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With Robust Stability Using Conic-
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Abstract—In this paper, minimax design of infinite-impulse-re-
sponse (IIR) filters with prescribed stability margin is formulated
as a conic quadratic programming (CQP) problem. CQP is known
as a class of well-structured convex programming problems for
which efficient interior-point solvers are available. By considering
factorized denominators, the proposed formulation incorporates a
set of linear constraints that are sufficient and near necessary for
the IIR filter to have a prescribed stability margin. A second-order
cone condition on the magnitude of each update that ensures the
validity of a key linear approximation used in the design is also
included in the formulation and eliminates a line-search step. Col-
lectively, these features lead to improved designs relative to sev-
eral established methods. The paper then moves on to extend the
proposed design methodology to quadrantally symmetric two-di-
mensional (2-D) digital filters. Simulation results for both one-di-
mensional (1-D) and 2-D cases are presented to illustrate the new
design algorithms and demonstrate their performance in compar-
ison with several existing methods.

Index Terms—Conic quadratic programming, IIR digital filters,
robust stability, 2-D IIR digital filters.

I. INTRODUCTION

I NFINITE-IMPULSE-RESPONSE (IIR) digital filters are
useful in a wide range of applications where high selec-

tivity and efficient processing of discrete signals are desirable
[1]–[17].

A major problem encountered in the design of IIR filters
is stability. In unconstrained-optimization-based methods, the
stability can be taken into account by variable transformations
that convert the finite stability region into the entire parameter
space [13]. As a result, the designer must deal with an objec-
tive function of increased nonlinearity. A more recent trend is to
treat the design problem in a constrained optimization setting,
where the stability requirement is incorporated as linear positive
realness of the denominator [9], [12], Rouché’s condition on
denominator perturbations [14], iterative Lyapunov inequality
constraints [15], [16], or a general positive realness constraint
on denominator perturbations [17]. A common drawback of the
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above approaches is that they are all sufficient butnotnecessary
conditions for stability. Consequently, good design candidates
may be excluded from the design process.

In this paper, we propose a new constrained optimization
method for the minimax design of stable one-dimensional (1-D)
and quadrantally symmetric two-dimensional (2-D) IIR digital
filters (it is known that the transfer function of a quadrantally
symmetric 2-D digital filter has separable denominators [29]).
The design method has several features.

i) It unifies 1-D and 2-D IIR filter designs by performing
a sequence of linear updates of the design variables with
each update carried out in a conic quadratic programming
(CQP) setting. CQP represents a class of well-structured
convex programming problems for which efficient inte-
rior-point optimization solvers are available.

ii) In our design formulation, the transfer function has a fac-
torized denominator for which the necessaryand suffi-
cient stability condition can be characterized as a set of
linear inequality constraints on the denominator coeffi-
cients that in principle excludes no good design candi-
dates and fits naturally into the CQP formulation.

iii) The above set of linear constraints can be readily modi-
fied to ensure a stability margin in terms of pole radius.
The modified constraints remain linear, and they are suf-
ficient andnearnecessary for the stability robustness. It
should be mentioned that CQP-based methods for filter
design were proposed in [19] and [20], but only FIR fil-
ters were considered while the focus of the present paper
is on IIR filters, dealing with rational transfer functions
and their robust stability.

The paper is organized as follows. Section II gives prelim-
inaries on the stability triangle of second-order discrete-time
systems and basic formulation of CQP. Section III presents an
analysis on how an internal stability triangle (of a second-order
system) is related to the pole radius of the system. In Section IV,
we outline a CQP-based design formulation applicable to both
1-D and 2-D IIR filters. The design algorithms for 1-D and quad-
rantally symmetric 2-D filters with separable denominators are
given in Sections V and VI, respectively, with design examples
for performance evaluation in comparison to several established
methods.

In the rest of the paper, boldfaced characters denote matrices
and vectors, denotes the identity matrix of dimension, and

denotes the standard Euclidean norm;and denote
normalized passband and stopband edges, respectively, and the
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Fig. 1. Stability triangle.

normalized 1-D and 2-D base frequency bands are denoted by
and

, respectively.

II. PRELIMINARIES

A. Stability Triangle of Second-Order Systems

Let be the transfer function of a second-
order discrete-time system where

(1)

It is well known that the system is stable if and only if coeffi-
cients and satisfy [1]

(2)

where

(3)

Note that the constraints in (2) arelinear with respect to and
and characterize the triangle in the -space shown in

Fig. 1, which will be referred to as thestability triangle.

B. Conic Quadratic Programming

Conic quadratic programming, which is sometimes called
the second-order cone programming [18], [32], is a subclass
of convex programming problems where a linear function is
minimized subject to a set of second-order cone constraints
[18], [20]:

minimize (4a)

subject to:

(4b)

where , , ,
, and . The term “conic” here reflects the fact that

each constraint in (4b) is equivalent to a conic constraint

Fig. 2. Internal stability triangle.

where is the second-order cone in , i.e.,

From (4), it is evident that CQP includes linear programming
and convex quadratic programming as special cases. On the
other hand, since each constraint in (4b) can be expressed as

(5)

where denotes that is positive semidefinite, the
CQP is a subclass of semidefinite programming (SDP) [20],
[21]. Commercial and public domain software based on inte-
rior-point optimization algorithms for CQP and SDP are avail-
able [22]–[24]. It is important to stress, however, that in gen-
eral, the problem in (4) can be solved more efficiently as a CQP
problem than solving it in an equivalent SDP setting [18]. In the
subsequent sections, we attempt to formulate the design prob-
lems at hand as CQP problems rather than SDP problems.

III. RELATION OF AN INTERNAL STABILITY TRIANGLE

TO POLE RADIUS

Consider a second-order system whose transfer function is
with given in (1). For the sake of robust

stability, we consider a triangle in -space that is strictly
inside the stability triangle as shown in Fig. 2, whereis a small
positive scalar. The region enclosed with the internal triangle is
characterized by

(6)

where , , and are defined in (3). For a point on
side 1 of the internal triangle (see Fig. 2), we have
and , and the associated poles are given
by

for (7)

whose magnitude is . When varies from to
, it follows from (7) that side 1 corresponds to two separate

partial circles of radius , which are shown as the solid
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Fig. 3. Trajectories of the poles associated with (a) side 1 of the internal stability triangle and (b) side 2 of the triangle are shown as solid curves.

Fig. 4. Shaded region plus two short segments (in solid line) on the real-axis
represent the pole locations corresponding to the internal stability triangle in
Fig. 2.

curves in Fig. 3(a). For a point on side 2, we have
for , and the associated poles are given by

two reals with the
largest being

for

for .

(8)
Consequently, when varies from 0 to , the poles given
by (8) generate the trajectory shown as the solid line in Fig. 3(b).
Similarly, it can be readily verified that the poles associated with
side 3 generate the mirror-image of the trajectory in Fig. 3(b)
with respect to the vertical axis. Therefore, all system poles that
are associated with the internal stability triangle in Fig. 2 are
strictly inside the unit circle with a distance to the boundary no
less than . For a small (which is always the
case for filter design purposes), the poles cover a dominant part
of the radius disk, as shown in Fig. 4. A polynomial
is called a robust Schur polynomial with margin if the

largest magnitude of its zeros is no larger than . Thus, the
second-order polynomial in (1) is a robust Schur polyno-
mial with margin if satisfies the
constraint in (6).

IV. GENERAL DESIGNMETHOD USING LINEAR CQP UPDATES

In this section, we describe a general method that generates an
optimal stable rational approximation for a given design speci-
fication in the minimax sense by using a sequence of linear up-
dates for the design parameters with each update carried out in a
CQP formulation. We will describe the method in a way that it is
applicable to both 1-D and 2-D IIR filters. As such, our descrip-
tion will be given in a setting more general than each individual
design algorithm whose algorithmic details will be presented in
Sections V and VI.

Let be a nonlinear function of frequencyand pa-
rameter vector , and let be a desired function
of on . We seek to find a vector that solves the constrained
weighted minimax optimization problem

minimize maximize (9a)

subject to: stable (9b)

where the meaning of stability in (9b) will become apparent in
Sections V and VI when (9) is related to a filter design problem.

If denotes an upper bound of on
, then the problem in (9) can be converted into

minimize (10a)

subject to: for

(10b)

stable (10c)

Suppose we have a reasonable initial pointto start, and we
are now in the th iteration. For a smooth in a vicinity
of point , we can write

(11)
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provided that

is small (12)

where is the gradient of with respect to and
evaluated at . Thus, for with subject to (12), we
have

For filter design problems, and are in general
complex-valued, and we need to define

(13a)

(13b)

(13c)

It follows that

(14)

where

In the light of (10b), (12), and (14), we see that an approximate
solution in the th iteration can be obtained by solving the con-
strained optimization problem

minimize (15a)

subject to: for (15b)

(15c)

stable (15d)

where is a prescribed bound to control the magnitude of.
Once a solution of (15), say , is obtained, point is updated
to , and the th iteration is claimed to be com-
plete. The iteration process continues until is less than a
prescribed convergence tolerance. If we treat the upper bound

in (15a) and (15b) as an additional design variable and define
an augmented parameter vector

(16)

then the problem in (15) can be expressed as

minimize (17a)

subject to: for

(17b)

(17c)

stable (17d)

where , is generated by augmenting
with a zero column on the left, is obtained by aug-

menting the identity matrix with a zero column on the left,
and is a set of dense grid points
in the frequency region of interest.

As illustrated in Section III, a second-order section of an IIR
filter possesses robust stability with its pole radius no larger than

, as long as its denominator coefficients meet the linear
constraint in (6). If represents the frequency re-
sponse of an IIR digital filter whose denominator is factorized
into a product of second-order sections (and a first-order section
for odd-order denominators), then, as one may expect, the con-
straint in (17d) can be characterized by a set of linear inequality
constrains as

(18)

(see Section V for the structure of matrixand vector ).
Suppose matrix has rows; then, (17) can be expressed as

for

where is the th column of , and is the th component
of , and the problem in (17) becomes

minimize (19a)

subject to for

(19b)

(19c)

for (19d)

On comparing the problem in (19) with that in (4), it is evi-
dent that problem (19) is a CQP problem with design vari-
ables, second-order cone constraints, andlinear con-
straints [obviously, a linear inequality constraint can be treated
as a trivial second-order cone constraint; however, efficient CQP
solvers (e.g., toolbox SeDuMi [22]) often deal with linear con-
straints and second-order cone constraints separately].

Several interior-point methods for CQP have been developed
in the past; see, for example, [18] and [25]–[27]. Lucid exposi-
tion of the subject can be found in [20].

The original problem in (9) and, equivalently, the problem in
(10) are highly nonlinear and nonconvex optimization problems.
As such, the above method, if it converges, only provides alocal
minimizer for the problem. In general, the performance of such
a local solution and the amount of computations required for the
algorithm to converge depend largely on how an initial point is
chosen. In the context of IIR filter design, however, it is found
from our simulation study that the proposed design method is
rather insensitive to the choice of the initial point. This issue will
be addressed specifically in the next sections when design exam-
ples are presented. Concerning the convergence of the method,
although a rigorous proof is presently not available, in our sim-
ulations, when the method was applied to design a variety of IIR
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filters, we had not detected a single failure of convergence. One
might attribute the success of the proposed method to two fac-
tors: i) The sub-problem involved in each iteration as formulated
in (19) is aconvexoptimization problem for which globally con-
vergent interior-point algorithms are available [18], [20], [32],
and ii) we use constraint (19c), which validates the key approx-
imation in (11).

Another related issue is the convergence rate or, in a more
general term, the computational efficiency. From above de-
scription of the method, it is quite clear that the computational
efficiency is determined by how efficient each individual SOCP
problem in (19) is solved and how many linear updates are
needed to reach a minimizer of (10). For the former, most
of the algorithms that are presently available for solving
SOCP problem (19) are so-called polynomial-time algorithms,
meaning that the amount of computations required is bounded
by a polynomial of the data size [20]. Consequently, the
computational complexity for (19) is affordable for today¹s
computing devices, even for designing high-order IIR filters,
and it will increase only moderately when the size of the
problem increases. For the latter, with a given boundin
constraint (19c), the number of updates needed depends on
how far the initial point is from the minimizer. In the context
of IIR filter design, the number of updates required is typically
in the range of 15 to 50.

It should also be pointed out that although problem (19) is
merely anapproximationof (10), as the iteration continues and
the local minimizer gets closer, the increment vectorobtained
by solving (19) gradually shrinks in magnitude, and within a
limited number of iterations, it eventually becomes such a value
that the updated solution point is practically the same as the true
minimizer.

V. DESIGN OF1-D IIR FILTERS

A. Design Problem

Consider the transfer function of an IIR digital filter

(20a)

where

(20b)

is a polynomial of order expressed as product of second-
order sections (and a first-order section ifis odd):

if even

if odd

(20c)
and is an integer between 0 and. The reason our design
formulation uses the above form of denominator, namely

, is that assigning a certain number of poles at the
origin was found beneficial for the design of several types of
digital filters, as observed in [14]. The design problem at hand
is to determine the coefficients of in (20) that solves the
minimax optimization problem

minimize maximize (21a)

subject to for (21b)

where the filter coefficients form vector

with representing the number of second-order sections, i.e.,

if even

if odd
(22)

(note that contains component only if integer is odd),
is a weighting function on , is the desired

frequency response, and is the frequency response of
the filter, which can be expressed as

(23)

with

if even

if odd

The constraint in (21b) characterizes the requirement of robust
stability that the pole radius of the filter be . On com-
paring (21) with (9), it is quite clear that the design can be ac-
complished using a sequence of linear updates, i.e.,

for with solving the CQP problem
in (19).

In order to implement the constraints in (19b), the gradient
of needs to be evaluated, and to implement the con-
straints in (19d), the robust stability constraint in (21b) has to
be explicitly specified in terms of the design parameters. These
two issues are addressed next.
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B. Gradient of

Parameter vectorcan be expressed in terms of vectorsand
defined in (23) as

...

components

components
(24)

where with component present only
if is odd. Using (23), the gradient of with respect to

is evaluated as

...

(25)

with

(26a)

(26b)

for

(26c)

where , and are defined in (23). Note that
and are just the second and the second-and-third

components of vector , and they are all independent of the
filter coefficients. It follows from (26) that if the frequency re-
sponse has been evaluated with its denominator sec-
tions stored separately, then the gradient can be evaluated im-
mediately, as long as is available. Since the same can
be used in every iteration, it is worthwhile to compute and store

for [see (17b)] as a part of data preparation.

C. Constraints for Robust Stability

Suppose that point represents a stable design and that the
next point is required to remain stable. Let

(27)

and note that only vector effects the stability of the filter
in question. For description convenience, we assumeis an odd
integer so that vector assumes the form

...
(28)

where the first component is associated with the only first-order
section in whose robust stability is ensured if

i.e.,

(29a)

Each vector is connected to a second-order section in
whose robust stability is satisfied if (6) is imposed upon,

i.e.,

for (29b)

where and are defined in (3). Therefore, in (27)
represents an IIR filter with stability margin if

(30)

where with , and

...

with (if is even, then the top-left in is not
present, and ). Now, if we augment matrix in (30)
with columns of zeros on the left and replace with

, then (30) becomes

i.e.,

(31a)

where

(31b)

Finally, by augmenting the matrix in (31a) with one more zero
column on the left and replacing vectorwith [defined in
(16)], the stability constraint in (31) becomes

(32)

where
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Equivalently, (32) can be expressed aslinear inequality con-
straints, as seen in (19d), wheredenotes theth column of
matrix and is the th component of .

D. Design Algorithm

Given filter order , desired frequency response ,
and parameter , which is related to stability margin as

, the steps that carry out the proposed design method
can be summarized as follows.

Step 1) Data preparation:This includes i) choosing an ini-
tial stable design and a set of grid points

; ii) evaluating vector [see
(23)] on ; and iii) set iteration counter ,
bound , and convergence tolerance. A straight-
forward choice of assumes the form

...
(33)

where is the impulse response of an FIR filter of
length that approximates . From (20), it
is clear that the choice in (33) means that ;
hence, is an FIR filter which is of course stable.
Concerning item ii), typically, the number of grid
points in is in the range of 400 to 800, and the
dimension of is usually in the range of 10 to
50. Thus, the data size shall not exceed 50 K, which
is fairly moderate for today’s PCs to store.

Step 2) At , solve the CQP problem in (19) for

where and are defined in (14) with evalu-
ated using (26), the constraints in (19d) are specified
by (32), and for typical bandpass filters, is a
piecewise-constant function of the form

for in passband
for in stopband
elsewhere.

Step 3) Update the design from to . If
, stop; otherwise, set , and repeat

from Step 2.

Several remarks are now in order. First, as the core of the al-
gorithm, a CQP solver is called for computing each updating
vector . Since an interior-point CQP solver is in general more
efficient than its SDP counterpart, this leads to improved com-
putational complexity compared with several SDP-based design
methods [15], [16]. Second, incorporating the constraint in (19c)
into the design formulation ensures the validity of the linear
approximation (11) and eliminates the need for a line search
step that is typically required in a nonlinear optimization algo-
rithm. In a certain sense, constraint (19c) can be viewed as a
trust-region strategy [28] that fits nicely into the current CQP

formulation. Third, although the constraint in (2) is both suffi-
cient and necessary for a second-order system to be stable, the
robust stability constraint in (6) is only sufficient butnot nec-
essary for a second-order system to have a pole radius.
From the analysis in Section III (see Fig. 4), however, for a small

, the stability constraints in the current design formulation is
nearnecessary. Consequently, good design candidates are less
likely to be excluded by the algorithm compared with the ex-
isting methods [9], [12], [14], [15], [17]. Finally, it should be
mentioned that the idea of using a linear approximation for IIR
filter design was initiated in [14], although the present design
framework differs from that of [14] in terms of the use of a CQP
formulation, the treatment of stability constraints, and the inclu-
sion of a conic constraint on .

E. Design Example

A well-known IIR design is the minimax IIR lowpass filter of
order presented as Example 1 in Deczky [5],
which has been used by many authors as a “benchmark filter”
for comparison purposes. With , , and
passband group delay samples, the performance of
the Deczky filter is shown in Fig. 5 (dash-dotted curves) and
Table I. The proposed method was applied to design an IIR filter
of order with the same design parameters
as specified above. The toolbox SeDuMi 1.05 [22] was used to
implement the design algorithm on a 866 MHz Pentium III PC.

Two distinct initial points were tried. The first initial point
was obtained by designing an linear-phase FIR filter of

length 33 using MATLAB functionfir1 and then applying
balanced order reduction method [33] to obtain a stable IIR
filter of order (12, 12). The second initial point corresponds
to a trivial IIR transfer function of the form , where

was obtained by simply designing linear-phase FIR filter
of length 13 using MATLAB functionfir1 . Obviously,
was a considerably better initial point because its frequency re-
sponse is much “closer” to the desired frequency response. With

, , , , , and
initial point , the algorithm converged in 16 iterations with
473.23 Mflops and 66.42 s of CPU time. The performance of
the IIR filter designed are evaluated in terms of the following.

• Error of frequency response in passband:

for

• Passband magnitude ripple:

for

• Stopband attenuation:

for

• Deviation in passband group delay

for

• Maximum magnitude of the poles.
The amplitude responses of the IIR filter obtained and the

Deczky filter, their , , , and passband group



1588 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 51, NO. 6, JUNE 2003

Fig. 5. (a) Amplitude responses. (b) Error of frequency response in passband. (c) Passband amplitude responses. (d) Passband group delays of the proposed
design (solid curves) and the Deczky filter (dash-dotted curves).

delay are shown in Fig. 5, and , ,
, and average , i.e.,

are given in Table I. From Fig. 5 and Table I, considerable per-
formance improvement over the Deczky filter were observed.
The coefficients of the IIR filter designed are given in Table II.

It is worthwhile to report that with initial point , the pro-
posed algorithm converged to the same solution point after 47 it-
erations. More iterations were expected becauseis far away
from the solution in comparison with .

VI. DESIGN OF2-D IIR FILTERS

A. Quadrantally Symmetric 2-D IIR Filters

The class of quadrantally symmetric (QS) 2-D filters,
together with their rotated counterparts, includes circularly

symmetric filters, fan filters, and diamond-shaped filters,
and covers practically all types linear 2-D filters that have
been found useful in multidimensional signal processing. An
important property of this class of 2-D filter is that a QS IIR
transfer function always hasseparabledenominators [29]. For
the sake of notation simplicity, in this section, we are primarily
concerned with circularly symmetric and diamond-shaped
filters whose transfer functions assume the form

(34)

where

and is defined by (20c). However, with straightforward
modifications, the design methodology outlined below also
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TABLE I
PERFORMANCECOMPARISON

TABLE II
COEFFICIENTS OF THEIIR FILTER

applies to other types of QS filters. For notation simplicity,
throughout the section, we denote the order of the 2-D IIR filter
in (34) by . From (34), the frequency response of the
filter can be expressed as

(35a)

where

(35b)

and is given in (23). Because of the quadrantal symmetry
of the filter, matrix , is symmetric,
which means that contains only
design parameters and can be expressed as

which gives

(36)

with

...

...

...

...

and . This leads (35a) to

(37)

where vector collects the filter coefficients:

...

components

components
(38)

with , , and s defined by (36), (20c), and (23), respectively.
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B. Gradient of and Stability Constraints

The gradient of with respect to parameter
vector is an -dimensional vector given by

...

(39)

Using (37), the components of can be evaluated as
follows:

(40a)

(40b)

(40c)

for

where and are defined in (23). Like the 1-D case,
and are independent of filter

coefficients and can be used repeatedly as the optimization it-
eration proceeds. Furthermore, since , both sets

and for
can be obtained by just evaluating a 1-D data set

( is a subset of ). Therefore, it is worthwhile
to prepare and store data before the itera-
tions begin. On the other hand, since the dimension of vector

is usually quite high and is defined on
a set of dense 2-D grid points, it is more realistic to evaluate

as the iteration process goes along.
Concerning the robust stability, from (34), it is obvious that

the optimized filter is stable with a stability margin
if the denominator polynomial meets the constraint in (32).
In other words, the stability constraint for the 2-D IIR filter in
(34) remains the same as in the 1-D case.

C. Design Algorithm

For the design methodology outlined in Section IV to fit into
the 2-D design scenario, need to be replaced, respec-
tively, by , , and , ,

which is a set of grid points placed in the frequency region of
interest. Given filter order [see (34)], desired frequency
response on , and parameter, a minimax de-
sign of 2-D IIR filter with stability margin can be
obtained by carrying out the following steps.

Step 1) Data preparation that includes i) choosing an initial
stable design and a set of grid points ; ii) eval-
uating ; and iii) setting iteration
counter , bound , and convergence tolerance
. A straightforward and stable assumes the form

...

which yields a 2-D filter whose transfer function is
given by in (35) with
. Vector corresponds to the impulse response of

in (35b) that approximates .
This can be readily obtained using an es-
tablished method [30].

Step 2) At , solve the CQP problem in (19) for

where and are defined in (14) with
evaluated using (39) and

(40); the constraints in (19d) are specified by (32),
and is a piecewise constant weighting
function defined by

for in passband
for in stopband
elsewhere.

Step 3) Update the design from to . If
, stop; otherwise, set , and repeat

from Step 2.

D. Design Example

The design concerns a circularly symmetric lowpass filter
of order , with , ,
and passband group delay in both and being eight sam-
ples. The number of filter coefficients in this case is

. The initial point used in the design cor-
responds to a trivial 2-D IIR filter whose transfer function has

[see (34)], and is a linear-phase FIR lowpass
filter of order 12 that was designed using the singular-value de-
composition (SVD) method [30]. The toolbox SeDuMi1.05 [22]
was used to implement the proposed algorithm on a 866-MHz
Pentium III PC. With , , , ,
and a total of 1030 grid points placed uniformly in the passband
and stopband, it took the algorithm 45 iterations to converge to
a design shown in Fig. 6 with performance evaluation given in
Table III.

Another design with the same specifications as above but a
different initial point obtained using the SVD-balanced approx-
imation method [34] was also carried out. The proposed algo-



LU AND HINAMOTO: OPTIMAL DESIGN OF IIR DIGITAL FILTERS 1591

Fig. 6. (a) Amplitude response. (b) Passband group delay of the circularly
symmetric lowpass IIR filter.

TABLE III
PERFORMANCECOMPARISON

rithm in this case converges to the same solution point but with
only 21 iterations and 0.65 10 Mflops.

In the literature, only a handful of articles were for the min-
imax design of 2-D filters. Early work in the field includes [31],
where only linear-phase FIR filters were considered. Recent
work on the minimax design of 2-D IIR filters with guaranteed
stability includes [16], where the stability constraint is a linear
matrix inequality deduced based on the Lyapunov’s stability
theory, and the optimization is carried out using SDP rather than
CQP. For comparison purposes, the algorithm in [16] was ap-
plied to design a lowpass 2-D IIR filter with the same design
specifications as described above. The design results are given
in Table III. An interpretation of the simulation results is that the
less conservative stability constraint in the proposed CQP for-
mulation tends to include more qualified candidates, yielding
an improved local minimizer. It is also observed that the CPU
time as well as the number of floating-point operations required
by the CQP-based algorithm to obtain the design were consid-
erably reduced.

VII. CONCLUSION

We have presented a design methodology in which 1-D and
2-D IIR filters with separable denominators can be synthesized
in the minimax sense with prescribed stability margin. The
methodology was developed in a rather general setting in
which the minimax approximation is accomplished through
a sequence of linear updates with each update carried out
using conic quadratic programming. As demonstrated by
computer simulations, the proposed method yields IIR filters
with satisfactory performance.
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