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Stability Analysis for Two-Dimensional 
Systems 

WU-SHENG LU AND E. BRUCE LEE, FELLOW, IEEE 

A&tract -The state-space versions for several Bounded-Input 
Bounded-Output (BIBO) stability criteria of 2-D systems are given. Several 
checkable sufficient conditions are also described. For the special cases 
when n = 1 or m = 1 a criterion which is related to DeCarlo’s criterion is 
reported. Some results on stabilizability based on the stability results are 
included. 

I. INTB~DUCTI~N 

C ONSIDER a shift-invariant causal SISO 2-D system 
with transfer function 

n m 

H(z-l,w-l) = b(Z-‘,W-‘) = i~Oj~llhijz~iw~’ 

a(z-‘,w-‘) 
2 F aiiz-iw-j’ 

i=Oj=CJ _ 

a @)=l (1.1) 

where a(z-‘, w-‘) and b(z-‘, w-‘) are coprime and there 
are no nonessential singularities of the second kind [ 11, i.e., 
there are no points (z-‘,w-‘) such that b(z-‘,w-‘)= 
a(z-‘,w- . ‘) = 0 The system is said to be Bounded-Input 
Bounded-Output (BIBO) stable whenever a bounded input 
always produces a corresponding bounded output. 

Rewriting (1.1) as 

H(z-‘,w -‘)= 2 E hlkz-+k 
k=O I=0 

(1.2) 
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the BIB0 stability of the system is equivalent to 

kf?o ,FOih,*i < O”. (1.3) 

During the last decade, several BIB0 stability criteria and 
some sufficient conditions for instability have been ob- 
tained ([2]-[5], [ 161, [ 171 etc.,) for example, we have 

CZ ((21): System (1.1) is BIB0 stable if and only if 
-- 

C2 ([3]): System (1.1) is BIB0 stable if and only if 
(i) a(G,@ * 0 
(ii) a(T, 0) * 0. 
C3 ([4]): System (1.1) if BIB0 stable if and only if there 

exist (Y and p such that ]a] < 1, ]p] = 1 and 
(i) a(a,V)*O 
(ii) a(U,P)fO 
(iii) a(T2) 4 a(T, T) f 0. 
C4 ([.5]): System (1.1) is BIB0 stable if and only if 
(i) a(z-‘, z-‘) f 0, Z-‘Eif7 

(ii) a(T2) f 0 
where U is an open. unit disc, U2 = ((z-‘,w-‘), ]z-‘.I < 1, 
] w- ‘1 < l} is the open bidisc, T is an unit circle, T* = 
{(z-l, w-’ ), ]z-‘1 = ]w-‘1 = l}, Uand u2 are the closures of -- 
U and U*, respectively. The notation a(U,U) represents 
thevalueofa(z-‘,w-‘)foranyz-‘Eoandw-’EU,and 
so on. , 

Recently, a nice unified treatment for these stability 
theorems has been given by Delsarte et al. [6]. On the other 
hand, since some significant state-space models for 2-D 
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systems and related theoretical works have appeared (e.g., 
[7]-[9]), the stability analysis carried in the 2-D state space 
might be useful for analysis and design of 2-D systems. 

In the next section, after describing the state-space ver- 
sion of the criteria mentioned above, some simple neces- 
sary conditions which may be used to test the instability of 
a 2-D system are given. In addition, two. other sufficient 
conditions are described. In Section III, for the special 
cases n = 1 or m = 1, some checkable sufficient conditions 
and a criterion which is closely related to DeCarlo’s crite- 
rion are reported. As an application of the stability results, 
we discuss the stabilization of a 2-D system by state 
feedback or output feedback in Section IV. 

if the involved inverses exist. 
A square matrix is said to be stable, if all of its eigenval- 

ues lie in the interior of the unit circle in the complex 
plane. ,It is now easy to see that Huang’s criterion and 
DeCarlo’s criterion lead immediately to the following re- 
sults: 

Theorem 2.1. The following statements are equivalent: 
1) System (2.1) is BIB0 stable; 
2) (i) A, is stable, 

(ii) A, + A,(zIn - A,)-‘A, with ]z] = 1 is stable;. 
3) ‘(i) A, is stable, 

(ii) A, + A2(wI, - Ad)-‘A3 with ]w] = 1 is stable; 
4) (9 

II. SOME STABILITYRESULTSINTHE 2-D STATE 
SPACE 

Consider Roesser’s model [7] for a’SIS 2-D system: (ii) A, has no eigenvalues on the unit circle, 
(iii) A, + A,(zIn - A,)-‘A2 with ]z] = 1 has no ei- 

genvalues on the unit circle; 
5) (i) A is stable, 

(2.1) 

where xh and x0 are n-dimensional and m-dimensional 
vectors, respectively. 

The 2-D z-transform of (2.1) gives 

Y(~-‘,~-‘) =c I, :z-‘A, 

I 

-z-IA, 

U(z-‘,w-‘) -w-IA, I,,, - w-‘A, I 

-lB 

Cadj 
I 

I, -z-IA, -z-IA, 
- w- ‘A3 I, -&‘A, 1 B 

= 
I, - z- ‘A’ - Z-IA, 

- w- ‘Ag I,,,-w-IA4 

(2.2) 
Set 

4 

Corollary 2.1: If n = m = 1 and A,A, f 0 (in case A,A, 
= 0, we simply have Corollary 2.3 which follows), the 
System (2.1) is BIB0 stable iff 

6) IAll ~1 

b( z-‘, w-‘) = Cadj I I,-z-lA, -z-IA, 1 B (2.3) 
- W-IA, I,,, - w- ‘A4 

z-‘,w-‘) = 
I, - Z-IA, - Z-IA, 

- w- ‘A3 I,,, -w-IA, 

(ii) max A + (1 4 +#44-*~}. 
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is stable, 

(ii) A, has no eigenvalues on the unit circle, 
(iii) A, + A2(wI,,, - A4)-‘A3 with ]w] = 1 has no ei- 

genvalues on the unit circle. 
Note that 2) in theorem 2.1 has appeared in a similar 

fashion in theorem 1 of [lo]. However, their condition (b) 
seems to be redundant. 

To verify the condition given in Theorem 2.1, e.g., 2) (ii) 
and 3) (ii), is not as easy as in 1-D case. However, in the 
simple case n = m = 1; conditions 2)(i) and 2)(ii) of Theo- 
rem 2.1 become 

(a) IAll ~1 

Thus a straightforward calculation yields a checkable 
stability criterion: 

and assume that a(~-‘, w-‘) and b(z-‘, w-‘) are coprime 
and there are no nonessential singularities of second kind, 
then the transfer function of this system is 

II(z-‘,w -I) = b(ay,wI’) 

a(z ‘,w 1). 

The polynomial a( z- ‘, w-’ ) given in (2.3) can be rewrit- 
ten as 

u(z-(w-1) 

Corollary 2.2. The following three conditions are neces- 
sary for BIB0 stability of the system (2.1): 

1) A is stable; 
2) A, is stable; 
3) A, is stable. 
This corollary might be useful for checking the instabil- 

ity of a 2-D system. For example, a system with 

=[I,-z-‘A,III,-w -‘[A,+ A,(~I,- A,)-‘A~]~ is unstable because A, is unstable even though A and A’ 
are stable. Similarly, the system with 

= II, - w-‘A4& - z-‘[A, + A,(wI, - A,)-‘A,]1 

(2.4 1 
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is unstable because A is unstable even though A, and A, 
are stable. However, we have the following: 

Corollary 2.3. If A, = 0 or A, = 0, then System (2.2) is 
BIB0 stable if and only if A, and A, are stable. 

On the other hand, the conditions given in Corollary 2.2 
are not sufficient in general case. In fact, we have 

Example 2.1. 

A= -0.4 -0.6 
0.6 0.8 1 

has eigenvalues X, = X, = 0.2, so that A is stable and so are 
A, and A,. However, we have 

A,+A,(z-A,)-‘A,=O.Gs 

which has value 1.4 at z = - 1. Hence the system is un- 
stable. 

Therefore, it seems interesting to explore how far 
Corollary 2.2 is from implying BIB0 stability of the sys- 
tem. 

Now consider a nonsingular transformation for the state 
variable in (2.1) 

which brings (2.1) to 

G-5) 

where a = TAT-‘, & = TB, and c = CT-‘. 
Note that a( z-‘, w- ‘) in (2.3) is invariant under the 

transformation (2.5) and so is each term in (2.4). This fact 
leads to the following sufficient condition for BIB0 sta- 
bility of the system: 

Theorem 2.2. The conditions 
(i) A, and A, are stable, 
(ii) A, and A, are diagonalizable and the transformation 

in (2.5) is chosen such that a, and a4 in (2.6) are diagonal, 
(iii) ~~~2~~~~~3~~ < (1 - e*)(l -s*) (2.7) 

will guarantee the BIB0 stability of system (2.1) where 

e* = ,~yJ~(4)I~ 
. . 

s* = , yiyJ%44)I 
.\ 

II.11 is the induced norm defined as 

IAIl = *y+ [hw41”*. . . (2.8) 

Proof: By 2) of Theorem 2.1 it is sufficient to show 
that the norm of a4 + a,(zI, - A^‘)-‘A, with Jz( = 1 is less 
than one. Indeed, we can take 

a,=diag[e,,e,;..,e,] 

a4=diag[s,,s,;..,s,] 

so that 11A411 = s* and 

We thus have 
1 1 

/IA4 + A,( ZI, - a*)-‘A,II < s* + “4”‘y < I 

The last inequality is due to (2.7). Q.E.D. 
A square matrix N is said to be normal if NrN = MVr. 

As is well known, a normal matrix can be diagonalized by 
using an orthonormal coordinate transformation. We thus 
have 

Corollary 2.4. Assume that 
(i) A, and A, are stable, 
(ii) A, and A, are normal, 
(W IIA21111A311 < Cl- e*>U - ~$1 

then the system (2.1) is BIB0 stable. 
Proof: We note that for any orthonormal matrix the 

induced norm defined in (2.8) is equal to one. 
Suppose the submatrices T, and T2 in (2.5) are two 

orthonormal matrices such that a, and A^* are diagonal 
matrices, then 

11~211 = IIW2T;rlI Q IIT,IIIIA2llllT’II = IL4211 

11~311 = IIWsT,?l G Ilr,llllA3llllT?ll = IIA311. 

We thus have 

IIA, + A,@, -A^,)-‘AllI ,<s*+ “4”ly <I. 

Q.E.D. 

From this observation, the restriction for the norms of 
A, and A, would lead to stability of the system. However, 
the magnitude of ((A,I((IA,(( seems not yet to be an essential 
thing. For instance, using 2) of Theorem 2.1 we can check 
that a system with 

0.5 0 : 1 
A= 0 

I 
0.5 : 5 -$.+ . i. . : $; 1 

is BIB0 stable, but 

~~A2~~~~A3~~ = 51.9 z+ (1- e*)(l- s*) = 0.15. 

Furthermore, we note that the eigenvalues of A are 0.4, 
0.5, and 0.8 which are quite near the eigenvalues of A, and 
A,, respectively, even though IIA2~~~~A3~~ is quite large. With 
this object in view, recall that fact that in case A, = 0 or 
A, = 0 the spectra of A is just the union of the spectra of 
A, and the spectra of A, and then the stabilities of A, and 
A, are a characteristic for the BIB0 stability of the system. 
Therefore, the deviation of the spectra of A from the union 
of the spectra of A, and A, because of the existence of A, 
and A, may be an essential one for the BIB0 stability of a 
2-D system. In the next section, we consider special cases 
of this. 
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III. FURTHER ANALYSIS 

By 4) of Theorem 2.1, the system is BIB0 stable if and 
only if A and A, are stable and 

IwIw-[~4+~3(z~n-~l)-‘~2]j+~ withJwJ=)z)=l. 

(3.1) 
Rewriting (3.1) as 

~(w-z)I,+{zI~-[A4+A3(~In-A,)-‘A2]~[+0 

with lwl = IzI = 1 (3.2) 

and noting 

IZI~ - [A4 + A,(ZI~ - A,)-‘A,]I 

IzI,-A, - 

-‘43 zI,,, - A, 
= 

l4, - Ail 
- 

ll+l?l 

;y (Z-Y,> 
= 

,jjtz-ai) 
(3.3) 

where {y,, 1 < i < n f m} and {ai, 1 Q i 6 n} are the eigen- 
values of A and A,, respectively, we can express condition 
(3.2) for the special case m = 1, in the following way: 

II+1 
iQ (z-v,) 

Z- 

,jt-d 

fW withIwl=IzI=l (3.4) 

which means that the complex variable on the left side of 
(3.4) is not on the unit circle. Therefore, condition (3.2) is 
equivalent to 

I nil 

n Cz-Yi) 
z- C’ 

KI tz - ai> 
I i=l 

where 1. I represents the mot 
variable. We thus have 

Theorem 3.1 

*l with IzI = 1 (3.5) 

ulus of the involved complex 

1) If m = 1, system (2.1) is BIB0 stable if and only if 
(i) A and A, are stable, 
(ii) 

n+l 

II Cz-Yi> 
t& z- ir;* *l with IZI = 1 

or, 
2) If n = 1, system (2.1) is BIB0 stable if and only if 

(i) A and A, are stable, 
(3 

m+1 
r-I (W-Y;) 

9& w- i;* *l with JwJ = 1 

,c, Cw-Pi) 

where {pi, 1 < i < m} are the eigenvalues of A,. 

It should be noted that if A, = 0 or A, = 0 in (2.1), then 
for m=l we have yi=a, (i=1,2;--,n) and y,,+i=p, 
which implies the equivalence of the condition (ii) in 
Theorem 3.1, l), and the stability of A,. Also, for n = 1, we 
havey,=~,(i=1,2;~~,m)andy,,,+,=cw, whichmeansthe 
equivalence of the condition 2)(ii) in Theorem 3.1, and the 
stability of A,. 

Now, we denote the unit circle in a complex plane by eje 
(0 6 B d 2n), and set 

(*= max 
o<eG2T 

n+l 

,,e _ ,Q, ( ‘je - Yi > 

lfJ we- 4 

n+l 

II (e’“-Yi) 
,f*= tin ,.ie- i;i 

o<e<2n 
iFJ (e’“-ai> 

mtl 
JII (e’“-Yi) 

9*= max ,ie- i;;11 
o<eg2n 

,FJ Cei”-Pi) 

m+l 

11 . *= mm 
eje_ iQ (e’e-yJ 

o<e92?r 
ifI’kje-8,) 

These extremes can be found, at least theoretically, with 
ordinary calculus because the real-valued functions of the 
real variable 5 and TJ are continuously differentiable on a 
closed interval. Using these extrema the previous theorem 
can be restated in the following way: 

Corollary 3. I. 
1) If m = 1, system (2.1) is BIB0 stable if and only if 

(i) A and A, are stable, 
(ii) .$, > 1, or, [* < 1, 

or, 
2) If n = 1, system (2.1) is BIB0 stable if and only if 

(i) A and A, are stable, 
(ii) 7j* > 1, or, q* < 1. 

It is, however, difficult to determine these extremes, 
especially in case of large n or m. In order to obtain 
checkable conditions, we rearrange the functions ,$ and 17 as 
follows: 

n+l 
II (‘-Yi) 

[= z- i;’ 

,~,(z-d 

I?lz-6il 
= Ial i;’ 

,Q, I’ - ail 
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and 
tTl+1 
,Q, Cw-yi) 

q= w- 

,(I, Cw-pi) 

= lb] i;,’ 

i~,lw-P,I 

where a * 0, b+= 0, {Si, 1 G i G k} and {rip 1 G id 1) are 
some complex constants and k d n’ < n, I c m’ Q m. 

For any specified arrangement of the sets (ai}, {Pi>, { Si}, 
{ri}, we always have 

1 

1 

and in a similar fashion relations can be found for n* and 
v*. We note that for the function, for example, 

de - 6. 

I i 

I 
eje - (Y. I 

its extrema in the closed interval [0,2~] can be determined 
easily. We also note that these relations hold for any 
ordered set {q}, {p,}, {a,}, and { +ri}. Therefore, it is reason- 
able to define 

de - 6. 
I 
eje - a. I 

We now have the following obvious relations: 
tZ* t 

which together with Corollary 3.1 lead to a checkable 
sufficient condition for the special cases m = 1 or n = 1 as 
follows: 

Corollary 3.2. 
1) If m = 1, system (2.1) is BIB0 stable if 

(i) A and A, are stable, 
(ii) t** < l/lul, or ,$** > l/lul, where <** and 5** are 

given by (3.6) and (3.7), respectively, or, 
2) If n = 1, system (2.1) is BIB0 stable if 

(i) A and A, are stable, 
(3 11 ** < l/lbl, or q** > l/lb1 where n** and n** are 

given by (3.8) and (3.9) respectively. 
Example 3.1, 
Consider a 2-D system with 

[ 

0.5 0 : 1 
A= 0 0.5 : 5 _ $e.s7. . i. . : bli 

I 

As can be seen from the results at the end of Section II, 
this system is BIB0 stable. Now we use the results given in 
this section to verify this fact. 

First of all, we know that the spectra of A and A, are 
{0.4,0.5,0.8} and {0.5,0.5}, respectively, which implies the 
stability of A and A,. Moreover, we have 

5= z- (z-O.~)(Z-O.S)(z-0.8) 

(z -o.5)2 

0.04 
< 0.7+0.7---- 

Iz - 0.51 

< 0.7 + 0.7 z = 0.756 

which implies .$‘* < 1 and Corollary 3.1 leads to the BIB0 
stability of this system. 

IV. STABILIZATION OF 2-D SYSTEMS BY STATE 
FEEDBACK OR OUTPUT FEEDBACK 

For an unstable 2-D system (2.1) one may ask if there 
exists a suitable state feedback 

u(i, j) = K xh(i, j> [ 1 x”(i, j) 

where K, K,, K, are p X(n + m), p X n, p X m matrices, 
respectively, such that the closed-loop 2-D system 
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is BIB0 stable where 

B= Bl [ 1 B2 

and 

A2 + BlK2 

I A, + B, K, . (4.3) 

We call the system (2.1) stabilizable by state feedback 
whenever such a matrix K exists. 

Similarly, one may pose the question of whether there 
exists a suitable output feedback 

= KC xh(i, j) [ 1 x”(i, j> 
(4.4 

where K, C,, C, are p X r, r X n, r X m matrices, respec- 
tively, such that the resulting closed-loop 2-D system 

is BIB0 stable. 
The system is said to be stabilizable by output feedback 

whenever such a matrix K exists. 
As an application of Corollary 2.2, we have 
Theorem 4.1. The following three conditions are neces- 

sary for stabilizing a 2-D system by state feedback: 
(Sl) (A, B) as an 1-D system is stabilizable by state 

feedback, 
(S2) (A,, B,) is stabilizable by state feedback, 
(S3) (Ad, B2) is stabilizable by state feedback. 
Similarly, the following three conditions are necessary 

for stabilizing a 2-D system by output feedback: 
(01) (A, B, C) as an 1-D system is stabilizable by output 

feedback, 
’ (02) (A,, B,, C,) is stabilizable by output feedback, 

(03) (A,, B,, C,) is stabilizable by output feedback. 
This theorem provides some possibilities to verify the 

unstabilizability by using the corresponding results from 
the 1-D system theory. 

Furthermore, Corollary 2.3 is related to the stabilization 
issue, which has partly been covered by a recent paper 
(Hinamoto et al. [ 111). 

Theorem 4.2. The system (2.1) is stabilizable by state 
feedback (4.1) if either there exists a p X n matrix K, such 
that A, + B,K, = 0 with A, + B, K, stable and (Ad, B2) is 
stabilizable by state feedback or, there exists a p X m 
matrix K, such that A, + B, K, = 0 with A, + B, K, stable 
and (A,, B,) is stabilizable by state feedback. Similarly, the 
system (2.1) is stabilizable by output feedback (4.4) if 
either there exists a p X r matrix K such that A, + B,KC, 

= 0 with A, + B, KC, and A, + B,KC, stable, or there 
exists a p x r matrix K such that A, + B,KC, = 0 with 
A, + B, KC, and A, + B, KC, stable. 

A discussion of these sufficient conditions as given in 
Theorem 4.2 for stabilizing a 2-D system by state feedback 
can be found in Hinamoto et al. [l 11. Here we note that a 
necessary and sufficient condition for the equation B, KC, 
= - A, to have a solution is that (see Rao and Mitra [12, 
ch. 21) 

B,B:A,C,+C, = A, (4.6) 

where B: and Cc are the generalized inverses of B, and 
C,, respectively, and then the general solution is 

K = - B:A,C; + I?, - B:B,I’,C,C; (4.7) 
where r, is an arbitrary p X r matrix. Thus A, + B,KC, 
and A, + B,KC, become (A, - B,B:A,C,+C,)+ B,l?,(I, - 
C,C,‘-)C, and (A4 - B2B:A2C2+C2)+ B,(I, - B:B,)T,C,, 
respectively. A similar analysis may be carried out for the 
equation A, + B,KC, = 0. We thus have 

Corollary 4.1. The system (2.1) is stabilizable by output 
feedback (4.4) if, either, (4.6) holds and the systems (A, - 
B,B:A&?C,, B,, (1, - C,C,‘)C,) and (A, - B, 
B:A,CcC,, B,(I, - B:B,), C,) can be stabilized by same 
output feedback matrix I,, then the desired feedback ma- 
trix Kin (4.4) could be obtained from (4.7); or, 

B, B;A,C: C, = A, (4.8) 

and the system (A, - B,BcA,C:C,, B,(I, - BCB,), C,), 
and (A4 - B,B,+A,C:C,, B,, (I, - C,C:)C,) can be 
stabilized by same output feedback matrix I,, then the 
desired feedback matrix K in (4.4) could be taken as 

K = - B2+A3C; + I?, - B;B,T;C,C: . (4.9) 

Concerning the stabilization of a 2-D system, it should 
be noted that Theorem 2.1 is also useful. For instance, 2) 
and 3) of Theorem 2.1 lead to 

Corollary 4.2. The system (2.1) is stabilizable by state 
feedback if and only if there exist two matrices K, and K, 
such that either 

1) (i) A, + B,K, is stable, 
(ii) A, + B,K, +(A, + B2K,)[zI, -(A, + B,K,)]-’ 

(A2 + B,K,) with ]z-‘1 Q 1 is stable; or 
2) (i) A, + B,K, is stable, 

(ii) A, + B,K, +(A, + B,k2)[wI,,, -(A4 + B,K,)]-’ 
(A3 + B,K,) with ]w-‘1 G 1 is stable. 

Thus stabilizing a 2-D system can be reduced to stabiliz- 
‘ing a 1-D constant system and then stabilizing another 1-D 
system with a complex parameter as well. Some recent 
work which is closely related to stabilizing a linear system 
depending on parameters have appeared (see, e.g., [13]). In 
this paper, however, we. would like to use another point of 
view. 

To do this, rewrite condition l)(ii) in Corollary 4.2 as 
(ii) F,(z-‘)+ G,(z-‘)K, with ]z-‘1 6 1 is stable where 

F,(z-‘) = A,+ P(z-‘)A, (4.10) 

G,(z-‘) = B2 + p(z-‘)B, (4.11) 
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and 

‘P(zC’) = 
z-‘(A3 + B,K,)adj [In - z-‘(A, + B,K,)] 

det[I, - z-‘(A, + B,K,)] ’ 

Let 

U(Z-')*O, for]z-‘141 

where a(~-‘) and b(z-‘) are polynomials in z-’ with real 
coefficients, then R is a principal integral domain [ 141, and 
for FE RmXm, GE Rmxp, if (F,G) is R-reachable, i.e., 
every x E R” is an R-linear combination of the columns of 
G, FG;.., Pm-‘G, then for every p,; . .,p, E R, there 
exists K, E RPXm such that 

tw 

det[w1,-(F+GK,)] = n (w-pi) [14]. 
i=l 

These observations and Corollary 4.1 lead to 
Theorem 4.3 
1) The 2-D system (2.1) will be stabilizable by state 

feedback with the gain matrix K = (K,, K2(z-‘)) where K, 
is a constant p x n matrix and K, E Rpxm, if 

(i) (A,, B,) is stabilizable by constant state feedback, 
(ii) For some K, stabilizing (A,, B,), the pair (F,, G,) 

defined in (4.10) and (4.11) are R-reachable. 
Similarly, 
2) The system (2.1) will also be stabilizable by state 

feedback with K = (K,(w -‘), K,) where K,(w-‘) E RpXn 
and K, constant matrix, if 

(i) (A,, B2) ‘is stabilizable by constant state feedback, 
(ii) For some K, stabilizing (Ad, B,) the pair (F2, G2) 

are R-reachable, where 

F2(w-,) = A, + Q(w-‘)A, 

G2(w-‘) = B, +Q(w-‘)B, 

Q(w-') = 
w-‘(A, + B,K,)Adj [I,,, - W-‘(A, + B,K,)] 

det[I,,,-w-‘(A,+ B,K,)] . 

V. CONCLUSIONS 

The stability considerations for the 2-D systems in the 
state-space version presented in this paper indicate that in 
general the stability of A, A,, and A, is not sufficient to 
guarantee BIB0 stability. The deviation or distance be- 
tween the spectra set of A and the union of the spectra set 
of A, and A, because of the appearance of A, and A, might 
be important. In the special case m = 1 or n = 1, the real- 
valued functions 5 and 17 defined in Section III may be 
viewed as such a measurement. 

Moreover, the results obtained in Section IV show that 
stabilizing a 2-D system can be reduced to considering the 
same question for a 1-D constant subsystem and then 
stabilizing a 1-D system depending on a parameter (which 
makes it possible to use some recent results in algebraic 
system theory [ 151). 

111 
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