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Abstract—This paper investigates the problem of minimizing
roundoff noise under 2-norm dynamic-range scaling constraints
in state-space digital filters by means of error feedback as well
as joint error feedback/coordinate transformation optimiza-
tion. First, several techniques for the determination of optimal
full-scale, diagonal, and scalar error-feedback matrices for a
given state-space digital filter are proposed, where three re-
alization schemes, namely, the general state-space realization,
input-balanced realization, and optimal realization in the sense of
Hwang–Mullis–Roberts are examined. Furthermore, an iterative
approach is developed for jointly optimizing a scalar error-feed-
back matrix and a coordinate transformation matrix so as to
minimize the roundoff noise subject to the 2-norm dynamic-range
scaling constraints. The proposed method may be regarded as
an alternative, but much simpler and more general, approach to
Hwang’s method for synthesizing the optimal filter structure with
minimum roundoff noise. A case study is included to illustrate the
utility of the proposed techniques.

Index Terms—Optimal coordinate transformation, optimal
error feedback, roundoff noise minimization, scaling constraints,
state-space digital filters.

I. INTRODUCTION

T HE basic arithmetic operations involved in the imple-
mentation of an infinite-impulse response (IIR) digital

filter are multiplications of input/output samples by the filter
coefficients and additions. For arithmetic operations involving
fixed-point numbers, the result of a multiplication must be
rounded or truncated. This quantization error generates roundoff
noise at the filter output. In addition, because the result of
an addition can exceed the finite register length, the dynamic
range of the digital filter is always a concern in a fixed-point
implementation. Error feedback has been known as an effec-
tive technique for reducing the roundoff noise at the filter
output. This is achieved by extracting the quantization error
after multiplication and addition, and then feeding the error
signal back through simple circuits. It can be applied to dig-
ital filters that are described by either external or internal
models for roundoff noise minimization without affecting the
filter’s input-output characteristics. Many techniques for error
feedback have been presented in the past [1]–[10]. Another
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technique for reducing the roundoff noise is to synthesize an
optimal state-space filter structure that minimizes the roundoff
noise under -norm dynamic-range scaling constraints on the
state-variables by means of coordinate transformation in the
state space [11]–[14]. In addition, techniques for reducing the
roundoff noise subject to the scaling constraints by combining
the coordinate transformation with error feedback have been
proposed [15], [16]. It has also been shown that the roundoff
noise can be reduced by means of delta operator [16], [17] and
that the digital filter in this case can be viewed as a special
case of the filter with error feedback [16].

In this paper, several new algorithms for reducing the
roundoff noise in state-space digital filters are proposed.
First, the problem of roundoff noise reduction for several
typical state-space realizations using error feedback is in-
vestigated. Closed-form formulas for evaluating the optimal
full-scale, diagonal, and scalar error-feedback matrices for a
given state-space digital filter are derived, where three real-
ization schemes, namely, the general state-space realization,
input-balanced realization (to be defined shortly), and optimal
realization (in the sense of [12], [13]) are examined. Further-
more, an iterative noise reduction technique for state-space
digital filters that jointly optimizes a scalar error-feedback
matrix and a coordinate transformation matrix is proposed. A
case study is presented to illustrate the algorithms proposed
and to demonstrate their performance as compared with that of
the existing methods [15], [16].

Throughout this paper, stands for the identity matrix of
dimension , the transpose (conjugate transpose) of a matrix

is indicated by , and the trace, eigenvalue, andth
diagonal element of a square matrixare denoted by t ,

, and , respectively.

II. STATE-SPACEDIGITAL FILTERS WITH ERRORFEEDBACK

Let be a state-space description of anth-order
IIR digital filter, i.e.

(1)

where is an state-variable vector, is a scalar
input, is a scalar output, and, , and are real con-
stant matrices of appropriate dimensions. The filter described
in (1) is assumed to be stable, controllable and observable. Due
to finite register sizes, finite-word-length (FWL) constraints are
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Fig. 1. Error feedback in a state-space digital filter.

imposed on the state variables, input, output, and system param-
eters as shown in .

By taking the quantization performed before matrix-vector
multiplication into account, an FWL implementation of (1) can
be expressed as

(2)

where each component of coefficient matrices, , , and
assumes an exact fractional -b representation. The FWL

state-variable vector and the output all have a -b
fractional representation, while the input is a -b
fraction.

The quantizer in (2) rounds the -b fraction to
b after completing the multiplications and additions, where

the sign bit is not counted. In a fixed-point implementation,
the quantization is usually carried out by two’s complement
truncation which discards the lower bits of a double-precision
accumulator. Therefore, the quantization error

(3)

is equal to the residue left in the lower part of . The block-
diagram representation of a state-space digital filter with error
feedback is shown in Fig. 1 where the roundoff error is
modeled as a zero-mean noise process of covariancewith

and the quantization error is fed back through an con-
stant matrix in the FWL filter (2). From Fig. 1, it is obvious
that the filter can be characterized by the state-space model

(4)

where is referred to as anerror-feedback matrix.
Subtracting (4) from (1) yields

(5)

where

Taking the z-transform on both sides of (5) and setting
, we have

(6)

where and represent the z-transform of and
, respectively, and is the transfer function from the

quantization error, , to the filter output .
The noise gain is then defined by

tr (7)

where

Utilizing the Cauchy integral theorem, the matrix defined
in (7) can be expressed in closed-form as

(8)

where is the observability Gramian of the filter that can be
obtained by solving the Lyapunov equation

(9)

Matrix is referred to as theunit noise matrixfor the filter,
and can be viewed as the unit noise matrix for the filter
with error feedback specified by matrix.

The -norm dynamic-range scaling constraints on the state
variables involve the controllability Gramian of the filter, which
is defined by

(10)

and can be computed by solving the Lyapunov equation

(11)

The problem considered here is to design the error-feedback
matrix so as to reduce the noise gain in the sense that

tr tr (12)

is satisfied subject to that all the diagonal elements ofequal
unity. Such constraints on matrix are known as the -norm
dynamic-range scaling constraints[13].

A different yet equivalent state-space description of (1),
, can be obtained via a coordinate transformation

where

(13)

Accordingly, the observability and controllability Gramians for
become

(14)
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respectively. If the -norm dynamic-range scaling constraints
are imposed on the state-variable vector , i.e.

(15)

then, it can be shown that [12], [13]

tr (16)

where for are the eigenvalues of matrix
. The state-space realization satisfying (15) and (16) is

called theoptimal realization(which is sometimes also referred
to as theoptimal filter structure) with minimum roundoff noise.
A method for constructing such a filter structure was proposed
in [12], [13]. Obviously, if the realization in (1) is optimal with
minimum roundoff noise, then the right-hand side of (12) is
minimized.

In the next section, we will derive closed-form formulas for
determining the optimal full-scale, diagonal, and scalar error-
feedback matrix that minimizes tr for a given state-
space digital filter.

III. D ETERMINATION OF OPTIMAL ERROR-FEEDBACK

MATRICES

A. Case 1: is a General Matrix

Substituting (8) into (7), we obtain

tr

tr tr tr (17)

Differentiating (17) with respect to the error-feedback matrix
yields

(18)

By choosing the error-feedback matrix as , the noise gain
in (17) achieves its minimum value

tr tr tr (19)

B. Case 2: is a Diagonal Matrix

In this case, matrix assumes the form

diag (20)

which leads (17) to

tr (21)

From (21), it is clear that tr tr holds if
’s satisfy

(22)

If we compute the gradient of in (21) and set it to zero,
i.e.,

(23)
then, we obtain the minimizer diag with

(24)

at which achieves its minimum as

tr (25)

In the rest of the paper, the filter in (1) is said to be
input-balanced (internally balanced)if and

where diag .
The theorem below characterizes the diagonal error-feedback
matrix that minimizes the noise gain for the input-bal-
anced realization of an IIR digital filter.

Theorem 1: If the filter in (1) is input-balanced, and the diag-
onal error-feedback matrix diag satisfies

(26)

then tr tr where denotes the th
element of matrix . Moreover, if

(27)

then achieves the minimum value

(28)

Proof: implies that and
for . Under these circumstances, (22), (24) and (25) are
reduced to (26), (27) and (28), respectively. This completes the
proof.

C. Case 3: is a Scalar Matrix

If with a scalar , then (17) becomes

tr tr tr (29)

Hence, tr tr holds if satisfies

tr
tr

(30)

Moreover, from it follows that the value of
that minimizes is given by

tr
tr

(31)

which leads (29) to

tr
tr
tr

(32)
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Therem 2 concerns the optimal realization satisfying (15) and
(16).

Theorem 2: If the state-space realization (1) has an optimal
realization with minimum roundoff noise, then (30) and (31) can
be expressed as

(33)

and

(34)

respectively, where for are the diagonal el-
ements of the matrix in the input-balanced realization. More-
over, (32) becomes

(35)

Proof: See Appendix I.
Corollary 1: If the state-space realization (1) is input-bal-

anced, then (30) and (31) can be expressed as

(36)

and

(37)

respectively, and (32) becomes

(38)

Lemma 1: If the -norm dynamic-range scaling constraints
for are imposed

on the state variables, then

tr (39)

where with , and for
are the eigenvalues of .

The proof of Lemma 1 is similar to that in [13] and is therefore
omitted.

Remark 1: Under the -norm dynamic-range scaling con-
straints, Williamson [15] obtained a suboptimal realization with
an integer error-feedback matrix for
low-pass (high-pass) narrow-band filters by choosing an appro-
priate coordinate transformation matrix. A similar argument
was also made in [16] by restricting to .

Theorem 3: Let the state-space realization in (1) be input-
balanced. If there exists a real numbersuch that

(40)

then

(41)

or equivalently

tr tr (42)

Moreover, if the diagonal elements of matrix, for
, are equal, then the upper bound of is min-

imized by choosing .
Proof: See Appendix 2.

Remark 2: It is noted that if then (40) is changed to
for all which is identical to the condition shown in

Theorem 4.1 in [16, p. 632].
Remark 3: As a simple example, we note that when a second-

order digital filter has complex conjugate poles, the diagonal
elements of a matrix are equal, i.e.

where the poles are given by with . In this case,
we can choose .

It is known [16, p. 632] that for the filter in (1), there exists
an internally balanced realization with

(43)

The next theorem describes a counterpart of Theorem 3 for an
internally balanced realization.

Theorem 4: Let the filter in (1) be realized by an internally
balanced realization in (43), and let the union of and

be denoted by . If there exists a scalar satisfying
the inequality

(44)

then (41) holds for such an.
Proof: Since for and since

, if

(45)

then, matrices and are positive-definite (negative-def-
inite). In general

(46)

holds for any symmetric matrix where is any real vector
satisfying . This yields

(47)

From (44) and (47) it follows that

(48)

which satisfy the condition in (40). It then follows from Theorm
3 that (41) holds.

This completes the proof.
Remark 4: It is noted that the substitution of into (44)

yields

which corresponds to the condition stated in Theorem 4.2 in [16,
p. 632].
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Theorem 5: Let for be the eigenvalues of
the matrix in (1). If there exists an satisfying

(49)

then (41) holds for this , where denotes the mean value of
the eigenvalues, i.e., .

Proof: Without loss of generality, we assume that the filter
in (1) is input-balanced. Then the diagonal elementof matrix

satisfies

(50)

Since

(51)

holds in general, it follows from (50) that

(52)

Alternatively, (49) can be written as

(53)

Together (52) and (53) imply that

(54)

which satisfy the condition in (40). It then follows from
Theorem 3 that (41) holds. This completes the proof.

Remark 5: It is noted that the substitution of into (49)
yields

which coincides with the condition stated in [16, p. 632, Th.
4.3].

IV. NOISE REDUCTION BY JOINT OPTIMIZATION OF ERROR

FEEDBACK AND COORDINATE TRANSFORMATION

In this section, we consider the problem of joint optimiza-
tion of a scalar error-feedback matrix and a coordinate
transformation matrix for roundoff noise minimization under

-norm dynamic-range scaling constraints. The proposed joint
optimization will be carried out in an iterative manner. First,
a scalar is obtained by modifying (31) under -norm dy-
namic-range scaling constraints. In what follows, the unit noise
matrix in (8) with is denoted by . Under joint
application of a scalar error-feedback and a coordinate transfor-
mation, the noise gain becomes tr . In order to
minimize tr (with fixed) over an nonsingular
matrix subject to the constraints in (15), we define the La-
grange function

tr tr (55)

where and is a Lagrange multiplier. Using the
formulas for evaluating matrix gradient [18, p. 275]

tr

tr
(56)

we compute

tr (57)

If we let and , then

tr (58)

Note that if matrices and are symmetric, then
the matrix equation has the unique solution [19]

(59)

It follows from (58) that

tr (60)

where for are the eigenvalues of .
Therefore, we obtain

(61)

Substituting (61) into (55) yields the minimum value of
as

(62)

for a given scalar .
From (61), the optimal coordinate transformation matrix

that minimizes (55) can be obtained in closed form as

(63)

where is an arbitrary orthogonal matrix. From (63) it
follows that

(64)

Next, we choose the orthogonal matrix such that the
matrix in (64) satisfies the -norm dynamic-range scaling
constraints on the state-variables in (15). To this end, we per-
form the eigenvalue–eigenvector decomposition

(65)
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where

diag

Consequently

(66)

where

diag

Now an orthogonal matrix such that

...
...

...
. . .

. . .
(67)

can be obtained by numerical manipulations [13, p. 278]. By
choosing in (63), the optimal coordinate transforma-
tion matrix satisfying (15) and (62) simultaneously can now
be constructed as

(68)

This coordinate transformation matrix is used to minimize
tr tr subject to the constraints in (15). This
completes the first round of iteration and, if necessary, this
process may continue until both and converge. Having
obtained transformation matrix, an improved value of scalar

can be obtained using

tr

tr

tr
tr

(69)

This iterative procedure for minimizing the roundoff noise
under -norm scaling constraints with respect to a scalar
parameter as well as an symmetric positive-definite
matrix can be summarized as follows:

1) Set and

diag

.
2) Compute a scalar using

tr
tr

3) Compute tr .

4) Replace by computed using

5) Derive matrix from (61), and take the resulting as
.

6) Compute tr .
7) Update to .
8) Repeat from Step 2) until the change in either

or tr becomes negligible.
9) Obtain matrix by using (68).
We have applied the proposed algorithm to quite a number

of IIR filters, in all the cases we have tried so far, the noise
gain is monotonically decreasing and the algorithm converges
to the unique optimal solution regardless of the initial point
chosen. In all the cases that we tried, the number of iterations
required has been fairly small. For example, simulation results
for a ninth-order IIR low-pass digital filter showed that the algo-
rithm converges after nine iterations. Although this may change
for high-order filters, it should not be a concern as the order of
IIR filters is usually not very high, and the algorithm is typically
applied offline.

Suppose the above algorithm converges afteriterations
and the optimal coordinate transformation matrix has
been computed from (65)–(68). Then, according to (13),
(14), and (21)–(24), the diagonal error-feedback matrix

diag that minimizes

tr tr

tr (70)

is given by

(71)

This diagonal error-feedback matrixmakes it possible to pro-
duce more reduction of the noise gain, i.e.

(72)

V. CASE STUDY

In this section, we present a case study to illustrate the
roundoff noise reduction methods proposed in the preceding
sections.

A. Low-Pass Digital Filter

The system considered here is a third-order stable low-pass
IIR digital filter realized as in controllable
canonical form
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Fig. 2. Magnitude response of the low-pass digital filter.

whose controllability and observability Gramians are given by

The normalized cutoff frequency of the filter is about 0.32 and
its magnitude response is shown in Fig. 2.

In the case study, three realization schemes of the above state-
space digital filter subject to the-norm dynamic-range scaling
constraints will be considered.

• Input-balanced realization where

with the controllability and observability Gramians

diag

diag

• Optimal realization where

with the controllability and observability Gramians

Without using error feedback, the noise gain in (17)
becomes tr . For comparison purposes, the noise

TABLE I
ROUNDOFFNOISEGAIN OF THREEREALIZATIONS WITHOUT ERRORFEEDBACK

TABLE II
ROUNDOFFNOISE GAIN WITH OPTIMAL DIAGONAL ERROR-FEEDBACK

MATRICES

gain without using error feedback is computed for each of the
three realizations and listed in Table I.

Case A. Noise Reduction Using a Diagonal Error-Feedback
Matrix: If a diagonal error-feedback matrix is calculated using
(24) for each of the above three realizations, then we obtain

diag

for the controllable canonical realization

diag

for the input-balanced realization, and

diag

for the optimal realization. The noise reduction performance for
these three realizations with optimal diagonal error-feedback is
given in Table II, where the noise gains with the diagonal ele-
ments quantized to 3-bit numbers or integers are also included.

On comparing the above results with that in Table I, it is ob-
served that error feedback with an appropriate diagonal matrix
can reduce the roundoff noise considerably even with 3-bit or
integer quantization.

Case B. Noise Reduction Using a Scalar Error-Feedback Ma-
trix: We now consider the case where with a scalar

. Applying (31) to the three realizations, we obtain

for controllable canonical realization
for input-balanced realization
for optimal realization.

The noise gain performance with the optimal scalar error
feedback (with in finite precision or 3-bit or integer rounding)
for the three realizations are shown in Table III.

On comparing the results obtained with that in Tables I
and II we see that the performance with an optimal scalar
error-feedback degrades only slightly in relative to what an
optimal diagonal error-feedback matrix can achieve and remains
significantly better than their no-error-feedback counterparts.

Case C. Noise Reduction by Joint Optimization of Scalar
Error Feedback and Coordinate Transformation:In this case,
we apply the iterative optimization procedure described in
Section IV to the three realizations. For each realization, the
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TABLE III
ROUNDOFFNOISEGAIN WITH OPTIMAL SCALAR ERROR-FEEDBACK MATRICES

algorithm converges after seven iterations to the same matrix
and a scalar . In the case of controllable

canonical realization, the coordinate transformation matrix
is given by

As is expected, the noise gain resulted from the algorithm
is identical regardless of the realization to which it applies,
and is given by . If is
rounded to power-of-two representation with 3 b after binary
point, then, the noise gain is founded to be .

Next, a refined solution which offers further reduced
noise gain is deduced by applying an optimal diagonal
error-feedback matrix to the optimized realization, i.e.,

. The optimal diagonal error-feed-
back matrix obtained by using (71) is given by

diag

which yields . The above diagonal error-
feedback matrix after 3-b quantization (power-of-two represen-
tation with 3 b after binary point) gives ,
which is less than in the optimal scalar
error feedback.

To compare the proposed methods with that reported in [15],
[16], we choose the error-feedback matrix as in [15],
[16], and minimize tr with respect to a coordinate
transformation matrix . This gives

tr W

which is considerably larger than our results described above.
Case D. Noise Reduction Using a General Error-Feedback

Matrix: Finally, we examine the case where or matrix
is given by its approximation in each realization scheme.

The performance of optimized general error-feedback matrices
after different rounding polices in three state-space realiza-
tions as compared with their infinite-precision error-feedback
counterparts are summarized in Table IV. More specifically, the
table includes (i) the case with infinite precision error feedback;
(ii) the case of rounding the optimal infinite-precision coeffi-
cients to integers; and (iii) the case of rounding the coefficients
to power-of-two representations with 3 b after the binary point.

From the simulations, it is observed that the controllable
canonical realization with an infinite-precision full-scale
error-feedback matrix yields the smallest noise gain.

TABLE IV
ROUNDOFFNOISEGAIN USING GENERAL ERROR-FEEDBACK MATRICES

Fig. 3. Magnitude response of the high-pass digital filter.

However, as can be expected, the noise gain with this realization
scheme is quite sensitive to the variations in the optimized.
On the other hand, the noise gain for the input-balanced and
optimal realizations are relatively insensitive to the quantization
of and the best overall performance is obviously offered by
the optimal realization scheme.

B. A High-Pass Digital Filter

Now, let us consider a fourth-order stable high-pass filter re-
alized as in controllable canonical form

The normalized cutoff frequency of the filter is about 0.66 and
its magnitude response is drawn in Fig. 3.

Tables I–IV in the previous example are changed to
Tables V–VIII in this example, respectively.

When the iterative optimization procedure described in Sec-
tion IV is applied to the three realizations, the algorithm con-
verges after seven iterations to a scalar and

for each realization. If
is rounded to power-of-two representation with 3 b after binary
point, then the noise gain is founded to be .



HINAMOTO et al.: ROUNDOFF NOISE MINIMIZATION OF STATE-SPACE DIGITAL FILTERS 31

TABLE V
ROUNDOFFNOISEGAIN OF THREEREALIZATIONS WITHOUT ERRORFEEDBACK

TABLE VI
ROUNDOFF NOISE GAIN WITH OPTIMAL DIAGONAL ERROR-FEEDBACK

MATRICES

TABLE VII
ROUNDOFFNOISEGAIN WITH OPTIMAL SCALAR ERROR-FEEDBACK MATRICES

TABLE VIII
ROUNDOFFNOISEGAIN USING GENERAL ERROR-FEEDBACK MATRICES

Next, a refined solution which offers further reduced noise
gain is deduced by applying an optimal diagonal error-feedback
matrix to the resulting optimized realization. The optimal diag-
onal error-feedback matrix obtained by using (71) is given by

diag

which yields . The above di-
agonal error-feedback matrix after 3-bit quantization
(power-of-two representation with 3 b after binary point) gives

, which is less than
in the optimal scalar error feedback.

The proposed methods can be compared with that reported
in [15], [16] by choosing matrix and then minimizing
tr with respect to matrix . Namely,

tr

which is much larger than our results described above.

VI. CONCLUSION

The roundoff noise minimization in state-space digital
filters in several typical realization schemes by means of error
feedback has been investigated, and general, diagonal, and
scalar error-feedback matrices that minimize the normalized
noise gain in a given state-space digital filter have been derived.
Moreover, the noise minimization problem has also been
addressed in scenario where a coordinate transformation and a
scalar error-feedback matrix is jointly optimized subject to the
usual -norm dynamic-range scaling constraints. Simulation
results in the form of a case study have been presented to
illustrate and support our theoretical analysis and proposed
algorithms. The proposed method may be regarded as an
alternative, but much simpler and more general, approach to
Hwang’s method for synthesizing the optimal filter structure
with minimum roundoff noise.

The extension of the results obtained in this paper to multidi-
mensional case will appear elsewhere.

APPENDIX I
PROOF OF THEOREM 2

The optimal coordinate transformation matrixdescribed by
(68) can be expressed in the form

(A1)

where is set to zero and

It follows that

(A2)

Equation (A2) shows that is the coordinate transformation
matrix that converts realization to an input-bal-
anced realization. If , then, (13), (14), (65), (A1), and
(A2) imply that

tr tr

tr

(A3)

since in this case, where is the system matrix
in the input-balanced realization whoseth diagonal element

is replaced by for in this
theorem. By replacing and by and , respectively,
and then substituting (16) and (A3) into (30)–(32), we obtain
the results in (33)–(35). This completes the proof.
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APPENDIX II
PROOF OF THEOREM 3

Lemma 2: Let and be the sets
of diagonal elements and eigenvalues of a positive semidefinite
symmetric matrix, respectively. Then

(A4)

where equality holds if and only if matrix is diagonal, i.e.,
for any [13].

From (8) it is derived that

(A5)

By substituting and into (A5), the th
diagonal element of matrix for , can be
expressed as

(A6)

Now, noting that , Lemma 2 and (A6) can be applied
to yield

(A7)

Since the filter in (1) is input-balanced, the Lyapunov equation
in (11) becomes

(A8)

This implies that each diagonal elementof a stable matrix
satisfies

(A9)

Therefore, for a scalar satisfying (40), we have
. This proves the inequality in (41).

In case the diagonal elements ofare equal, the choice of
for all yields

(A10)

and in this case, the upper bound of in (A10) is the
tightest. This completes the proof.
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