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Abstract-Time-variant  systems  represented by pairs of matrices 
( A ( t ) , B ( t ) )  and (x(f),B(t)) are said to be F-equivalent if there exist 
differentiable  matrices C ,  G,  and  D such that A = C - ‘ [ ( A +  BG)- 
CC-’]C, = C I B D  and  K-equivalent if G = 0. The extent of indepen- 
dent parameters (functions) in the quadratic cost formulation for a  linear 
time-variant  system is reported. For the K-equivalent class and the F- 
eqldvalent class upper bounds on the number of independent  parameters 
are explicitly  given. The  single  input  quadratic cost formulation  contains 
exactly n independent  parameters  (functions). 

I. INTRODUCTION 

Several  previous  studies of redundant data in the quadratic cost  formu- 
lation for linear systems  have  been  conducted [1]-[8]. Essentially, one 
seeks  a  canonical  form for the quadratic cost  formulation so that im- 
portant features of questions of optimization are more transparent and 
there can be groupings into equivalence  classes. 

The quadratic cost  formulation will .be considered  from two points of 
view  here. In the  first  case the controlled input will be a  prescribed 
function and we ask the extent of independent  parameters in the quadratic 
cost  formulation (reduction to essential  parameters in the  K-equivalence 
class). In the  second  case  the  controlled input is to minimize the quadratic 
cost, which meins that we  seek a description of the  extent of independent 
parameters in the F-equivalence  class  (reduction  under the optimal  feed- 
back  group). 

Consider  a  linear  time-variant  system  with  mathematical  model 

f ( r ) = A ( r ) x ( t ) + B ( t ) u ( t ) ,  t o < t < t l ,  x ( t o ) = x 0  

and  with  cost functional 

J = ~ [ x ’ Q ( ~ ) x + 2 x S ( t ) u + u ’ R ( r ) u ] d ~ + x ‘ ( t l ) F x ( t l )  

whereA(t),B(t),Q(t)=Q’(t),S(t)andR(t)=R’(t)>Oaresufficiently 
differentiable for to d t < t l .  x( t )  is an n-vector  and u (  t )  is  an  m-vector. 
F= F’. 

When u ( f )  is  a  prescribed function in &ato,  tl]; Rm), we ask for the 
extent of independent parameters in the  calculation of J (  u )  = 

J ( u ,  to,  t , , xo ,  A ,  B , Q ,  R ,  S ,  F )  and when u*(f) in &([to,tl]; R”) mini- 
mizes J we ask for the  extent of independent  parameters of J (  u * ) .  

As in [9], two time-variant  systems as represented by their  coefficient 
matrices ( A ( r ) ,  B ( t ) )  and (x(t), B( t ) )  are said  to  be: 1) F-equivalent, if 
there are differentiable matrices C ( t ) ,  G ( t ) ,  D(t) on [ lo ,  tl], such that 
x ( r ) = C - l [ ( A + B G ) - C C - l ] C  and B(t)=C-’BD, for t E [ t O , t l ] ;  2) 
C-equivalent, if G = 0 and  D = I,,,; 3) G-equivalent, if C = I,, and D = I,,,; 
4) D-equivalent, if C = I,, and G = 0; and 5) K-equivalent, if G = 0. 

F-equivalence is an eiyivalence relation  and so are  the C-, G-,  D-, 
K-equivalences. 

Because of the R ( t )  > 0 restriction in the  D-equivalence  class,  the 
transformation R1I2u + u will lead to a  cost  functional  with R = In, : 

0 

/ “ [ x ‘ Q ( f ) x + 2 x ’ S ( ~ ) u + u ’ u ] d t + x ‘ ( t l ) F x ( t l ) ,  

a first reduction of redundant data. In K-equivalence  class  there  exists  the 
possibility of further reducing redundant data among { A ,  B, Q, S ,  F }  in 
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the  calculation of J ( u )  and in the  F-equivalence  class  there  exists the 
possibility of further reducing redundant data of J( u*) .  

The minimal optimal solution can be obtained by  using  the state 
feedback  controller’ u*(t)= - K ( t ) x ( t )  with K ( t ) =  B ’ ( t ) P ( t ) + S ’ ( t )  
where P(r )  is the  symmetric  positive  definite  solution of Riccati  differen- 
tial equation - P ( t )  = A’P + PA + Q - (PB + S)( PB + S)’ with P( t ’ )  
= F. 

Let F ( t )  = P(t )+ L(r) where L ( f )  is any known, differentiable, and 
symmetric n X n matrix,  then  the  Riccati equation is - p ( t )  = A’p + FA 
+ - ( F B  + s ) (FB + s)‘, with p(tl) = F +  L(r l )  where G =  Q - A’L 

The  feedback  gain  matrix K ( t )  does not change when one  replaces P 
and S by and 3, respectively.  The quadratic optimization  formulation 
thus  has its equivalent  description with the  cost functional 

- L A - L , a n d S = S - L B .  

In the  next  section,  with  restriction to the  K-equivalence  class, upper 
bounds on the number of the independent parameters for the  cases 
S ( t )  = 0 and S ( t )  f 0 are given. It is apparent that the Brunovsky 
canonical  form [9] for the  linear  time-variant  system is an appropriate 
starting point for our purpose.  The  technique  suggested in [A is then used 
to eliminate ( n  - m)( n - m + 1)/2 functions  from Q( r )  (when S( t )  = 0) 
or even  more if S ( t )  # 0. Afterwards, one could  eliminate  more  functions 
from A ( t )  which was already in its Brunovsky  canonical-form  by  using  a 
s9ple  nonsingular transformation whenever rank(& A B )  < 2 m  where 
A B  = A ( t ) B ( t ) +  b ( f ) ,  m = rank B = dimension of the input space. This 
result  answers  a  conjecture  raised in [7l and gives  some insight into the 
relationship  between  Kronecker  indexes  and independent parameters in 
the quadratic optimization  formulation. A similar situation for the F- 
equivalent  class  is  discussed in Section IJI. The  technique  used  in [7] and 
the  availability of state feedback  and  the  Riccati equation transformation 
will considerably  cancel dependent functions in A ( f ) ,  Q( t) ,  and S( t ) .  

11. INDEPENDENT PARANETERS IN THE K-EQUIVALENT CLASS 

From now on the  system  is  assumed to be controllable, i.e., 
rank[B, AB;. ., A“-’B] = n for t E [ t o ,  til. ALSO, we assume  that B ( t )  is 
of full rank for r E [ t o ,  rl]. We define R ( A ,  B )  as the  n-tuple of functions 
{ 5 ( t ) ,  j = O , l ; . . , n - l }  on [ to , r l ]  where r,(t)=rank[B;..,A“jB]- 
rank[ B; . ., Aj-lB]. With  these notations, it is seen that E ( [ )  being of 
full rank means ro = m .  

Suppose  a  pyramidal  basis S defined in [9] has been  chosen,  one  then 
could  associate  with every c o l u m n  bi of B ( t )  a  number p i  for each 
t E [ t o ,  tl] such that AJbi E S for 0 6 j 6 pi  - 1 but APib, 6 S.  By [9, 
Lemma 71 it is possible to reorder  suitably  the  columns of B (D-equiva- 
lent) so that p1 > p z  > . . . > pm. Consequently,  the p-functions could  be 
uniquely  determined by the  r-functions as follows: p j ( t )  is the function 
which, at time t ,  is the  number of 5’s which  are  greater than or equal to i. 

Lemma 2.1: If r1 < ro, the matrix B ( t )  then has the  form 

where  for  each i < j d m , 3 is defined as a p, X m matrix  with ( Bj)jk = 0 
if j < p,, (B,)pjk 0 if k < j .  ( E , ) p ~ = l ,  ( 8 , ) p , k  arbitrary if k > /. 

‘For existence of the optimal it is common [lo] to assume that Q =e’> 0, P =   F ’ >  0, 

and [ :, s] 2 0 on [ r 0 . f l ] ,  and ( A ( r ) ,  B ( t ) )  controllable. 
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Proot It is sufficient to note that in the  matrix G-' = ( y U i )  defined ' 
S r 

in [9, proof  of  Lemma 81 the nonzero elements  of yUi appear for 
1 6 u Q rpi only and we now  have pi  = 1 for  each i ,  rl + 1 < i < m. 

We  now consider  the  controllable  system where A ( t )  and B ( t )  are of F~~ example, 
the  Brunovsky  form,  respectively, [9] with  cost  function  having S ( t )  = 0. 

Because  of the  canonical  form  for A ( t )  and B ( t )  there  are  model 
equations of the  form ii = xi+l corresponding to 1's on the  super 10 

diagonal of A ( t )  and 0's in B ( t ) .  In this case  consider  the  term 

i =  Pk, j= pk f o r s + t ,  l < s ,  t < m .  
k =1 k =1 

l112~Pl.Pl+P,(~)XPlXPI+P2~~ 

qi,i+l(z)xixi+l of the  cost  function. So =Q S l ~ ~ ~ ~ 1 ~ p ~ + l + 6 2 ~ ~ ~ ~ 1 ~ p ~ + p 2 + 1 +  ... 

~ ~ 2 ~ i , , + , ( t ) x i x , + l d f = J f 1 2 q i , i + l ( t ) X i * i d l  10 + 6m-1X1Xp1+ ... +p,- l+ l}  + Sl + SZ 

where [,(t) (1 < j < m - 1) are some known functions, Sl are the  terms 

x(t) at t =  to and t =  tl only. 
= ~ i , ~ + l ( ~ ) x ~ ~ ~ ~ - ~ ~ i , i + l ( ~ ) x ~ ~ ~  *O which  can  be added to 2x'S(t )u and S, terms which  involve the values of 

which contains 'terms that depend  only on the endpoints at to  and rl and  the  matrix Q(t) could  be  reduced to the form Of 

a  term which can be added to the qil(r)x: term in x'Q(t)x. 
- - 

X . x   . x   . x  

. .  
x . x  

. .  . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

k 2  
x .  .................................. x . x  Q( t )=  

)pl  

x - } p m  - 

x ... x . x  
i " . ' . ' . ' .  

. .  . .  
... x : x  i " " " " '  

* .  . .  
x . x  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  x ... ... ... x : x  

Similarly, we can treat terms of the cost function of the  form 
q i , i + l ( r ) x i x i + , , 1 = 2 , 3 , . . . ,  if~,+,=i~+~-~ forthen so that the  number of independent elements in Q ( t )  is at most CY=,(m - 

j + l)p,. The total number of parameters  (functions) in A ,  B ,  Q ,  S ,  and 
R is at most 2mn +(m(m -1)/2)+C,"=,(rn - j +l)pj. 

More  undefined  elements in Q ( t ) ,  B ( t ) ,  and A ( t )  could  be  cancelled 

number of the  independent  elements in B( t )  then is at most r1(2m - rl - 
1)/2 rather than m(m - 1)/2. The  matrix Q(t) in this case will have  the 

' Jaqi.i+/(t)xixt+,dt 

=i)t.i+,xii,+,-l 
whenever r1 < ro. As a matter of fact, Lemma 2.1 indicates that the 

-4i , t+/XiXt+/- l   1:6-~~i+,- l [4. . ,+/(r)x,  + q z . t + / x i l  dt. form of 
- 

- - 
X . x   . x   . x  . x . . .  

. .   . .  . .  x 

}IJ. . .  . .  x 

] P l  x . x  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
x . ' .  . ... x . x  x 

x . x  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ... ... x ... x : x  ' x  X 

Q(t)  = - _  
. .  . .  

. x  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . x ... ... ... x : x  

. .  ... 
. _  . .   . .  . .  . .   . .  * 

- X . x   . x   . x  
I 

For I =  2 this leads to terms which  were  met before if there is the 
relationship ii = x,+'. The case  of I = 3, and so on are similar. In this has at 
fashion we can eliminate  a  total of ( n  - m)( n - m + 1)/2 functions  from 
Q ( 0  

The total number of functions in A ,  B ,  Q ,  and R ,  is 

' m ( m - 1 )  +[  n ( n + l )  ( n - m ) ( n - m + l )  
mn + 2  2 2 1 = 2mn. elements other than zeros. 

We  now are  in  a  position  to deal with  the  system  matrix A further. We 
In addition there are n ( n  +1)/2 constantsin x'(tl)Fx(tl). consider  the  time-invariant case, a  slight  modification  for  time-variant 

eliminated. In fact, using the  same  technique,  one  can deal with  terms of A reordering of the state variable, by an orthogonal transformation 
the  form qij(t)xixj for which X = Jx yields 

It is noted that in case S ( t )  # 0 even  more  elements in x'Qx might  be  case will be given later. 
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r - 
0 1 0 ... 0 .  
0 0 1 . . .  0 :  

0 0 0 1 :  
0 0 0 0 .  

... 

....................... 
: o  
- 0  

: 0  

J -  'AJ = 
' 0  ....................... 

...................... 

. . . . . . . . . . . . . . . . . . . . . .  

- 

. . .  
1 
0 

0 
0 

. . .  

. . .  

. .  . .  . .  . .  . .  . .  . .  . .  . .  . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

0 ... 0 :  : 
1 ... 0 .  * 

0 . . .  
0 

1 .  . 
. .  . .  

. . .  0 :  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . .  . .  . . .  . .  . .  . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . .  . . o  1 0 . . .  0 

: : 0 0 0 ... 0 
: * :  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
. .  

and 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  I 0 
1 x x x ... x x  x 
0 1 x x ... x x  x x ... 

Now  seek a  nonsingular transformation T of the  coordinates of state x 
that will maintain the  forms of d and B and zero as many as possible 
elements in x3 and x4. 

To preserve  the  form of B, T should  be  a  block-lower  triangle  matrix. 

Indeed, it could be  seen that taking T = I T2 will yield 

r1 m -  -- 
- 0  0 0 0 .  
: o  . 
. . .  . .  . o  

: o  . 

. .  
. . . . . . .  

. . .  . . .  
. .  

- 1  . . . -  . . . . . . . . . . . . . . . . . . . . .  . . .  
. . .  
. . .  ' 0  
0 . .  
1 . .  .................... . . .  
. . .  
. O '  
. 1 .  

: 0  

.................... . .  

0 
: 0  

1 . . . . . . . . . . . . . . . . . . . .  

P1-1 

P2 -1 

Pq - 1 

m 

R ( m - q ) x ( " - m )  can be  chosen  freely. We  now  have 

Note that matrix H, consists of the last ( m  - rl) columns of A$,  which 
we will denote by AX* and r, columns of T2 + A ;  which will be denoted 
by T2* + A:* where T; consists of  some rl columns of T, (exactly  they 
are the (ki - 1)th columns (1 < i < rl) of T2) and A;* consists of corre- 
sponding r1 columns of AT, i.e., 

r1 -- m - r1 

H2=  [T2*+A:* A$* 1. 
Thus, 

therefore  taking T2* = - AT* will produce r,( m - r,) zero  elements in 
H2 and in a. 

Furthermore, in case n > m + r,, more  zero  elements  could  be obtained 
by choosing other free  elements in T2. To do this, we observe that 

= H, - H2T2 = H, - A:*F2 where,  because of T2** = - A t *  the (pi 
- 1)th columns (1 gl< 7,) of A$*F2 have  been  fixed,  and  by [ H l  j 
H z ]  = [T2 + A f  j AX1P-l @ecause of the  existence of P-'), however, 
each (pi -1)th column (1 < i < r,) of H, now contains (p i  - 2)th  column 
(1 d i d r,) of ;i;2 whose elements still could  be  chosen  freely.  Hence, if 
n > m + 2r1,  then  choosing free elements in T2 appropriately will give 
r l (m + rl) zero  elements in A,. By a similar analysis, if m + r1 < n < m + 
2r1, then  choosingAsome  free  elements in T2 will get [ n - ( m  + r,)](m - r,) 
zero elements in A , .  

In the  time-variant  case, transformation matrix T ( t )  could st i l l  be 
chosen as 

where P as an elementary  matrix  changes  columns of d s o  that [& , T 2 ]  
willbecome[I,-, O ] , [ A f  A$]z[x3 & ] P  and([Hl HzJ)=_[T2+ where T 2 ( t )  = [ i2]. 
A: A $ ] ) P - ' .  So we require that A2T2 = On-m. Note that A ,  = [A , ,  01 
with x,, full rank. Thus, with  commensurate partitioning, one has Thus, 
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m = n  

TABLE I 

T 
m <  n 

r - m  1 -  

mn 

9 

mn 

n C m c 2 r  1 

mn - (n-m)(m-r ) 

m 

9 

Transformation T( t ) ,  defined  above,  preserves  the  forms of a and h to 
be  like  those of x and B, respectively,  hence  the  technique  used  for 
reducing Q(t) is st i l l  available in the  present  case. It should  be  observed 
that for T( t )  defined  above we have  det T( t )  = 1 and its elements  involve 
some  elements of A ( t )  and their h t  derivatives  only  which  implies that 
T ( t )  is a  Lyapunov transformation provided A (  t )  E C2 on [ r,, r,]. 

We  now summarize these  results as follows. 
Theorem 2.1: Assume that the  system is controllable  and B( t )  is of full 

rank. on [to,rl]. The  functions r 0 ( f ) ; , . , r n - , ( r )  defined  above are as- 
sumed to be constants on [r , , t , ]  and ro(t)+ ... + rn- , ( r )=  n .  The 
upper bounds of the independent parameters in the  integral quadratic cost 
formulation can then  be  described as in Table I. 

111. INDEPENDENT P A R ~ ~ R S  IN F-EQUIVALENT CLASS 

In this section we restrict attention to the case r1 = ro ( = m )  (the 
extension to the  case rl < ro is straightforward  but  somewhat  more 
involved.) 

For the  F-equivalent  class, we can take the  system x = Ax + Bu with 
the  cost  functional as our starting point,  where x a n d  B were described 
above  with rl = m ,  respectively. We now  apply  a h e a r  state feedback 
controller u = Gx + u in the  system,  which  leads to the  closed-loop  system 
x = (6+ BG)x + Bv with  the  cost  functional 

l r l ( x g ~ x  + 2 x ' ~ u  + u'v) dt + x ' ( t , ) F x ( r , )  
0 

where 
- 
Q=Q+.SG+GT+G'G,S=S+G' ,  

and 

x+ BG= [ 5. : 5.1 
Y 

where Y = [x3 & I +  BIGL 
It should  be  noted that B, is invertible  and det Bl = 1 which implies 

that for any  specified m X n matrix Y * ( f )  one can always  find an 
appropriate feedback  gain  matrix G = B;'(Y*(r)-[x3 so that the 
resulting  closed-loop  system has the matrix 

r1 < m 

n , m + 2 r  

mn - 2r1(m-r1) 

mn 

9 

as its system  matrix. It can also be  seen that a  suitable  choice of G would 
make A= be a stable constant matrix even  though d is a  time-variant  one. 

Having done this, we  now replace P ( r )  in the  corresponding  Riccati 
differential equation by P ( t )  = P ( t ) +  L ( r )  which leads to cost functional 

w h e r e ~ = ~ - , ? L - L A = - i , ? = S - L B , a n d F = F . + L ( t , ) .  
It can be  easily  checked that matrix L(r)  specified  by 

makes 5 = 0 and F= 0 so that the cost -unction  becomes 21:,1[ x% + 
uk]dr. Thus, the  parameters appear in 3 and  only  and  have total 
number q1 = mn + ( m   ( m  - 1)/2).  (In the  single input case n independent 
parameters.) 

It should  be  noted that by  using transformations2 C, G, D and L ,  the 
number of the invariants for the quadratic cost  problem  which can be 
characterized  by ( A ,  B, Q, S ,  R , F )  should be equal to 

- [ n ' + m n + m ' +  -1 2 

m ( m - 1 )  
2 

which is strictly less than q1 defined  above  except  for m = 1. 
Theorem 3.1: For a  controllable  time-variant  system  with rl = r, = m ,  

its quadratic cost  formulation can be  reduced to another formulation in 
the  F-equivalent  class  which  has at most mn + ( m (  m - 1) /2)  independent 
parameters (functions). 

= m n -  
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A Note  on  Trajectory Sensitivity Reduction Using a 
Three-Tern  Controller 

I. H. KHALJFA AND A. A. R HANAFY 

Abstraci-lbis technical  note  investigates the effectiveness of using a 
three-term  controller for a linear quadratic  regulator (LQR) problem  in 
reducing trajectory sensitivity to plant parameters  variation as compared to 
other developed techniques to solve the same problem. 

I. INTRODUCTION 

The optimization of the linear quadratic regulator (LQR) problem, 
together  with  trajectory  sensitivity  minimization, has been  investigated  by 
several authors [1]-[4]. 

The conventional approach has been to construct a proportional con- 
troller (P-controller) where  feedback is taken  from both the plant states 
as well as the sensitivity functions generated  from an augmented  sensitiv- 
ity model.  Closed-loop  sensitivity  functions are to be  used in order to 
effectively  reduce  the  trajectory  sensitivity to plant parameters variation. 
However,  the  complexity of the computation algorithm,  together  with  the 
increase in the  dimension of the optimization  problem,  makes this ap- 
proach  impractical. 

In [4],  the  original LQR problem is solved  where  the  states’ quadratic 
term in the  performance  index is multiplied by a scalar a. As 01 is 
increased  from  unity,  a  tradeoff  between  the  increase in the  performance 
index  and the reduction in the  value of a  sensitivity  index  results in a 
suitable value for a, and  the suboptimal state feedback  P-controller has 
been obtained. However, this algorithm is based on the proposition that 
the  resulting  reduction in the  sensitivity  index is much greater than the 
resulting  increase in the  performance  index value-a proposition that will 
be  shown to not always be true. 

In this note, the  effectiveness of a  three-term (PID) controller in 
reducing  trajectory  sensitivity is investigated. 

11. DESIGN OF A PID CONTROLLER 

Consider the plant model 
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where x ( t ) ,  u( r ) ,  and y ( t )  are n-state  vector,  m-control  vector,  and 
I-output vector,  respectively. 

Using  the  augmented  model 

i ( t ) = A z ( t ) + B u ( t ) ,  z(O)= [F] 
where 

The  matrix D is an r X  n-matrix,  where r =  m. A necessary and 
sufficient condition for the augmented  system  described  by (2) to be 
completely  controllable is that the pair ( A ,   B )  be  controllable and the 
rank of DA-’B = r. If A is singular,  then  the  augmented  system is still 
controllable if ( A ,   B )  is controllable and a  stabilizing  matrix F can be 
found such that ( A  + B F )  is nonsingular and the rank of D ( A  + BF)-’B 
= r. These  conditions  have  already  been stated in [5].  

Then, the optimum control u*( t )  that would minimize the  index 

where Q = diag[Q, e,], is a  positive semidefiite diagonal  matrix and R 
is a  positive definite matrix, is given  by 

u * ( f ) = - K * z ( t ) = - R - ’ B T P z ( t )  (4) 

where 

0 )A+ A T )  - ~ ~ B R - ~ B T P  + Q ( 5 )  

and 

K*= [K,: ; K;]. 
Assuming u*(r )  to have  the  alternative structure 

where 

y i ( t )  = L , y ( t ) ,  i =1,2,3 (7) 

and Li  is  a matrix of dimension ( li X 1) satisfymg 

I ~ G I ,  I , + I , G ~ ,  C I , g n + m .  (8) 
1 

The selection of the  matrix D is constrained  only  by  the  controllability 
condition for  the  augmented  system,  and that of the  matrices L, is 
decided by the designer  experience. 

Substituting for u ( t )  in (1) using (4) and (6) ,  the  following  relations 
result: 

[ K~ K , ]  = qrT(rrT)-’ ( 9 4  

K r = ( Z + K , ~ C B ) C T L ~ ( L , C C T L T ) - l  (9b) 

where 

m. EXAMPLE 

The following  system is considered: 
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