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Roundoff Noise Minimization of State-Space
Digital Filters Using Separate and Joint Error
Feedback/Coordinate Transformation Optimization

Takao HinamotpFellow, IEEE Hiroaki Ohnishi, and Wu-Sheng L.&ellow, IEEE

Abstract—This paper investigates the problem of minimizing technique for reducing the roundoff noise is to synthesize an
roundoff noise under I>-norm dynamic-range scaling constraints optimal state-space filter structure that minimizes the roundoff
in state-space digital filters by means of error feedback as well noise undeil,-norm dynamic-range scaling constraints on the

as joint error feedback/coordinate transformation optimiza- tat iables b f dinate t f tion in th
tion. First, several techniques for the determination of optimal State-variables by means of coordinate transtormation in the

full-scale, diagonal, and scalar error-feedback matrices for a State space [11]-[14]. In addition, techniques for reducing the
given state-space digital filter are proposed, where three re- roundoff noise subject to the scaling constraints by combining
alization schemes, namely, the general state-space realizationthe coordinate transformation with error feedback have been
|nput—balanc§d realization, and optlmal realization in the sense of proposed [15], [16]. It has also been shown that the roundoff
Hwang—Mullis—Roberts are examined. Furthermore, an iterative .
approach is developed for jointly optimizing a scalar error-feed- noise can .b? requce‘?' by means of delta OPerator [16], [17] a_nd
back matrix and a coordinate transformation matrix so as to that the digital filter in this case can be viewed as a special
minimize the roundoff noise subject to thel»-norm dynamic-range case of the filter with error feedback [16].
scaling constraints. The proposed method may be regarded as |n this paper, several new algorithms for reducing the
an alternative, but much simpler and more general, approach to o nqoff noise in state-space digital filters are proposed.
H\_/ve_mgsmethod for s_ynthesmng the optl_mal filter structure with First, the problem of roundoff noise reduction for several
minimum roundoff noise. A case study is included to illustrate the oh T ; e
utility of the proposed techniques. typical state-space realizations using error feedback is in-
. . . . vestigated. Closed-form formulas for evaluating the optimal
Index Terms—Optimal coordinate transformation, optimal . .
error feedback, roundoff noise minimization, scaling constraints, fqll-scale, diagonal, .apd Sf:alar error-f_eedback matrices for a
state-space digital filters. given state-space digital filter are derived, where three real-
ization schemes, namely, the general state-space realization,
input-balanced realization (to be defined shortly), and optimal
realization (in the sense of [12], [13]) are examined. Further-
HE basic arithmetic operations involved in the implemore, an iterative noise reduction technique for state-space
mentation of an infinite-impulse response (IIR) digitatligital filters that jointly optimizes a scalar error-feedback
filter are multiplications of input/output samples by the filtematrix and a coordinate transformation matrix is proposed. A
coefficients and additions. For arithmetic operations involvingase study is presented to illustrate the algorithms proposed
fixed-point numbers, the result of a multiplication must band to demonstrate their performance as compared with that of
rounded or truncated. This quantization error generates roundbff existing methods [15], [16].
noise at the filter output. In addition, because the result of Throughout this papet,, stands for the identity matrix of
an addition can exceed the finite register length, the dynangitnension: x n, the transpose (conjugate transpose) of a matrix
range of the digital filter is always a concern in a fixed-poind is indicated byA” (A*), and the trace, eigenvalue, aitt
implementation. Error feedback has been known as an effeliagonal element of a square matdxare denoted byr{A],
tive technique for reducing the roundoff noise at the filtek(A), and(A),;, respectively.
output. This is achieved by extracting the quantization error
after multiplication and addition, and then feeding the error||. STaTE-SPACE DIGITAL FILTERS WITH ERROR FEEDBACK
signal back through simple circuits. It can be applied to dig- Let
ital filters that are described by either external or internehl
models for roundoff noise minimization without affecting the
filter’s input-output characteristics. Many techniques for error
feedback have been presented in the past [1]-[10]. Another

. INTRODUCTION

(A, b, ¢, d), be a state-space description ofsah-order
R digital filter, i.e.

z(k + 1) = Az(k) + bu(k)

y(k) = cx(k) + du(k) @)
Manuscript received February 20, 2002; revised September 9, 2002. Thi% E) i 1 iabl k)i |
paper was recommended by Associate Editor W. P. Zhu. W erea:( ) .'S ann x 1 state-variable VeCtou( ) IS a scalar
T. Hinamoto and H. Ohnishi are with the Graduate School of Engineerinifiput, (k) is a scalar output, and, b, c andd are real con-
Hiroshima University, Higashi-Hiroshima 739-8527, Japan.  stant matrices of appropriate dimensions. The filter described
W.-S. Lu is with the Department of Electrial and Computer Engineering, Uni- 1)i dtob bl llabl dob ble. D
versity of Victoria, Victoria, BC V8W 3P6, Canada. In (. )_ IS as;ume .to e.SFa e, controllable and o serva e.bue
Digital Object Identifier 10.1109/TCSI.2002.807512 to finite register sizes, finite-word-length (FWL) constraints are

1057-7122/03%$17.00 © 2003 IEEE



24 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 50, NO. 1, JANUARY 2003

Taking the z-transform on both sides of (5) and settiag0) =
0, we have

AY(z) =Gp(z)E(z)
v(k) Gp(z)=c(zI, — A (A-D)+c (6)

whereAY (z) andE(z) represent the z-transform afy (k) and
e(k), respectively, an@p(z) is the transfer function from the
quantization errore(k), to the filter outputAy(k).

The noise gaid (D) = o2, /0? is then defined by

out

1 dz

I(D) = — Gp(2)Gp(z)—
Fig. 1. Error feedback in a state-space digital filter. ( ) 271y / D( ) D( ) z

lz]=1
imposed on the state variables, input, output, and system param- =u[Wp] (7)

eters as shown (A, b, ¢, d),,. where . .

By tgkln_g the quantization perfor_med before matrix-vector Wp = 5 / G (2)Gp(2) .
multiplication into account, an FWL implementation of (1) can ™ z

z|=1
be expressed as =

~ ~ Utilizing the Cauchy integral theorem, the matWX defined
z(k +1) = AQ [Z(k)] + bu(k) in (7) can be expressed in closed-form as
y(k) =cQ [E(k)] + du(k) (2)

where each component of coefficient matricds b, ¢, and ) . ) _
d assumes an exact fraction&l-b representation. The FW Wher_eWo is the (_)bservablhty Gramian of the filter that can be
state-variable vectaE(k) and the outpugi(k) all have aB-b ©Ptained by solving the Lyapunov equation
fractional representation, while the inputt) is a(B — B..)-b W, = ATW. A+ e 9)
fraction. ? ? '

The quantize@([-] in (2) rounds the3-b fractionz (k) to (B~ Matrix W, is referred to as thanit noise matrixfor the filter,
B.) b after completing the multiplications and additions, whergnd W ,, can be viewed as the unit noise matrix for the filter
the sign bit is not counted. In a fixed-point implementationyith error feedback specified by matri.
the quantization is usually carried out by two’s complement The /,-norm dynamic-range scaling constraints on the state
truncation which discards the lower bits of a double-precisigariables involve the controllability Gramian of the filter, which

Wp=(A-D)TW,(A-D)+c%ec (8)

accumulator. Therefore, the quantization error is defined by
is equal to the residue left in the lower partiif). The block- k=0

diagram representation of a state-space digital filter with errgrq can be computed by solving the Lyapunov equation
feedback is shown in Fig. 1 where the roundoff eredk) is

modeled as a zero-mean noise process of covariahkewith K.=AK A" +bb". (11)
o2 = i2—2(B—Bc) The problem considered here is to design the error-feedback
12 matrix D so as to reduce the noise gain in the sense that
and the quantization erre(k) is fed back through an x n con- W p] < tr[W,] (12)

stant matrixD in the FWL filter (2). From Fig. 1, it is obvious

that the filter can be characterized by the state-space modelijg satisfied subject to that all the diagonal element&pfequal
unity. Such constraints on matrK . are known as thé-norm

&(k +1) = AQ[E (k)] + bu(k) + De(k) dynamic-range scaling constrainis3].
y(k) =cQ[z(k)] + du(k) (4) A different yet equivalent state-space description of (1),
. ) (A,b,¢,d),, can be obtained via a coordinate transformation
whereD is referred to as aarror-feedback matrix z(k) = T 'z(k) where

Subtracting (4) from (1) yields
A=T AT b=T'b e=cT. (13)
Az (k+1) =AAz(k) + (A— D)e(k)
Ay(k) = eAz(k) + ce(k) (5) Accordingly, the observability and controllability Gramians for
where (A,b,¢,d),, become

Az(k) =x(k) - 2(k), Ay(k) =y(k) —y(k). W,=T"W,T, K.=T 'K.T" (14)
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respectively. If thés-norm dynamic-range scaling constraintsf we compute the gradient df(D) in (21) and set it to zero,

are imposed on the state-variable vegtéy), i.e. ie.,
(Fc)ii = (TﬁchTiT)ii =1, i=1,2,--,n (15) @:2[(Wo)iiai_(WoA)ii]:07 1=1,2,---,n
Q;
i (23)
then, it can be shown that [12], [13] then, we obtain the minimized — diag{a1, as, - - -, @} with
2
R 1 (¢ (W,A);; .
tr(W,] = — i 16 P = e, =1,2,---, 24
win (W] n(;o) (16) o=y =k (24)
wheres? for i = 1,2,---,n are the eigenvalues of matrix 2t whichI(D) achieves its minimum as
K_ W ,. The state-space realization satisfying (15) and (16) is " (W,A)
called theoptimal realization(which is sometimes also referred Iin(D) = tr[W,] — Z W (25)

to as theoptimal filter structur@ with minimum roundoff noise. i=1
A method for constructing such a filter structure was proposed,\ o rest of the paper, the filter in (1) is said to be

in [12], [13]. Obviously, if the realization in (1) is optimal with input-balanced (internally balanced)f K. I, and
minimum roundoff noise, then the right-hand side of (12) i, _ $2(K, = W, = ) whereX. = diag{o1, 09, -+, 0}

minimized. The theorem below characterizes the diagonal error-feedback

In the next section, we will derive closed-form formulas fof, -+.iv that minimizes the noise gaif( D) for the input-bal-
determining the optimal full-scale, diagonal, and scalar erroli,ced realization of an IR digital filter

feedback matrixD that minimizes §W p] for a given state-
space digital filter.

I1l. D ETERMINATION OF OPTIMAL ERRORFEEDBACK
MATRICES

A. Case 1D is a General Matrix
Substituting (8) into (7), we obtain

I(D) =tr[c"c¢+ (A - D)"W,(A — D))

=tr[W,] + tr[D"W,D] — 2u[D"W ,A4].  (17)
Differentiating (17) with respect to the error-feedback mabix
yields

aI(D)

——— =2W,(D - A).
5D~ Wl )

(18)

By choosing the error-feedback matrixl2s= A, the noise gain
I(D) in (17) achieves its minimum value

Inin(D) = tr[{W,] — tr[A"W, Al = trlc"¢].  (19)
B. Case 2:D is a Diagonal Matrix
In this case, matriD assumes the form
D =diagf{ay, g, -+, an} (20)

which leads (17) to

n n

W]+ Y (Wo)iof —2> (W,A)uai.  (21)
] i=1

From (21), it is clear thaf (D) = tr[W p] < tr[W,] holds if
a;'s satisfy

( (WoA)ii>
a; | —2—— | <0,

i=1,2,--.n.
(Wo)ii

(22)

Theorem 1: If the filter in (1) is input-balanced, and the diag-
onal error-feedback matri® = diag{ vy, as, - - -, v, } Satisfies

ai<ai_2aii) <07 5212/{” (26)

thenI(D) = tr[Wp] < tr[W,] wherea;; denotes théi, j)th
element of matrixA. Moreover, if

Q= A4, i:1727"'7n (27)
thenI(D) achieves the minimum value
Imin(D) = Z(l — GJLZL)O'LZ (28)

i=1

Proof: W, = X? implies thatwy; = o7 andwy; = 0
for i # j. Under these circumstances, (22), (24) and (25) are
reduced to (26), (27) and (28), respectively. This completes the
proof.

C. Case 3D is a Scalar Matrixa[,,
If D = ol,, with a scalar, then (17) becomes

I(D) = tr[W,] + a (tr{W,]a — 2tr[W,A]) . (29)
Hence,l(D) = tr[Wp] < tr[W,] holds if o satisfies
tr[W,A]
e <a -2 WL > < 0. (30)

Moreover, fromoI(D)/0«a = 0 it follows that the value ofy
that minimizesl (D) is given by

W, A]
= W] (31)
which leads (29) to
2
Inia(D) = 1, ll -(SEr) | e
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Therem 2 concerns the optimal realization satisfying (15) awd equivalently

(16). o . min 17" WpT] < min tr[T"W,T). (42)
Theorem 2: If the state-space realization (1) has an optimal T T
realization with minimum roundoff noise, then (30) and (31) caoreover, if the diagonal elements of matt a;; for i =

be expressed as 1,2,---,n, are equal, then the upper bound@f’_, v; is min-

O) ®) imized by choosingx = a;;.
a <a EPL VA a”"”") <0 (33) Proof: See Appendix 2.
o1+ 02+ +0n Remark 2: It is noted that ifo = 1 then (40) is changed to
and a;; > 1/2 for all ¢ which is identical to the condition shown in
ag’?gl +ota®o, Theorem 4.1 in [16, p. 632].
T e toat - to, (34) Remark 3: As a simple example, we note that when a second-
order digital filter has complex conjugate poles, the diagonal
respectively, wherag’) fori =1,2,---,n are the diagonal el- elements of a x n matrix A are equal, i.e.
ements of the matrid in the input-balanced realization. More- reos  rsind
over, (32) becomes A= [_T sinfd  rcosf
2 2 .
1 n " where the poles are given by*7? with 0 < r < 1. In this case,
Inin(D) = & (Z C”) - <Z ag?ai) - (39 we can choose = rcos?.
=1 =1

It is known [16, p. 632] that for the filter in (1), there exists
Proof: See Appendix . an internally balanced realizatid¢d, b, ¢, d),, with

Corollary 1: If the state-space realization (1) is input-bal- A A
. [ 1 “] An=AT, A=Al (@3)

anced, then (30) and (31) can be expressed as —A], Ay
41102 + -+ + Apno? The next theorem describes a counterpart of Theorem 3 for an
N\ 02402 +---402 0 (36) " internally balanced realization. . .
and Theorem 4: Let the filter in (1) be realized by an internally
1102 + - + Apno? balanced realization in (43), and Iet_ the union)cﬁfclu) a_nd
= (37)  A(As2) be denoted by#;}. If there exists a scalar satisfying

o} 4+ 02 : :
! " the inequality

0< & < min{#6;} (max{@i} < & < 0) (44)
- (@110 + -+ + anno?2)? 2 ‘ ‘ 2
Lin(D) = | Y 07 | - 51— “mns . (38) then (41) holds for such an.
i=1 ot oyt oy Proof: SinceA;; = A, fori = 1,2 and since{f;} =
Lemma 1: If the [;-norm dynamic-range scaling constraintg‘(AU) U A(Az2), if

(Ke)ii = (T7'K.T™ ")y = 1fori=1,2,---,n are imposed min{6;} > 0 (max{ﬂi} < 0) (45)
on the state variables, then i i

respectively, and (32) becomes

then, matricesA;; and A,, are positive-definite (negative-def-

2
— 1 [& inite).

min W) = (Z Vi) (39) inite). In general

T " =1 )\min(A) < -'ETA-"; < )\max<A) (46)
whereWp = TTWpT with D = ol,,, and v? for i = holds for any symmetric matrid wherez is any real vector
1,2,---,n are the eigenvalues & .W 5. satisfying||z|| = 1. This yields

Th fofL lis similartothatin[13] and is theref

Olmittgdproo of Lemma lis similar tothatin [13] and is therefore min{6;} < min{as} (m/ax{aii} < max{ei}). (7)

Remark 1: Under thel,-norm dynamic-range scaling con-grom (44) and (47) it follows that
straints, Williamson [15] obtained a suboptimal realization with o o
an integer error-feedback matri® = I,, (D = —-I,,) for 0< 3 <ai (au <5< 0) (48)
low-pass (high-pass) narrow-band filters by choosing an appyge; ., satisfy the condition in (40). It then follows from Theorm
priate coordinate transformation matftx A similar argument 3 that (41) holds
was also made in [16] by restricting to I,,. )

] AT . This completes the proof.
Theorem 3: Let the state-space realization in (1) be Input- o104 -1t is noted that the substitution of = 1 into (44)
balanced. If there exists a real numbesuch that

yields
ala—2a;) <0 (40) 1
— < mi .
then 5 < miln{Hz}
Z v < Z o (41) Which corresponds to the condition stated in Theorem 4.2in [16,
i=1 i=1 p. 632].
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Theorem 5: Let \; fori = 1,2,---,n be the eigenvalues of whereP = TTT and \ is a Lagrange multiplier. Using the
the matrixA in (1). If there exists am > 0 (« < 0) satisfying formulas for evaluating matrix gradient [18, p. 275]
. 2—a (- 2+ a OUMX]) 7
>1-— <—(1- — =M
-t (- (1-25)) o i
) o(tr [MX™']) Aapv 11T
then (41) holds for thisy, where) denotes the mean value of - ox (X MX ] (56)
the eigenvalues, i.e\ = (A1 + Ao + - - + \p) /n. we compute
Proof. Without loss of generality, we assume that the filter AJ(a, P, )) = =
in (1) is input-balanced. Then the diagonal elemgnbf matrix P =W, - AP "K.P
A satisfies
w —tr [K.P7] - n. (57)
|aii|<1, i:1,2,-~-,’l’b. (50)
Since If we letdJ(«, P,A\)/OP = 0 anddJ(«, P, \)/OX = 0, then
n n _ —171 _
Zan’ _ Z)‘i (51) PW.P=)K., tr[K.P'|=n. (58)
i=1 i=1 Note that if matrice¥ > 0 andM > 0 are symmetric, then
holds in general, it follows from (50) that the matrix equatiolPW P = M has the unique solution [19]

" n P=W": W:MW:? %W_%. 59
mjn{a,ii}+n—1>g Ai Gn/.ax{aii}—(n—l)<g )\9 (52) [ ] (59)
=1

i=1 It follows from (58) that

Alternatively, (49) can be written as

" (8% -~ (8%
A>n—1+— A< —(n-1)+—= 53 1 -
Z; >n + 2 (Z} (n—1)+ 2) (53) Ltr[KcWa]Z _ b Zgi —n (60)
1= 1= \/X \/X —
Together (52) and (53) imply that
g (52) (53) imply wheref? for i = 1,2,---,n are the eigenvalues & W .
min{a;} > % (Hlax{aii} < %) (54) Therefore, we obtain

[N

1 - _1 L 1 1
which satisfy the condition in (40). It then follows from P=— <Z Gi) W,* [WE,KCW;:] W,?
Theorem 3 that (41) holds. This completes the proof. " \iz

_ Remark 5: It is noted that the substitution ef = 1 into (49) Substituting (61) into (55) yields the minimum value of
yields J(a, P, )\) as

n n 2
E A >n— . 1

v = min J(a, P,\) = — E 0, 62
i=1 P ( ) n (i:l ) (62)

which coincides with the condition stated in [16, p. 632, THer a given scalar.

4.3]. From (61), the optimal coordinate transformation maffix
that minimizes (55) can be obtained in closed form as

(61)

DN | =

IV. NOISE REDUCTION BY JOINT OPTIMIZATION OF ERROR
FEEDBACK AND COORDINATE TRANSFORMATION

1 n
. . . . . T=—|> 06
In this section, we consider the problem of joint optimiza- vn =

tion of a scalar error-feedback matrixl,, and a coordinate . . . .
. ) . L whereU is an arbitraryn x n orthogonal matrix. From (63) it
transformation matrig” for roundoff noise minimization under
fo{lows that

l>-norm dynamic-range scaling constraints. The proposed join

[T

wot [W(‘%;KCW(‘%,} v (63)

optimization will be carried out in an iterative manner. First, K.=T'K.T"

a scalara is obtained by modifying (31) undé€s-norm dy- " -1 L
namic-range scaling constraints. In what follows, the unit noise =n (Z gi) uT [Wi ché] ‘U (64)
matrixW p in (8) with D = oI, is denoted bW . Under joint P

application of a scalar error-feedback and a coordinate transfors .
mation, the noise gaifi( D) becomes ' W, T]. In order to Next, we choose the x n orthogonal matrixyU' such that the

minimize T W ,T] (with o fixed) over am x n nonsingular matrix K in (64) satisfies thés-norm dynamic-range scaling

: . ) . nstraints on th -variables in (15). To this end, w r-
matrix T subject to the constraints in (15), we define the Lq%)rr:ar?e :’ ce)zn\;[ali iaetieer?vea::t;oers decfm?) os?[i;[)ns end, we pe
grange function 9 9 P

I

o}

N

J(o, P,)) = tt[W,P] + A\(tr[K.P" '] —n)  (55) [Wé K Wa] = ROR" (65)
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where 4) ReplaceW , by W ,(;y computed using

© =diag{#;,6s,---,0,} Woi = (1+ a(i)?) Wo — a(i) (A"W, + W,A) .
T
RE =1, 5) Derive matrixP from (61), and take the resulting as
Consequently P(i).
6) Compute W ;) P(i)].
n o IRE 7) Updatei to + 1.
n (Z 9i) [WéKcWé} = RAT’R" (66) 8) Repeat from Step 2) until the change in either
=1 Lin|a(i)1,] or trfW ,(;) P(i)] becomes negligible.

=

where 9) Obtain matrixT" by using (68).
We have applied the proposed algorithm to quite a number
A =diag{A, Az, -, A0} of IIR filters, in all the cases we have tried so far, the noise
I R 1 gain is monotonically decreasing and the algorithm converges
A = ( LI ") to the unique optimal solutioR regardless of the initial point
P19 nngi chosen. In all the cases that we tried, the number of iterations

required has been fairly small. For example, simulation results
for a ninth-order IIR low-pass digital filter showed that the algo-

Now ann x n orthogonal matrixS such that _ L : .
neen g rithm converges after nine iterations. Although this may change

1 = o % for high-order filters, it should not be a concern as the order of

« 1 . lIR filters is usually not very high, and the algorithm is typically
SATPST =T (67) applied offline.

S Suppose the above algorithm converges aleiterations

*oox 1 and the optimal coordinate transformation matfixV) has

can be obtained by numerical manipulations [13, p. 278]. ERf€N computed from (65)~(68). Then, according to (13),
choosingy = RS” in (63), the optimal coordinate transforma{14), and (21)-(24), the diagonal error-feedback matrix

tion matrix 7T satisfying (15) and (62) simultaneously can nod? = diag{a1, s, - -, an } that minimizes
be constructed as 1 (D) = tr [TT(N>WOT<N)] Ttr [TT(N)WOT(N)DQ]
1 (S N\ i s 1% —2tr [T (N)A"W ,T(N)D (70)
T—— (36| wa? [Wchwg] RST.  (68) ) (N)D]
v i=1 is given by
This coordinate transformation matri is used to minimize (TT(N)W AT(N))
tr[W,] = tr[TW,T] subject to the constraints in (15). This  «; = 2 W j=1,2,---,nm. (71)

completes the first round of iteration and, if necessary, this (TT(N)WOT(N))n
process may continue until boffi and o converge. Having
obtained transformation matrik, an improved value of scalar
« can be obtained using

This diagonal error-feedback matixmakes it possible to pro-
duce more reduction of the noise gain, i.e.

K [TTWOAT] Tnin(D) < Ipin [@(N)1,] . (72)
- w [TTW,T]
_ o [WOAP]' (69) V. CASE STUDY
tr (W, P] In this section, we present a case study to illustrate the

This iterative procedure for minimizing the roundoff nois&oundoff noise reduction methods proposed in the preceding

under lo-norm scaling constraints with respect to a scal&€ctions-
parametery as well as am x n symmetric positive-definite

matrix P can be summarized as follows: A. Low-Pass Digital Filter

1) Seti = 1 and Thg §yste_m considered here is a third-orQer stable low-pass
IR digital filter realized as(A,,b,,co,d)s in controllable
P(0) = diag{(K.)1}!, (K3 (K)o canonical form

_ 0 1 0

2) Compute a scalag(i) using A, = 0 0 1
0.339377 —1.152652 1.520167
a(i) = TW.APG = D] bo=[0 0 0.437881]"
trWoP(i —1)] c, = [0.212964 0.293733 0.718 718]

=
3) Computel iy (a(i),) = (1 — a(i))tr[W,P(i — 1)]. d=6.59592 x 1072
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1 TABLE |
ROUNDOFFNOISE GAIN OF THREE REALIZATIONS WITHOUT ERRORFEEDBACK
w
Q
- Controllable ;
% Realization Canonical Input-Balanced | Optimal
] I(0) = tr[W, 11.133150 3.279113 2.355360
Q
§ o0s
g TABLE I
z ROUNDOFF NOISE GAIN WITH OPTIMAL DIAGONAL ERRORFEEDBACK
MATRICES
) v — Realization Ccogf,?éliﬂglle Input-Balanced | Optimal
NORMALIZED FREQUENCY -
Infinite
Precision 4.598541 1.863033 1.520074
Fig. 2. Magnitude response of the low-pass digital filter. 3 Bit
Quantization 4.627836 1.866150 1.524145
whose controllability and observability Gramians are given by Integer
Quantization 5.245937 2.187819 1.922510

1.0 0.741988 0.227107

K.= |0.741988 1.0 0.741988 o ) .
0.227107 0.741988 1.0 gain without using error feedback is computed for each of the

three realizations and listed in Table 1.

Case A. Noise Reduction Using a Diagonal Error-Feedback
Matrix: If a diagonal error-feedback matrix is calculated using
(24) for each of the above three realizations, then we obtain
The normalized cutoff frequency of the filter is about 0.32 and
its magnitude response is shown in Fig. 2.

Inthe case study, three realization schemes of the above staiethe controllable canonical realization
space digital filter subject to tHe-norm dynamic-range scaling

[ 0.720426 —1.635144 1.753511
W,= | —-1.635144 4.551538 —4.194133
| 1753511 —4.194133  5.861185

D = diag{0.826 041, 0.702890, 0.804 589}

constraints will be considered. D = diag{0.718 259, 0.402944, 0.398964}
* Input-balanced realizatiof;;, by, cir,, d)3 where for the input-balanced realization, and
0.718259  —0.367681  —0.004649 D = diag{0.585 937, 0.494 832, 0.689722}
Ay = | 0.680718 0.402 944 0.208077
—0.032955 —0.796728 0.398 964 for the optimal realization. The noise reduction performance for
_ . i i T these three realizations with optimal diagonal error-feedback is
bip = [-0.590672 0.575294 0.452733] given in Table I, where the noise gains with the diagonal ele-
cip = [—0.933934  —0.491318 0.100978] ments quantized to 3-bit numbers or integers are also included.
with the controllability and observability Gramians On comparing the above results with that in Table 1, it is ob-
y _ served that error feedback with an appropriate diagonal matrix
K’ =diag{1.0, 1.0, 1.0} can reduce the roundoff noise considerably even with 3-bit or
W = diag{2.499 998, 0.729 367, 0.049 748}. integer quantization.
) o Case B. Noise Reduction Using a Scalar Error-Feedback Ma-
* Optimal realizatior( Aoy, bopt, Copt, d)3 Where trix: We now consider the case whee= oI with a scalar
0.476 474 0.568865 —0.071856 a. Applying (31) to the three realizations, we obtain
Aopt = | —0.715925 0.476474  0.154270 0.764 400 for controllable canonical realization
—0.154270 0.071856  0.567 219 a= { 0.643280 for input-balanced realization
bopt = [0.686292 0.112451 —0.713811]" 0.590163 for optimal realization.

Copt = [—0.099639 —0.608103 — 0.632487] The noise gain performance with the optimal scalar error
feedback (with in finite precision or 3-bit or integer rounding)

with the controllability and observability Gramians for the three realizations are shown in Table Il

1.0 —0.036160 —0.541747] On comparing the results obtained with that in Tables |
K°P' = | —0.036 160 1.0 0.541 747 and Il we see that the performance with an optimal scalar
—0.541747  0.541 747 1.0 error-feedback degrades only slightly in relative to what an
r 0.785120 —0.028390 —0.425 3373 optimal diagonal error-feedback matrix can achieve and remains
wort — | —0.028390  0.785120  0.425337 | significantly better than their no-error-feedback counterparts.
? 0425337 0425337  0.785120 Case C. Noise Reduction by Joint Optimization of Scalar

Error Feedback and Coordinate Transformatiom this case,
Without using error feedback, the noise gdifD) in (17) we apply the iterative optimization procedure described in
becomed/ (0) = tr[W,]. For comparison purposes, the nois&ection IV to the three realizations. For each realization, the
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TABLE Il

TABLE IV
ROUNDOFFNOISE GAIN USING GENERAL ERRORFEEDBACK MATRICES

Realization Cgral;cllg)éli%gle Input-Balanced | Optimal Realization 083?31%21@ Input-Balanced | Optimal
Infinit Infinite
Precision 4.627966 1.922186 1.535005 Precision 0.648188 1.123823 0.779757
3-Bit 3-Bit
Quantization 4.630275 1.923282 1.537864 Quantization 0.662491 1.130837 0.790560
Integer Integer
Quantigation 5.245937 2.339451 1.930626 Quantization 2.809319 1.894676 1.540156
algorithm converges after seven iterations to the same matrix 1
P° and a scalawx = 0.647686. In the case of controllable w
canonical realization, the coordinate transformation magfix g
is given by g
Q
—1.973853 —0.153371 —2.328357 § 0.5}
T° = | —0.063334 —1.398294 —1.260527 g
1.402772 —-0.676604 —0.969851 g
As is expected, the noise gain resulted from the algorithm
is identical regardless of the realization to which it applies, 5 s ——
and is given byl,,(D) = 1.450049. If o = 0.647686 is NORWZE'DFREQUENCY

rounded to power-of-two representation with 3 b after binary
point, then, the noise gain is founded to @) = 1.451335.  Fig. 3. Magnitude response of the high-pass digital filter.

Next, a refined solution which offers further reduced
noise gain is deduced by applying an optimal diagonhalowever, as can be expected, the noise gain with this realization
error-feedback matrix to the optimized realization, i.escheme is quite sensitive to the variations in the optimied
(T°~'AT°, T°"'b,cT°, d)s. The optimal diagonal error-feed-On the other hand, the noise gain for the input-balanced and
back matrix obtained by using (71) is given by optimal realizations are relatively insensitive to the quantization

of D and the best overall performance is obviously offered by

D = diag{0.705402, 0.510713, 0.683 277} the optimal realization scheme.

which yieldsI,,;n (D) = 1.433 755. The above diagonal error- B. A High-Pass Digital Filter
feedback matrix after 3-b quantization (power-of-two represen-

tation with 3 b after binary point) givek,i,(D) = 1.438801,
which is less thard,,;, (D) = 1.450 049 in the optimal scalar

Now, let us consider a fourth-order stable high-pass filter re-
alized ag A4,, b,, ¢,, d)4 in controllable canonical form

error feedback. 0 0 0 —0.386952

To compare the proposed methods with that reported in [15], T 1 0 0 —1.467381
[16], we choose the error-feedback matfix= I,, as in [15], A, = 0 1 0 -—2.496662
[16], and minimize T W ,T] with respect to a coordinate LO 0 1 —2.225780
transformation matrix’. This gives r 0

min tr [T"WpT| = 1.752546 b, = 8
T

which is considerably larger than our results described above. 10.240 444

Case D. Noise Reduction Using a General Error-Feedback [ 0.018325
Matrix: Finally, we examine the case whele= A or matrix o —0.219056
D is given by its approximation in each realization scheme. ° 061;171185123

The performance of optimized general error-feedback matrices
after different rounding polices in three state-space realiZBhe normalized cutoff frequency of the filter is about 0.66 and
tions as compared with their infinite-precision error-feedbadts magnitude response is drawn in Fig. 3.
counterparts are summarized in Table V. More specifically, the Tables 1-IV in the previous example are changed to
table includes (i) the case with infinite precision error feedbackables V-VIII in this example, respectively.
(ii) the case of rounding the optimal infinite-precision coeffi- When the iterative optimization procedure described in Sec-
cients to integers; and (iii) the case of rounding the coefficiention IV is applied to the three realizations, the algorithm con-
to power-of-two representations with 3 b after the binary pointerges after seven iterations to a scalae= —0.667 273 and
From the simulations, it is observed that the controllablg,;,(D) = 0.472 563 for each realization. I = —0.667 273
canonical realization with an infinite-precision full-scalds rounded to power-of-two representation with 3 b after binary
error-feedback matriD = A yields the smallest noise gain.point, then the noise gain is founded toHd) = 0.474 085.
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TABLE V
ROUNDOFFNOISE GAIN OF THREE REALIZATIONS WITHOUT ERROR FEEDBACK
Realization Cé)%lgﬂ%gglle Input-Balanced | Optimal
I1(0) = tr[W,] || 22.685416 1.125488 0.796551
TABLE VI
ROUNDOFF NOISE GAIN WITH OPTIMAL DIAGONAL ERRORFEEDBACK
MATRICES
Realization Ccogg)oéligglle Input-Balanced | Optimal
Infinite
Precision 8.803179 0.616628 0.469765
3-Bit
Quantization 8.837581 0.617109 0.470395
Integer ’
Quanti%ation 9.892990 0.747868 0.535587
TABLE VII

ROUNDOFFNOISE GAIN WITH OPTIMAL SCALAR ERRORFEEDBACK MATRICES

Realization Cé’gggoélii‘glle Input-Balanced | Optimal
pafinite 8.81442 0641995 | 0.501540
Qu;f;t'?zi;ﬁon 8.837581 0.643037 | 0.501755
ng’;@?gggion 9.892990 0.775624 | 0.623585
TABLE VI
ROUNDOFFNOISE GAIN USING GENERAL ERRORFEEDBACK MATRICES
Realization Cé’gggoriliz‘glle Input-Balanced | Optimal
pofinite 0.142117 0.268941 | 0.190752
Quostotion | 0.150512 0273714 | 0.195471
Qu;f;fggggion 3.239478 0.636372 | 0.526276

VI. CONCLUSION

The roundoff noise minimization in state-space digital
filters in several typical realization schemes by means of error
feedback has been investigated, and general, diagonal, and
scalar error-feedback matrices that minimize the normalized
noise gain in a given state-space digital filter have been derived.
Moreover, the noise minimization problem has also been
addressed in scenario where a coordinate transformation and a
scalar error-feedback matrix is jointly optimized subject to the
usually-norm dynamic-range scaling constraints. Simulation
results in the form of a case study have been presented to
illustrate and support our theoretical analysis and proposed
algorithms. The proposed method may be regarded as an
alternative, but much simpler and more general, approach to
Hwang’'s method for synthesizing the optimal filter structure
with minimum roundoff noise.

The extension of the results obtained in this paper to multidi-
mensional case will appear elsewhere.

APPENDIX |
PROOF OF THEOREM 2

The optimal coordinate transformation matfixdescribed by
(68) can be expressed in the form

T="T,T, (A1)
whereq is set to zero and
1 1 11%
T, =W, ? [Wchwg} R
1
T, -1 zn: R [W%K W%]% RST
o — — — ag; o c o .
\/ﬁ =1
It follows that
T,'K.T," =1,, T{W,T, =X~ (A2)

Equation (A2) shows thar’, is the coordinate transformation

Next, a refined solution which offers further reduced noisgatrix that converts realizatiofd, b, ¢, d),, to an input-bal-
gain is deduced by applying an optimal diagonal error-feedbagKkced realization. 1tv = 0, then, (13), (14), (65), (A1), and
matrix to the resulting optimized realization. The optimal diag2) imply that

onal error-feedback matrix obtained by using (71) is given by

D=diag{—0.712 866, —0.750 118, —0.434 626, —0.661 637}

which vyields I,i,(D) =

agonal

error-feedback matrix after
(power-of-two representation with 3 b after binary point) gives
I'min(D) = 0.463 942, which is less that,,;, (D) = 0.472 563

in the optimal scalar error feedback.
The proposed methods can be compared with that reported

in [15], [16] by choosing matriXD = I,, and then minimizing

tr[TT W pT] with respect to matrig". Namely,

min tr [T7WpT] = 2.546985

3-bit

0.462844. The above di-
quantization

which is much larger than our results described above.

tr(W,A] =tr [T, T2 32T, ' AT

(5, 1
= (; a,L> tr (ST, ' AT ]

(%)

since® = X in this case, Wherﬂ’b_lATb is the system matrix

in the input-balanced realization who#th diagonal element
(T,leT;,),i,; is replaced byaz(.f) for i =1,2,---,n in this
theorem. By replacing¥, and A by W, and A, respectively,
and then substituting (16) and (A3) into (30)—(32), we obtain
the results in (33)—(35). This completes the proof.

n

Z (Tb_lATb)n' gi

i=1

(A3)
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