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Hence, the  U-type hyperbolic rn-periodic point  cannot exist. and in 
consequence. possible bifurcations are of the TI-, Dl-. Dl-- I , - .  and 
Z,-types. In the numerical results shown below.  however. only the TI-. Dl-. 
and Il-types are actually observed. 

All the terms on the right-hand side of (7) are odd with respect to x, 
and xz. and the input term satisfies the followring condition: 

= - s i n w t   ( k = 0 . 1 . 2 , . . - ) .  (11) 

Therefore, the D-type bifurcation can exist. and in addition, the following 
properties hold. 

1) Symmetric (2 k + l).r-pericdic solutions (k = 0.1,2. . . . ) whose 
trajectories are symmetric with respect to  the origin of the state space can 
exist. while symmetric 2  kr-periodic solutions ( k  = 1.2. . . . ) cannot. 

2) If there exists an asymmetric mr-periodic solution ( n ~  = 1.2. . . ), 
then there must exist another asymmetric mr-periodic solution whose 
trajectog is symmetric to that of the former wlth respect to the origin. 

The I' versus w curve determined numerically is shown in Fig. 1. 
together with  the one determined previously by  use  of the describing-func- 
tion method [4]. As expected. there exists a great discrepancy between 
these two results in the low-frequency range. In Fig. 2. a topological 
structure is sketched in order to make the fine structure of the com- 
plicated Y versus w curve easy to see. 

The main branch .4 'A BC,C;D, ElC2CiD2 E2 . . . contains symmetric 
7-periodic solutions of the  S-type (BC1. C,'D,. ElC2. GD,. E2Cj.  . ' .  ). 
the D-type ( . 4 B .  CIC;. DIEl. CzCi, DJ,. . . . 1, and the nonhyperbolic 
type ( A . 4 ' ) .  Therefore, B,  Dl. E,. Dl. E 2 .  . . . are the T,- tpe bifurcation 
points where a jump must occur with a change in w .  while C,. CihC2. 
Ci, . . are the Dl-type bifurcation points from whch b?rpass branches of 
twin asymmetric 7-periodic solutions emanate. The character of the sub- 
branch .4.4' is rather singular. For each value of w ,  there exists an infinite 
number of twin asymmetric r-periodic solutions. in addition to a symmet- 
ric 7-periodic solution. The trajectories of these periodic solutions are 
ellipses of the same size centered on the .x1 axis and are entirely contained 
within the domain - 1 G x, G 1 where the state equation is linear. The 
periodic point corresponding to each of these solutions is nonhyperbolic 
because p, = 1 and p2 = e - n i r .  Thus, thc bifurcation point .4 where a jump 
must occur is of the tangential type. but it is not of the Tl-tqpe. The 
advent of such a singular bifurcation might be due  to the fact that the 
$ ( x l )  has no derivative at x, = f 1. 

The bypass branch C, FIG, H I  K ,  L ,  M,C; contains twin asymmetric 
7-periodic solutions of the  S-type (C,F,, GIHl, K I L l .  MIC,'). the D-type 
( H , K l ) .  and the I-type ( FIGl. L,M, ). At tw'o T,-type bifurcation points 
HI and K,. a jump must occur. From four I,-tlipe bifurcation points F1r 
G1, L,. and Ml, bypass branches of twin asymmetric 27-periodic solu- 
tions emanate. 

The bpass  branch F,f,glG, contains twin asymmetric IT-periodic 
solutions of the S-type (F,fl. g,G,) and the I-type (f,g,). From two 
Zl-type bifurcation pointsf, and g,. a bypass branchfl/,'g;g, of the  tn.in 
asymmetric 4r-periodic solutions emanates. In a &e manner. bypass 
branches of the ttvin asymmetric 2%-periodic solutions ( k  = 1.3. . . ) 
must follow in order. A series of the I,-type bifurcation points 
F,, f l ,  f,', . . . tends to  a limiting point f? whch is followed by a chaotic 
branch /i"/:. The  branch /?// contains the so-called chaotic solutions. 
but some twin asymmetric ( 2 k  + l)~-solutions ( k  = 1.2. . . . ) are observed 
in the windoLvs which are narrow frequency ranges scattered in the 
chaotic region.  At  the point f,'. which is the extreme point of the chaotic 
region. aJump must occur with a change in w .  A jump of ths  type is not 
contained in the classification stated before. 

The state of the system must change frequently in its character with 
continuous and slow change in w, and therefore many jumps must occur. 
Further, there exist branches of stable  states such as H,G,g,g;g&' and 
DIC;Mlmlrn;mFrn{ to which no jump can occur unless some violent 
disturbance is applied. 

IV. CONCLUSION 

The  true frequency response of nonlinear feedback control systems 
could be surprisingly complicated relative to the approximate one de- 
termined by  use of the describing-function method. Many bifurcations 

with and dthout  jumps could appear, and the system might sometimes be 
brought into a chaotic state. It should be kept in mind that a simple 
nonlinear feedback control system might behave in a  quite strange manner 
subject to some ill-starred disturbances. 
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Linear Compensator Design for Bounded 
Input-Bounded  Output  Stability of 

Nonlinear Systems 

WU-SHENG LU AND K. S. P. KUMAR 

Abstract -A method of determining  a  cascade  compensator  in  a  nonlin- 
ear  feedback system to provide BIBO stabiliQ- is discussed. The procedure 
is based on the Popv locus. Two esamples are  included to illustrate  the 
method. 

I. IhTRODUCllON 

It is of considerable interest to engineers to design nonlinear systems 
such that the output remains bounded and to be able to prescribe the 
bound  on the output. For nonlinear feedback systems. various sufficient 
conditions exist for BIBO stability [1]-[4]. These tests. however. are  not 
adequate by themselves if the designer wants to prescribe tolerable 
bounds  on the output. Moreover. in many of these criteria. it is necessary 
to put  a  bound on the derivative of the input to prove bounded output. 
T h ~ s  proves to be a limitation if noise exists in the input channel. 

T h s  paper describes a simple method for choosing a cascade attenuator 
or a first-order stable compensator so that the output of the compensated 
system is confined to a prescribed region without placing any requirement 
of boundedness on the derivative of the input. 

11. THE B F E C T  OF A CASCADE  COMPENSATOR 

Consider a nonlinear feedback system (Fig. 1) composed of a linear 
time-invariant plant with a proper transfer function G(s) which has all its 
poles in the left half of the s plane. a nonlinear element N characterized 
b)- a piecewise continuous function Q ( . )  defined on ( -  x , x )  such that 
0 6 Q(u)/u 6 k < x ,  Vu f 0 and Q(0) = 0. In Fig. 1. z0(t)  is the zero 
input response of the linear plant. Also, assume that there exists some real 
q > 0 such that 

R e ( l + j q w ) G ( j w ) + - > 6 > 0 .  1 V w c R + .  (2.1) x 
If G(s) is strictly proper. then (2.1) yields 

R e G ( j w ) L q v l + - > 8 > 0  1 
k 
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Fig. 1. Nonlinear feedback system 
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Fig. 2. Popov l o c u s .  

where and 

or As a summary, we have the following. 

ward compensator B ( s )  defined by 
Lemma: For the nonlinear system given above, there exists a feedfor- 

R e a G ( j w ) + - >  6 > 0  
1 
k (2.3) 

/ a, for G (s) strictly proper where 
B ( s )  = 1 & , for G (  s)  not strictly proper (2.10) 

(2.4) 
such that 

Graphically, (2.1) means that there exists a Popov line that passes 
through the  point (-(l/k),O) and has a slope l /q  such that the Popov R e W ( j w ) + j ; > 8 , > 0 ,  V ~ E R +  
locus for G ( j o )  lies strictly to the right of it: while (2.3) implies that the 
Popov locus for aG(  jw) will shrink so that  the corresponding Popov line where 
can be replaced by a perpendicular one passing through the same point 
(- (l/k),O) (see Fig. 2). W ( s )  = B(s)G(s)  (2.12) 

In case G(s) is not strictly proper, we note that, with positive & andp 
to be determined later. 

1 
(2.11) 

and 

a8, for G (  s)  strictly proper 
(2.13) 

'Ip Re( l+ jqw)G(jw)+-   Im( l+jqw)G(jw)+k 1 =- 
0 2  + p2 l2 + p2 

111. AN E~IMATE OF THE BOUND OF THE OUTPUT 

Bergen, Iwens, and Rault [ l]  proved that for the system shown in Fig. 1: 
the following inequality holds for sufficiently small 7 > 0: 

\ 

where 

Thus, by the lemma, for the compensated system with B ( S )  given by 
(2'5) (2.10) shown in Fig. 3, (3.1) becomes 

v2 = max wIm(l+  jqw)g(  j w )  
L' w2 + p2 

Thus, if 

P 
p1 16k -It+ kpv2 ' 
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Fig. 4. Example 4.2. 

Fig. 3. Example 4.1. 

Theorem: For the nonlinear system described in Section I1 and shown 

In addition, by checking the proof Of the lemma in [l1* it may be output to have an asymptotic bound ( f i K , / q 1 S 2 ) b .  Moreover, an  extra 
in Fig. 1, a simple linear compensator B ( s )  given by (2.10) will cause the 

attenuator  factor p causes the output to have an asymptotic bound 
( f i K , p / g , 6 2 ) b  so that the  output  can asymptotically be constrained to a 

observed that the real 9 in (3.2) could be any positive constant. 

derivative for BIB0 stability of the compensated system. In fact. denoting desired region by adjusting the factor p .  

have 

Inequality (3.2) implies that no  bounds are required on the input 

the impulse corre%)onding to w ( s )  h ( r )  and using (3.2)* we Given a desired output bound &f, the following steps for determining a 
compensator B ( s )  are followed. 

1) Depending on if G(s) is strictly proper or not,  constants Y, and a or 
constants v2.  vj .  Dl, &, b, and 6, are chosen. Then. by (2.13), 6? is I c ( t ) l  

6 I - - ( r ) l i l d i h ( l - 7 ) U ( T ) j d T  calculated. 
2) Choose the constants yo. q l ,  p ,  and K,. 

(3.3) 

where z ( r )  is the zero input response of W ( s ) .  
Now let p i , . .  ' . p n  be the poles of G ( S )  and define 

In (2.10). we choose 

P ' 90 (3.5) 

so that there exist constants K,, K,, and qI such that 

Ih ( t )  I $ K,e-'l' (3.6) 

and 

I z ( r ) l $  K2e-q1'. (3.7) 

Also, suppose that the  input is bounded, i.e., there exists a constant b such 
that 

l Y ( t ) l Q b .  (3.8) 

Thus. choosing 7 = 9,/2, (3.3)  gives 

which means that the output has  an asymptotic bound f i K l b / q 1 6 2 ,  i.e.. 
c( r )  -+ fi Klb/gpS2 as r -+ w .  Moreover, we note  that if one replaces a or 
/3 in B(r)  defined by (2.10) by pa or p/3 with p $1, respectively.  the 
resulting output c ( r )  would have an asymptotic bound f ipK,b/ l ) ,Fz.  
This implies that, for a bounded  input y(t),  the designer can confine the 
output - to a prescribed region by inserting a feedforward compensator 
B ( s )  defined as 

- 
B ( s )  = (3.10) 

with an appropriate p 4 1. We thus have proved the following. 

r v .  ILLUSTRATIIVE EXAMPLES 

Example 4.1: Consider a system with a nonlinear element @( u) = u ( r )  
=0.6(~(t)+o(t)coso(r))andalinearplantG(s~=(l-s)/(l+s)~.The 
input is y( t )  = 0.5 sin q t .  We would like to put a feedfonvard compensa- 
tor B(s) = p B ( s )  = p a  in the system such that the output has an asymp- 
totic  bound 4. 

Note that 0 < $(o)/a < 1.2. It can be verified that 

Re(l+j:)G(jw)+->->O, 
5 1  
6'3 

which means that q = 1/3  and 6 = 1/3. A straightforward calculation 
leads  to v , = l ,  a=0.6,  q 0 = l ,  6,=0.2, and h(t)=0.6(2r-l)e-' .  so 
I h ( t )  $ 0.72e-0-51, i.e., K1 = 0.72 and q1 = 0.5; hence, p = 4/5.1. Thus, an 
attenuator B ( s )  = p a  = 0.47 will constrain the output to be in the region 
I c ( r ) l $  4 for sufficiently large t .  

Example 4.2: Baker and Bergen [2] have given an example (see Fig. 4) 
which indicated that the output might be unbounded even though Popov 
inequality (2.1) was satisfied and the input was bounded. It means that 
the boundedness of the first derivative of the input is necessq for the 
boundedness of the output. By the analysis given in Sections I1 and 111. 
however, it is possible to  put a compensator in the system such that the 
output is bounded nlthout the requirement of boundedness of the first 
derivative of the  input. 

To do this, note  that @ E [0,100]. Le.. k = 100 and 

which implies that q = 1 and 6 = 1/100. Also, Ne have Y, = 2 and a = 
0.0049. Note  that h ( t )  = 0.0049te-' SO that I h ( t ) l <  0.@337e-0-5',  i.e.. 
K1= 0.0037, 91 = 0.5; thus, ( f i K l / q 1 6 , ) b  = 214 provided l y ( t ) l < l .  
Therefore, with an  attenuator B ( s )  = 0.0049. the output will be bounded 
and I c ( r ) l $  214 for sufficiently large t .  

V. CONCLUSION 

If the linear plant G(s)  satisfies the Popov inequahty (2.1) and N is a 
sector nonlinearity [0, k ] ,  it is possible to get some very simple feedfor- 
ward compensator (it may be an attenuator or a first-order stable  com- 
pensator according to whether G(s) is strictly proper or not) to constrain 
the  output in a specified region as long as the input is bounded. The 
compensator parameters can be determined easily. 
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Simultaneous  Stabilization of Nonlinear  Systems 
C. A. DESOER AND C. A. LIN 

Abstruct - We study the problem of simultaneous stabilization of a given 
set of nonlinear plants by one nonlinear, not necessarily stable compensa- 
tor. We obtain a necessary and sufficient condition under which there is a 
single compensator which stabilizes a given set of n nonlinear plants. This 
note emphasizes the importance of the following  problem:  &en is a 
nonlinear unstable plant stabilizable by an incrementally stable compensa- 
tor. 

I. INTRODUCTION 

The problem of simultaneous stabilization of a given set of plants by 
one compensator arises frequently in practice, due to  plant uncertainty, 
plant variation (failure modes, etc.), or plants with several modes of 
operation. Therefore, it is of interest to know the conditions under which 
there exists a solution to this problem. 

For the linear case, Saeks and  Murray [3] obtained a necessary and 
sufficient condition which guarantees simultaneous stabilization of a given 
set of linear plants by one linear compensator. Vidyasagar and 
Viswanadham [4] showed that  the problem of simultaneously stabilizing n 
linear  plants by a linear compensator is equivalent to  the problem of 
simultaneously stabilizing n - 1 linear plants by a stable  linear  compensa- 
tor. 

In this paper, we study  the problem of simultaneous stabilization of a 
given  set of nonlinear plants by one nonlinear, not necessarily stable 
compensator. We obtain a necessary and sufficient condition  under which 
there is a single (nonlinear) compensator which stabilizes a given set of n 
nonlinear plants. The problem of two-step compensation of nonlinear 
unstable  plants is treated in [7]. 

11. DEFINITIONS AND NOTATIONS 

Let ( 9 . 1 1 .  ID be a normed space of ”time functions” T -+ V where T is 
the time-set (typically R + or N), V is a normed space (typically 
R,R”.C“, ...), and 1 1 . 1 1  is the chosen norm on 2. Let 9e be the 
corresponding extended space [6], [l], [5]. A nonlinear causal map P:  
n;= ,9:! -+ ni = ,9/* is said to befinite-gain (f. g.) stable iff 3 y (  P )  < co 
S . t . \ J T ~ 0 , ~ ( u l , u 2 , ~ ~ ~ , z ~ m ) E n ; l ~ , y . a l ,  

I IP (~ , .~2~-~ -~~m) l l rdY(P) ( l l ~ l l l r ’ l l u211r+  ’ . ’  + t L h ) .  

We shall use repeatedly the fact that the sum and the composition of  f.g. 
stable maps are f.g. stable. 

P is said to be incremental!y (inc.) stable iff 
1) P is f.g. stable, 2) 37( P )  < co s.t. V T >  0 

rn 

V(U,,U,,.’.,U,),(E,,~,,’.~,~~)~ n92, 
J =1 

l l P ( u l , z ~ 2 , ~ ~ ~ ~ u ” , ) - ~ ( E l , ~ 2 ~ ~ ~ ~ , ~ ~ ) l l r  

G 7(  P)(IIul- ElIIT + IIu2 - E ~ I I T +  ’ .  ‘ + IIum - ErnIIr). 
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Fig. 1. Shows the system ’S(P, C ) .  

A nonlinear system N with input ( u 1 ; . . , u m )  En7=,92 and output 
(zlr z2; ..,z,) E Ilk=,Sem* is said to  be f.g. stable iff 3 y ( N )  < co s.t. 
V T >  0, V(u, ,  u 2 ; .  . ,urn)  E nl”,,9? for any corresponding output 
(z1, z2 ; .  . , Z / )  E nb=,9p, 

I Izl I Ir  + IIz2IIr + ’ .  . + IIz/IIrd Y(N)(IIulIIr + I l u ~ l l ~ +  ’ .  + IIumIIr). 

We say that a feedback system is well formed iff the relation between the 
inputs of interest and the  outputs of interest is a well-defined causal map 
between suitable extended spaces. The f.g. stability of a well-formed 
feedback system is equivalent to the f.g. stability of its  input-output map. 
We assume throughout that  each system under consideration is well- 
formed. System ‘s( P, C) is defined by Fig. 1: its  inputs,  outputs, and 
“errors”  are (u , ,  vz), (z,, z2), and (q,, q2), respectively. 

111. MAIN m U L T S  

The main result of this note is a theorem. A simplified version of the 
theorem can be described as follows. Consider two nonlinear plants 
described by nonlinear causal input-output maps Pl and P2, where Pl is 
inc. stable, the theorem shows that there exists a compensator C which 
stabilizes both P, and P2 (i.e., the systems IS( P I ,  C) and ‘S( P2. C) are f.g. 
stable) if and only if there exists an f.g. stable Q such that the system 
lS(P2 - P,, Q) is f.g. stable. The theorem is preceded by a reduction 
lemma which is used to replace the condition that Pl be inc. stable by the 
condition  that Pl be stabilizable by an inc. stable  compensator. 

Lemma I :  Let pl: 9;’- 9:o and C, F: 2:. + 9:g be nonlinear 
causal maps. Let Pi:= pi( I - F( - pi))-’. Under these conditions, assum- 
ing that F is inc. stable, 

?S( PI,  C + F) is f.g. stable 9 ‘S( pi, C) is f.g. stable. 

Comments: 1) None of the maps pi, P,, and C are required to be stable. 
2) Contrary to some popular arguments based on block diagram manipu- 
lations, it is a fact that F must be inc. stable. Consider the following 
example. Let 7, = (s - l)/(s + 3) =:E/6, F =  3/(s - l),  and C = 3/1 
=:n,/d,. By calculation, C + F =  3s/(s - 1) =:n,,//d,+f and P, = pi(l 
- F ( -  Fi))-’ = (s  -l)/(s +6)=:n/d. The system * S ( P , , C )  is stable, 
since its characteristic polynomial is nn, + dd, = 4s + 3. However, the 
system %(pi, - C + F )  is unstable since its characteristic polynomial is 
Rn,+f+dd,+,=(s-1)(4s+3). 

Proof: ( =) ) Consider the system ‘S( PI ,  C) shown in Fig. 2, write the 
equations defining P, and P,. 

P, = u1- PiP2 
- 

(1) 

P 2 = u 2 + C P 1 + F ( - ~ , P 2 ) = u 2 + C ? , + F ( P 1 - u , ) .  (2) 

By adding and subtracting El to (2) and rearranging terms, we have 

P 2 = u 2 + F ( P , - u , ) - F ( P , ) + ( C + F ) e , .  (3) 

Let 

i i l :=u l ,  

i j 2 : = u 2 + F ( E , - u , ) - F ( P , ) ,  

and rewrite (1) and (3) as 

P1 = ii, - Pi?, ( 6 )  
? 2 = i i 2 + ( C + F ) P l .  (7) 

- 

Note that (6) and (7) describe the system ‘S(P,,C+ F )  with input 
(ii,, C2); hegce by assumption, the map (El ,  i i 2 )  - ( P l ,  P 2 )  is f.g. stable. 


