X;= , (ai - ki)si-l = sn + E;==, 

a$-'. To characterize all possible  sets {a,iz), 1 < i ,< n} obtained  by 
applying  a state feedback u = k(z)x with k(z) E R 'xn[z], we need the 
following  lemma. 

Lemma 2. I: Assume  that H(z) = D -'(z)N(z) is an irreducible MFD 
for  strictly proper H(z) E RnX"(z). Then, for k(z) E RIx"[z], l(z)H(z) 
belongs to RIX"[z] if  and  only  if there exists anf(z) E R1""[z] such  that 

Proof: The "if part"  is  trivial. The "only  if part" is [3, Lemma 

We  now assume  that To(z) = D- '(z)N(z) is an inducible MFD. By 
the  lemma, it is seen that k(z) = iGTo(z) = k(z)D -'(z)N(z) will be a 1 x 
n polynomial  matrix  whenever kD-'N E R'X"[z], i.e., k(z) = f(z)D(z) 
for some f(z) E R'  ."[,I. Denoting 

&z) = f (zrnz). 

6.6-11. 

Theorem 2.2: Given  a  single-input  R(z)-controllable  delay  system 
(A(z), b(z)), the coefficients  of det [sZ - (A + bk)] can be assigned to be 
a(z) E RIX"[z] by a  polynomial state feedback u(t) = k(zMt) if  and 
only  if a(z) - a(z) E 9, where 9 is  a  submodule  (in  R"[z])  spanned by 
di(z)'s and the desired feedback gain is then  given by k(z) = (a(z) - 
4 ~ ) )  To(z). 

Remark I: By Morse's  result [l], 9 # R"[z]  unless (A,  b) E Y,. 
Remark 2: Denote T&) = P(z) + H(z) with P(z) E Rnx"[z] and 

H(z) E RnXn(z) strictly proper, H(z) = Dl -l(z)N1(z) is an irreducible 
MFD. It  then  is  easy  to  show  that  Theorem 2.2 also holds  if 5) is  replaced 
by B1, where 9' is a  submodule  generated by the  rows of Dl(z). 

Example: Consider  a timedelay pair 

with a3(O) < 0.  One can  recognize  that (A, b) might  not be stable 
independent ofdelay  if, e.g., a103 # 0 on IzI = 1 anda,(l) + q ( l )  > 0 
151. 

Note  that 

Let a3 = go + g,z + +g,z', then 

where  the  strictly proper part has  an irreducible MFD 

[ o  z-2 I = [  zz  0 1 - 1  [o 1 1  
0 krJ+gl)z-2 -ko+g,z) 1 0 0  

which  gives  the structure of  submodule DD,:DI = {~, (z)z2  - f2(z)(go + 
g1z),fi(z)l,~(z),f2(z) E R[zl}. Notethatdet [sl - A(z)l = s2 - (al + 
Q3) 2 + (ala3 - Z'ad, SO a(z) = [ala3 - z2a2 - (a, + a3)]. w e  now 
look at the  possibility  of  having a = [Q~~(O) - 2a1(0)] = [ga2 - 2go], 
i.e., for the  closed-loop  system to have  a  stable  characteristic  polynomial 
s2 - 2g# + goz. To do this, one can try to  equate 

a(z) - a = [ala3 - z2az - g: - (a1 + a31 + 2gol= Lfizz -hko + g1z) frl 
and find a solution f = Lf l  fJ E R I xz[z]. Actually, we have 

and 
~(z)=2go-~l(z)-a3(z), 

f i ~ z ~ = ~ ~ l ~ z ~ a 3 ~ z ~ - z ~ a z - ~ 2 , + ~ o + ~ l Z ~ ~ 2 ~ o - a l - ~ 3 ~ l ~ Z ~  =fdz)/z2 (1) 

in  which one can verify  that fl(0) = 0 and 
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T(z)Q(z) = H(r)  = 

with  degh, < deghj, for 1 < j < i < n. Define a = T A T 1 ,  = TB 
and  note that 

where A, E Rpixpi[z], 1 < i < m. It is seen  that for each 1 C i C m ,  
defining 6. = [0, . . * , 0 h,J ' E RPiX '[z] ,  (Ai, 6i) is a  single-input pI- 
dimensional  R(z)-controllable  subsystem. Thus, a  block-diagonal  state 
feedback u(t) = Z(zMt) with 

= H  

where &) E R1xPqz] will lead to a  closed-loop  system  with 
m 

det [sfn - (a + Bk)] = n det [sIpi - (Ai + 6$$)] 

where I, and Ipi are identity  matrices  with dimensions n and pi ,  
respectively. 
Let det @Ipi - Ai) = spi + ut:.sPi-L + * * * + a$)s + a?), and &(z) 

= [api, * . , ay)]. Also let (1) 

i =  I 

y-1 = 

A ,  : 

. . . e . . . :  

t 

... 

. . .  

. . . . . . . .  
0 

2 2  

. . . . . . . .  
. . . . .  

: A, 
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Theorem 3.1: Given  a  delay  system (A, B) E Xand a(')z = [aY)(z), 

assigned  to  be II;, @(s,z) with q(')(s, z )  = spi + (Y(~)s Pi-' + . . + 
a$% + ay) if &(z) - @(z) E 90. The state feedback  is  then  given by 

... , apji)(z)] E RPi[z] (1 < i < m), det [sZ - (A + BK)] can  be 
Pi 

- a(l)(z))TA1)(z) 
( u ( ~ ) ( z )  - a(Z)(z))TF)(z) 

K ( 2 )  = K(z)T(z) = 

0 

105 1 

0 

IV. THECASES(A, b) E YlAND (A, B) E y 

In  case (A ,  b) E Y,, [A Ib] - I  and T&) are polynomial  matrices so that 
for any  specified  coefficient  vector ( ~ ( z ) ,  the  corresponding  state  feedback 
k(z) = (a(z) - a(z))To(z) is always in R' ..[z]. Also note  that (A, b) E 

For the multiinput case, the  coefficient  assignability  problem is 
difficult. Similar to  the  single-input case, however, one may look at the 
controller form [3] for a  pair (A, B) E Y. 

Without loss of generality, we assume  that  span Rlz](bl, * * . , bi) C 
spanR,(bl, * bi+J for any 1 < i < m - 1, where SI C Sz means  that 
SI is a proper subset of S2, otherwise  the  input  channel  can  be reduced. 
Since (A, B) E Y, some columns from [A lb] can be picked up, say 

Y, implied a, = RYZI. 

G = { b l ,  .... b,,,, Ab,,, .... Ab,+ A2bkl, .... A'bx,, .... 

composed  by first ( t  + 1) colr u*vin G,  iii) for each 1 < i < m, if 
APi-Ibi E G but APibi G UIGIJ APibi can be  expressed as a linear 
combination of the columns  in G previous to a  position  where APibi is 
supposed to be if A%; E G. Note  that 

It is evident  that  the procedure given  above is the same as in Popov's 
canonical form [6], also see [3, ch. 6, pp. 435-4361. Keep  doing this and 

e,,, . . , ew,}, which may form a  basis if Cy= pi  = n. Indeed  in  such  a 
case  we  have  the  following  matrix: 

define eil = bi for 1 < i Q m. We  now  have a set {eLl% . -, elpl, ... , 

- 
x x  
1 

. . . .  
x - 1  

. . . .  

. . . .  
x . . .  

- 

" ' X  : 
0 :  

* . .  . .  
1 0 :  

. .  
. . . . . .  
. .  ' X  : 

. . . . .  

. . . . . .  

. . . . . .  

x . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . .  
x x . . .  x : x . . .  
1 0 :  

1 0 :  
. . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . x .  

. . . . . . . .  

. . . . . . . .  

. . . . . . . .  

. . . . . . . .  

. . . . . . . .  
x x 
1 

1 

- 
X 

, 

I . .  
' X  

.. 

. .  
x '  
0 

0 
31 

P1 

P 2  

Pm 

and B = T-1B = 
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where T-I = { e l l ,  - e - ,  e lp l ,  ... emam} E R” ““[z]  and  the  possible 
nonzero  elements x’s are all polynomials. It is obvious  that  given  a 
specified coefficient  vector a(z) = [al, * * . , an] E R Lxn[z], there  exists 
a x(z) E Rnxn[z]  such  that det [sZ - (A + B&] = det [sZ - T-’(A + 
BI?T-I)Tj = det [sZ - (A + BK)] = s ; = ~  + C” where K = 
KT-‘  E R n x n  [zl . 

We  now  have the  following. 
meorem 4.1.- Coefficint  assignability  holds for (A, B) E Y if X: pi 

= n where pis are integers in (3). 
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Decentralized  Control of Dynamically  Interconnected 
Systems 

ARNO LINNEMANN 

Abstract-Interconnected  systems,  where the subsystems are intercon- 
nected by some  dynamic interaction system, are considered. It is  shown 
that this type of  system can  be  stabilized by decentralized  dynamic output 
feedback, if the subsystems are stabilizable by (centralized)  dynamic 
output feedback and the interaction system is stable.  The  relation to 
previons resnlts is discussed. 

I. INTRODUCTION 

Consider the systems  described by the equations 

xi=Ajxi+B,ui 

yi=Cixi,  i = l ,  -.-, k (1) 

which are interconnected by the  interaction  system  given by 
k 

Z = M z + Z  Ljyj  
j =  I 

k 

u i = N i z + x  Ptiyj+ui, i = l ,  k.  (2) 

Here, xiER”i(ni 2 l), ui€Wmi(mi 2 l), y i € W ( p i  2 I ) ,  zEWq(q 2 
0). vi€ ! P i ,  and  the  matrices Ai, Bi, Ci, M ,  Li, Ni, Pi, are of compatible 
sizes. With q = 0, (2) includes  the  special  case  where  the  subsystems are 
statically  interconnected as follows: 

j =  I 
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Fig. 1. 

Recently,  there  has  been  some  interest  in  controlling this type of 
interconnected  system or special cases of it [I]-[4] .  

In this note, sufficient  conditions for the  interconnected  system (l), (2) 
to be stabilizable by decentralized  dynamic  output  feedback of the form 

U, = Ei W, + Hiyi 

Wi=Diwi+Gg,, i = l ,  - e . ,  k (4) 

where wiE W(s i  2 0) and the matrices Ei, Hi, Di, Gi are of  compatible 
sizes, will  be  derived. Fig. 1 shows  the structure of the closed-loop 
system for k = 3. 

II. MAIN RESULT 

The main result of this note is as follows. 
Theorem I :  Suppose  that the subsystems (1) are stabilizable  and 

detectable, i.e., 

and  that  the  interaction  system (2) is stable, i.e., 

spectnun (M)cG-:=G\E+. (6) 

Then  there exists decentralized  dynamic  output  feedback  of  the form (4) 
such  that the closed-loop  system  given by (l), (2), and (4) is stable. 

The  proof of this theorem is delegated  to  the  next  section. Now, some 
remarks  concerning  Theorem 1 will  be  stated  and  some  conclusions  will 
be derived. 

Remark I :  The  conditions (5) mean  that  the  subsystems (1) can be 
stabilized by dynamic  output  feedback. Of course, they  may be replaced 
by the stronger conditions  that the subsystems are controllable  and 
observable. 

Remark 2 : The sufficient  conditions of Theorem 1 are independent of 
the coefficient matrices Li, Ni, Pu of the  interaction  system.  Only  the free 
motion of the  interaction  system is important. 

Applying  Theorem 1 to  statically  interconnected  systems (l), (3), the 
following  result  of [3] is immediate. 

Coroliury I: The  statically  interconnected  system (l), (3) is stabilizable 
by decentralized  dynamic  output  feedback, if the subsystems (1) are 
stabilizable by dynamic  output  feedback. 
In [l], the  following  special  cases of  the interconnection  structure (2) 

are studied. 
Structure I: 

M=diag (MI, * e . ,  M k ) ,  Mi€ Rqixqi  

Ni= (0, . . * , 0, Ni, 0, . . ., o), Ni€ a m i x q i  
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