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Hence, the U-type hyperbolic m-periodic point cannot exist, and in
consequence. possible bifurcations are of the 7j-, Dy-, Dy, I-, and
I~types. In the numerical results shown below, however, only the T3-, Dy,
and [;-types are actually observed.

All the terms on the right-hand side of (7) are odd with respect to x,
and x,, and the input term satisfies the following condition:

sinw(t—fz -r>=—sinwt (k=0.1.2,---). (11)
Therefore, the D-type bifurcation can exist, and in addition, the following
properties hold.

1) Symmetric (2k +1)7-periodic solutions (4 =0,1,2,---) whose
trajectories are symmetric with respect to the origin of the state space can
exist, while symmetric 2 k 7-periodic solutions (£ =1,2. - - ) cannot.

2) If there exists an asymmetric mr-periodic solution (m=1.2.---),
then there must exist another asymmetric m7-periodic solution whose
trajectory is symmetric to that of the former with respect to the origin.

The Y versus w curve determined numerically is shown in Fig. 1,
together with the one determined previously by use of the describing-func-
tion method [4]. As expected, there exists a great discrepancy between
these two results in the low-frequency range. In Fig. 2, a topological
structure is sketched in order to make the fine structure of the com-
plicated Y versus w curve easy to see.

The main branch AABC,C{D\E\C,C{D,E, -+ contains symmetric
7-periodic solutions of the S-type (BCy, ({Dy, E1Cs. GiD5. EXGy -7 )
the D-type (AB. C,Cy. DE|. C;C3, D,E,.---), and the nonhyperbolic
type (AA4’). Therefore, B, D,. E,. D,, E,. - are the T-type bifurcation
points where a jump must occur with a change in «, while C;, ({»Cs.
C;, - are the D,-type bifurcation points from which bypass branches of
twin asymmetric T-periodic solutions emanate. The character of the sub-
branch 44" is rather singular. For each value of w, there exists an infinite
number of twin asymmetric r-periodic solutions, in addition o a symmet-
ric 7-periodic solution. The trajectories of these periodic solutions are
ellipses of the same size centered on the x; axis and are entirely contained
within the domain —1< x; €1 where the state equation is linear. The
periodic point corresponding to each of these solutions is nonhyperbolic
because puy =1 and p, = ¢~ """, Thus, the bifurcation point 4 where a jump
must occur is of the tangential type, but it is not of the Ty-type. The
advent of such a singular bifurcation might be due to the fact that the
w(x;) has no derivative at x; = + 1.

The bypass branch C,FG{H,K,L,M,C] contains twin asymmetric
7-periodic solutions of the S-type (CF,. G Hy, K L. MC)). the D-type
(H,K,). and the I-type ( F{G,. L, M)). At two T}-type bifurcation points
H, and K7, a jump must occur. From four /)-type bifurcation points Fi¢
G,, L. and M}, bypass branches of twin asymmetric 27-periodic solu-
tions emanate.

The bypass branch F,f,g,G, contains twin asymmetric 27-periodic
solutions of the S-type (Fif,. £,G,) and the /-type (f;g,). From two
Ii-type bifurcation points f, and g,, a bypass branch f; f’g{g; of the twin
asymmetric 4r-periodic solutions emanates. In a like manner, bypass
branches of the twin asymmetric 2%r-periodic solutions (k=1.2,--+)
must follow in order. A series of the [j-type bifurcation points
F. fi. f{, - tends to a limiting point f{* which is followed by a chaotic
branch f{°f{. The branch f°f{ contains the so-called chaotic solutions,
but some twin asymmetric (24 +1)t-solutions (£ =1,2. - - - ) are observed
in the windows which are narrow frequency ranges scattered in the
chaotic region. At the point f{, which is the extreme point of the chaotic
region, a jump must occur with a change in w. A jump of this type is not
contained in the classification stated before.

The state of the system must change frequently in its character with
continuous and slow change in w, and therefore many jumps must occur,
Further, there exist branches of stable states such as H,G, g, g{g*g{ and
DiC{Mymym{mm{ to which no jump can occur unless some violent
disturbance is applied.

IV. CONCLUSION

The true frequency response of nonlinear feedback control systems
could be surprisingly complicated relative to the approximate one de-
termined by use of the describing-function method. Many bifurcations
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with and without jumps could appear, and the system might sometimes be
brought into a chaotic state. It should be kept in mind that a simple
nonlinear feedback control system might behave in a quite strange manner
subject to some ill-starred disturbances.
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Linear Compensator Design for Bounded
Input-Bounded Output Stability of
Nonlinear Systems

WU-SHENG LU anp K. S. P. KUMAR

Abstract — A method of determining a cascade compensator in a nonlin-
ear feedback system to provide BIBO stability is discussed. The procedure
is based on the Popov locus. Two examples are included to illustrate the
method.

I. INTRODUCTION

It 1s of considerable interest to engineers to design nonlinear systems
such that the output remains bounded and to be able to prescribe the
bound on the output. For nonlinear feedback systems, various sufficient
conditions exist for BIBO stability [1]-[4]. These tests, however, are not
adequate by themselves if the designer wants to prescribe tolerable
bounds on the output. Moreover, in many of these criteria, it is necessary
to put a bound on the derivative of the input to prove bounded output.
This proves to be a limitation if noise exists in the input channel.

This paper describes a simple method for choosing a cascade attenuator
or a first-order stable compensator so that the ouiput of the compensated
system is confined to a prescribed region without placing any requirement
of boundedness on the derivative of the input.

II. THE EFFeCT OF A CASCADE COMPENSATOR

Consider a nonlinear feedback system (Fig. 1) composed of a linear
time-invariant plant with a proper transfer function G(s) which has all its
poles in the left half of the s plane, a nonlinear element N characterized
by a piecewise continuous function ®(-) defined on (— xc.2¢) such that
0<®(o)/ochk<oc, Vo=0 and ®(0)=0. In Fig. 1, z4(¢) is the zero
input response of the linear plant. Also, assume that there exists some real
g > 0 such that

Re(l+jqw)G(jw)+%>5>0. Ve R*Y. (2.1)

If G(s) is strictly proper. then (2.1) yields

ReG(jw)-é—qv1+-11€>8>0
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Fig. 1. Nonlinear feedback system.
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where
= max|wImG(jw)|
[5]
or
, 1
ReaG(,m)—:E >ad>0
where
oL
1+ kgry”

ReG{jw)

(22)

(2.3)

(24)

Graphically, (2.1) means that there exists a Popov line that passes
through the point (—(1/k),0) and has a slope 1/g such that the Popov
locus for G(jw) lies strictly to the right of it, while (2.3) implies that the
Popov locus for aG( jw) will shrink so that the corresponding Popov line
can be replaced by a perpendicular one passing through the same point

(—(1/k),0) (see Fig. 2).

In case G(s) is not strictly proper, we note that, with positive 8; and p

to be determined later,

Re[(lﬂqw)ﬁngj‘;)] 7

= B_IFP Re(1+jqw)G(jw)+ Ao

where

wIm(1+ qu)g(Jw)
w +p

vy =

Ls.‘

Thus, if

P
A< 16k —1}+ kpvy’

Im(1+qu)G(Jw)T—
+p?

(23)

then
BiG (Ju )
Re[(1+]qw) e k >8>0

where

- ___ P

5i=A |6k — 1|+ kpvy°
Further,
BiG(Jjw) BiG(jw)
Re[(1+jqw) Jotp <Re Jatp + B1gvs
where
v3 = max |Im M .
© Jwt+p

Equations (2.6) and (2.7) thus lead to

re BGU@) |

> 8;>0

TR

where
1
A= Tk,
and
B=58.

As a summary, we have the following.
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(2.6)

2.7

(2.8)

(2.9)

Lemma: For the nonlinear system given above, there exists a feedfor-

ward compensator B(s) defined by

a, for G('s) strictly proper
B(s)= % , for G(s) not strictly proper
such that
ReW(jw)+-]]é>62>0, Vo € R*
where
W(s)=B(s)G(s)
and

for G(s) strictly proper

ad
8,={ "
2 { for G(s) pot strictly proper.

Blala

III. AN ESTIMATE OF THE BOUND OF THE OUTPUT

(2.10)

(2.11)

(2.12)

(213)

Bergen, Iwens, and Rault [1] proved that for the system shown in Fig. 1,

the following inequality holds for sufficiently small 5 > 0:

12
[ftez’"u%('r) dr]
0

< [82.[[ [y (1)~ 2o () + 4(Fo (1)~ 2(r))]* @

2q [o(0) 172
+?j[-) (I’(u)du] R vi>0.

(3.1)

Thus, by the lemma, for the compensated system with B(S) given by

(2.10) shown in Fig. 3, (3.1) becomes

172
[flez”"uz('r) dﬂr] <
0

é[_{)’ez’"[')'('r)-z(f)]zdf]1/2, V> 0.

(32)
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Fig. 3.

Example 4.1,

In addition, by checking the proof of the main lemma in [1], it may be
observed that the real 7 in (3.2) could be any positive constant.

Inequality (3.2) implies that no bounds are required on the input
derivative for BIBO stability of the compensated system. In fact, denoting
the impulse response corresponding to W(s) by A(t) and using (3.2), we
have

le(o)l
S]z([)]w’-j[;llh(t—-r)u(’r)[dT
1/2

S‘Z(I)He—m{f Wip2(q )dff e 7(7)011']

Sk G| e ar [ty -ape]

sl B [y an ey 2ol e
33)
where z(1) is the zero input response of W(s).
Now let py,- -+, p, be the poles of G(§) and define
1o = max[Rep|. (34
In (2.10), we choose
P> (3.5)
so that there exist constants K;, K5, and 1, such that
th(z)l< Kje™™ (3.6)
and
(1) < Kae ™. G.7)

Also, suppose that the input is bounded, i.e., there exists a constant & such
that

MO (3-8)
Thus, choosing 1 =1, /2, (3.3) gives
V2K, :
K —ﬂ11+_ —mi? —711"(1'
()< Kqe 3, [e ./(;e T
12
f’[ brem + K%e"“’] d‘r]
0
K -mt 172
< Kae ™+ ‘/—16: ( + 222 ) (3.9)

which means that the output has an asymptotic bound v2 K;b/1,8,, i.€.,
(1) =2 Ky b /18, as 1 — oo. Moreover, we note that if one replaces « or
B in B(s) defined by (2.10) by pa or pf with p <1, respectively, the
resulting output c(f) would have an asymptotic bound V2 oKib/ 18,
This implies that, for a bounded input y(r), the designer can confine the
output to a prescribed region by inserting a feedforward compensator
B(s) defined as

B(s)=pB(s)

with an appropriate p <1, We thus have proved the following.

(3.10)
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Theorem: For the nonlinear system described in Section II and shown
in Fig. 1, a simple linear compensator B(s) given by (2.10) will cause the
output to have an asymptotic bound (V2 K, /1,6,)4. Moreover, an extra
attenuator factor p causes the output to have an asymptotic bound
(V2 K;p/1185) b so that the output can asympiotically be constrained to a
desired region by adjusting the factor p.

Given a desired output bound M, the following steps for determining a
compensator B(s) are followed.

1) Depending on if G(s) is strictly proper or not, constants », and « or
constants v,, »3, By, 81, B8, and §, are chosen. Then, by (2.13), &, is
calculated.

2) Choose the constants 1. 1, p, and K.

3) Take
1, ifM> ‘/—Kl
lﬁq
p
Mn,é. 2K
_11_7-, it M < ‘[_ 1y
VZKb 167

IV. ILLUSTRATIVE EXAMPLES

Example 4.1: Consider a system with a nonlinear element ® (o) = u(r)
= 0.6(o(f)+ o(7)cos () and a linear plant G(s)= (1 — 5)/(1+5)>. The
input is y(#) = 0.5sinwys. We would like to put a feedforward compensa-
tor B(s)=pB(s)=pa in the system such that the output has an asymp-
totic bound 4.

Note that 0 < ¢(0)/0 <1.2. It can be verified that

Re(l+13)G(jw)+ -;- 0,

which means that g=1/3 and 6 =1/3. A straightforward calculation
leads to v;=1, a=0.6, 79=1, 8§,=02, and h(z)=0.6(2t—1)e™", s
Jh(£) < 0.72¢7 %% ie, K, =0.72 and 5; = 0.5; hence, p = 4/5.1. Thus, an
attenuator B(s) = pa = 0.47 will constrain the output to be in the region
|e(1)] < 4 for sufficiently large ¢.

Example 4.2: Baker and Bergen [2] have given an example (see Fig. 4)
which indicated that the output might be unbounded even though Popov
inequality (2.1) was satisfied and the input was bounded. It means that
the boundedness of the first derivative of the input is necessary for the
boundedness of the output. By the analysis given in Sections II and III,
however, it is possible to put a compensator in the system such that the
output is bounded without the requirement of boundedness of the first
derivative of the input.

To do this, note that &  [0,100], i.e., kK =100 and

l+jo 1
1+ jw)® 100

which implies that g=1 and 6§ =1/100. Also, we have »;=2 and a=
0.0049. Note that A(r)=0.0049ze™" so that |h(1)] < 0.0037e7 %% ie,
K, = 00037, 1,=05; thus, (V2 K;/m8,)b =214 provided |y(£)|<1.
Therefore, with an attenuator B(s) = 0.0049, the output will be bounded
and |¢(1)) < 214 for sufficiently large 7.

Re 2m>0.

V. CONCLUSION

If the linear plant G(s) satisfies the Popov inequality (2.1) and N is a
sector nonlinearity [0, k], it is possible to get some very simple feedfor-
ward compensator (it may be an attenuator or a first-order stable com-
pensator according to whether G(s) is strictly proper or not) to constrain
the output in a specified region as long as the input is bounded. The
compensator parameters can be determined easily.
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Simultaneous Stabilization of Nonlinear Systems
C. A. DESOER aND C. A. LIN

Abstract —We study the problem of simultaneous stabilization of a given
set of nonlinear plants by one nonlinear, not necessarily stable compensa-
tor. We obtain a necessary and sufficient condition under which there is a
single compensator which stabilizes a given set of n nonlinear plants. This
note emphasizes the importance of the following problem: when is a
nonlinear unstable plant stabilizable by an incrementally stable compensa-
tor.

L INTRODUCHON

The problem of simultaneous stabilization of a given set of plants by
one compensator arises frequently in practice, due to plant uncertainty,
plant variation (failure modes, etc.), or plants with several modes of
operation. Therefore, it is of interest to know the conditions under which
there exists a solution to this problem.

For the linear case, Sacks and Murray [3] obtained a necessary and
sufficient condition which guarantees simultaneous stabilization of a given
set of linear plants by one linear compensator. Vidyasagar and
Viswanadham [4] showed that the problem of simultaneously stabilizing n
linear plants by a linear compensator is equivalent to the problem of
simultaneously stabilizing #n —1 linear plants by a stable linear compensa-
for.

In this paper, we study the problem of simultaneous stabilization of a
given set of nonlinear plants by one nonlinear, not necessarily stable
compensator. We obtain a necessary and sufficient condition under which
there is a single (nonlinear) compensator which stabilizes a given set of n
nonlinear plants. The problem of two-step compensation of nonlinear
unstable plants is treated in [7].

II. DEFINITIONS AND NOTATIONS

Let (&, |I-|) be a normed space of “time functions” T— V where T is
the time-set (typically R, or N), V is a normed space (typically
R,R”,C",---), and ||-|| is the chosen norm on &. Let £, be the
corresponding extended space (6], {1], [5]. A nonlinear causal map P:
L& - [T} .1 & is said to be finite-gain ( f. g.) stable iff Iy (P) < oo
st VT >0, ¥(uy, uy,- - -, u,) €ILE0,

u )z < Y(P)(lwlir + lluallr +

We shall use repeatedly the fact that the sum and the composition of f.g.
stable maps are f.g. stable.

P is said to be incrementally (inc.) stable iff

1) Pis f.g. stable, 2) 33(P)<o0 s.t. VT >0

m
ae [ [<m,
Jj=1

”P(ubul’”" . +um”T)'

V(Ulwuz,"';um),(ﬁlyﬁz,"‘,

||P(u1’u2"”!unz)—P(ﬁhﬁZ"“v-am)”T

<T(P)(llwy — Byllr + Nz — Bollr + -+ 1t — Billr) -
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Fig. 1.

Shows the system 1S( P, C).

A nonlinear system N with input (w1, -, u,) €I1/L,%," and output

(21, 23,7 -, 2)) ETT4_ 1 L is said to be f.g. stable iff Iy(N)<o0 s.t.
VT >0, Y(uy,uy, - u,) €N &% for any corresponding output
(21,29, vz €T B,

- +lizdlr < YNl + llwally + - -« + uwliz).

We say that a feedback system is welf formed iff the relation between the
inputs of interest and the outputs of interest is a well-defined causal map
between suitable extended spaces. The f.g. stability of a well-formed
feedback system is equivalent to the f.g. stability of its input—output map.
We assume throughout that each system under consideration is well-
formed. System S(P,C) is defined by Fig. 1: its inputs, outputs, and
“errors” are (v, v1), (21, 22), and (75, 9, ), respectively.

llzallr + ll2allr +

III. MAIN RESULTS

The main result of this note is a theorem. A simplified version of the
theorem can be described as follows. Consider two nonlinear plants
described by nonlinear causal input-output maps P, and P,, where P, is
inc. stable, the theorem shows that there exists a compensator C which
stabilizes both P, and P, (i.e., the systems 'S(P;, C) and 'S(P;, C) are f.g.
stable) if and only if there exists an f.g. stable Q such that the system
IS(P,— P,,Q) is fg. stable. The theorem is preceded by a reduction
lemma which is used to replace the condition that P; be inc. stable by the
condition that P, be stabilizable by an inc. stable compensator.

Lemma I: Let P: &L/ — £ and C,F. £'o— & be nonlinear
causal maps. Let P:=P,(I — F(— P;))"L. Under these conditions, assum-
ing that F is inc. stable,

1S(P,,C+F)isfg. stable = 'S(P,C)isfg. stable.

Comments: 1) None of the maps P;, P,, and C are required to be stable.
2) Contrary to some popular arguments based on block diagram manipu-
lations, it is a fact that F must be inc. stable. Consider the following
example. Let P,=(s—1)/(s+3)=:7/d, F= 3/(s -1), and C=3/1
=n./d.. By calculal:lon C+F=3s/(s-1)= Hf/d”/andP P(1
~F(—P) '=(s—1)/(s+6)=n/d. The system IS(P,,C) is stable,
since its characteristic polynomial is nn,+ dd,.= 45 +3. However, the
system S(P,C + F) is unstable since its characteristic polynomial is
gt ddﬁf (s —1)(4s +3).

Proof: (=) Consider the system 'S(P,
equations defining &, and &,.

,C) shown in Fig. 2, write the

1)
&)

& =u~ Pe,
&y=ty+ Ce 4+ F(—Pig;y) = uy + C& 1+ F(&— uy).

By adding and subtracting Fg; to (2) and rearranging terms, we have

By=uy+ F(&—uw)—F(&)+(C+F)é. (3)
Let
i i=uy,
yi=uy + F(& —u)~ F(&),
and rewrite (1) and (3) as
é1=ﬁ - P2, (6)
=i t(C+F)é. (7

Note that (6) and (7) describe the system 'S(P,C+ F) with input
(i, it5); hence by assumption, the map (i, it5) — (&, &,) is f.g. stable.
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