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Design of Signal-Adapted Biorthogonal Filter Banks

Wu-Sheng Ly Senior Member, IEEEBNd Andreas Antoniguellow, IEEE

Abstract—A method for the design of signal-adapted,
M -channel biorthogonal filter banks of finite length is presented.
The design problem is formulated as a constrained optimization
problem and is solved by converting it into an iterative line-search
problem through a first-order parameterization of the perfect
reconstruction constraint. It is also shown for the two-channel case
that if the analysis and synthesis lowpass filters are of different
lengths, a refinement of the algorithm is possible that leads to a
solution in a very small neighborhood of a local minimizer, which
satisfies the perfect reconstruction (PR) constraint precisely.

Fig. 1. M-channel maximally decimated uniform filter bank.

Index Terms—Biorthogonal filter banks, coding-gain maximiza-
tion, constrained optimization, signal-adapted filter banks. [l. PROBLEM FORMULATION

A. M-Channel Filter Banks and Perfect Reconstruction
|. INTRODUCTION Condition

URING the past several years, there has been a grea¥Ve consider the class a¥/-channel maximally decimated

deal of interest in the design of optimal orthogonal andniform filter banks where filters Hand F; for0 <i < M —1
biorthogonal filter banks in terms of some coding gain criterioare finite-duration impulse response (FIR) filters represented by
[1]-[11]. Biorthogonal filter banks can offer improved perforiransfer functions; (=) and F;(z), respectively. Fig. 1 illus-
mance over orthogonal filter banks [12], [13], but the optimdfates such a subband system, where the input sighal is
design of anM-channel biorthogonal filter bank requires théssumed to be wide-sense stationary (WSS) [14] with a power
solution of a sophisticated constrained minimization problefpectral density....(w) and variance?2, and each of the blocks
[11]. labeled with aQ represents a quantizer.

In this paper, the design of signal-adapted-channel,  An M-channel filter bank is said to have the PR property if
biorthogonal filter banks of finite length is considered as $ignalz(n) is a delayed version of the input signefr) when
constrained optimization problem that attempts to minimiz8€ quantizers are replaced by direct paths. Itis known [15] that
a coding gain related objective function [7], [11] subject t@n-channel filter bank has the PR property if and only if the
the perfect reconstruction condition. The basic approach t@nsfer functions?;(z) and F;(z) for 0 < i < M — 1 are
solve this problem is to first parameterize a first-order approgonstrained to satisfy the conditions
imation of the perfect reconstruction (PR) constraint and then
convert the constrained problem into an iterative line-search —1

L . ) . To(=) (1a)
problem. In each iteration, the line search is carried out along

®
I
®

a direction within the null space of a matrix characterized by Ti(z) =0 forl<k<M-1 (1b)
the approximated PR condition. Closed-form formulas for th&here

gradient vector and Hessian matrix of the objective function are 1 k

derived to facilitate the identification of a good search direction Ti(z) = M Z Fy(2)H;i (W)

such as a quasi-Newton or modified Newton direction. It is _,2’;‘]’%

also shown for the two-channel case that if the analysis and W =e™ (1c)

synthesis lowpass filters are of different lengths, a refinement ) ) )
of the algorithm is possible that leads to a solution in a vefjarameter in (1a) is an integer that depends on the lengths

small neighborhood of a local minimizer, which satisfies thgf the FIR filters used. In the sequel, the above conditions are

PR constraint precisely. Simulation results are presented'&erred to collectively as the PR condition and/@Rchannel
illustrate the proposed design methods. filter bank satisfying these conditions is calledbiarthogonal

filter bank Note that we are assuming a normalized sampling
periodZ” = 1 s throughout the paper, i.e., the Nyquist frequency
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fixed bit rateb = Zf\igl b;. It has been shown in [11] that thewhere
mean-square reconstruction error is given by

27
R=[ 5.,
E = eM2-29t/M @) /0 )
1

) cosw - cos[(N — 1w]
wherec is a constant and COS W 1 dw
M—1 ,on 2 ) : . 2
R R dw . dw . ) &
_ Jw (pdwy2 2 (eI @) 2 2
o= ]I [ satepersy? [ IRERS: cos{(N — 1)u] I
i= 3) (7b)

i (i (<) bei il-
with H;(c”) and (e . ) being the frequency responses of fil Note that matrixR in (7b) is a symmetric positive definite
ters H and F, respectively.

For a WSS input, the performance of the subband system JQeplitz matrix whose first column g 71 -+ 7v—1]" where

be measured in terms of the coding gaits s (M), which is 1 2 o
defined as the ratio of the mean-square value of the roundoff k=5 Sza(e’) cos kw dw. (7¢)
quantization errorF;..ct, t0 the average variance of the recon- 0
struction error in the subband system given by Now let
= e=[hg - by f5 - fyalt ®
Espc = Z Ell&(n) — a(n)’]/M
i=0 be the vector comprising all the coefficient vecthfandf, for
ie. 0 < ¢ < M — 1 and define
Eivect M—1
Gspe(M) = 7= (4) a= [] k/Rh; (9a)
SBC i—0
As shown in [11], the coding gain can be expressed as an =2 (9b)
k=3T
02 hk th
Gspe(M) = o7 Qg1 = “ (9c)
oY/ 7 (W Rh)(WF RRy)
where® is defined in (3). M_1
In the next section, we develop a method for the design of B = H I1£:112 (10a)
M -channel biorthogonal filter banks that maximizes the coding o ‘
gain by minimizing® in (3). The problem at hand is formulated 8
in terms of the nonlinear constrained optimization problem B = W (10b)
minimize ¢ (5a) B = % (10c)
subject to the constraints in (1) (5b) IFwlPIF
The gradient vecto®(z) can be computed explicitly as
ll. NEw DESIGN METHOD V.- |:gh:| (11a)
A. Objective Functior . 9y
L ) . ere
Assume for the sake of simplicity that all the filters mvolvegv g
in the subband system have the same ledgtland denote feo
o= : (11b)
N-1 g
(2) = ok <4< _ hor—1
H;(z) ,;0 hi kz foro<i<M-1 (6a) with
N—-1 an, IQOékﬁth for 0 < k < M-1
Fi(z)= > fixz™® for0<i<M-—1 (6b) and
=0 95
and let 9y = : (11c)
h;=Thio - hinal® and £ =[fio - fin_1]¥ Gfu_n
[hi, 0 ,N—1] Fi=1fi,0 fi,n—1] with
be the coefficient vectors of the filters. Functi®rin (3) can be 9y =200 f,  for0<k<M-1.
expressed as o ) )
Similary, the Hessian matrix can be computed as
M-1 M-1
T
o = [ & Bhy) TT 1511 (7a) V2o [ZT gf} (12a)
i=0 i=0 If If
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where whereA(P) is the block Toeplitz matrix witfP3 0 --- 0] €
Hg g Ho pyg RMXLM as its first row andPo Py - Pp 0 --- 0]F ¢
Hy), = (12b) REEL=DIMXM asitsfirstcolumn@ = [Qg @ --- Q7 " €
v : REMXM andC = [0 --- 0 J 0 --- 0] € REL-DMxM
Hy 10 Hy 1 v -
. with
with
201, 3R fori =k N 0 1
I“J:{ T =1L ith I = 16
4o SRhy AT R forl # k =97 Withl= (16)
1 0
Go,o Go, m—1
Hy; = : (12c) Alternatively, the PR condition can be expressed as
. Gro1,0 Gyo1, M1 AQP=C (17)
with ) )
G.1 =4S Rhy fT whereA(Q) and P are obtained fronA(P) and@ with blocks
and ’ P; and@Q), replaced byQ, and P;, respectively.
Foo Fo a1 For two given matrix sequencés= {Py, Py, ..., Py}
’ T andQ = {Q,, Q, - .., Q._}, we define thematrix convolu-
H; = (12d) tionof P andQ as
F]\l—l,O F]\l—l,]\l—l S = COIlV(?D7 Q) = {So, ey SQL_Q} (18)
with
2001 fork =1 where
F“l::{4aﬁ Foff fork£1 L-1
ki K .
o Si=Y PrQ,., foro<k<20-2  (19)

The dimension of parameter vectpiin (8) is2M N. Since

these parameters are constrained to satisfy the PR condition an

=0

|_tﬂ the understanding thdt; and@, for< < 0or¢ > L — 1

possibly additional conditions (e.g., to achieve linear phase e

sponse, etc.), they are not independent of each other but aréf§.2ero matrices. The matrix convolution is a natural extension

lated to a reduced set of independent parameters. Accordin ,h_e discrete _convolutlon_ Qf two scalar_ sequences, with which
e time-domain PR condition can be simply stated as

the minimization problem in (5) can be reduced in size but t
gradient vector and Hessian matrix®fvith respect to the new

(and independent) parameter vector need to be evaluated. These conv(P, Q) = J (20)
computations can be carried out usi¥ig® andV2,® in con- where 7 is the impulse sequence defined by

junction with the use of the Jacobian of veciowith respect to

the new parameter vector as described in Section IlI-E. J={0,---,0,J,0,---,0} (22)

B. Time-Domain PR Condition

The PR condition in (1) can be expressed in the time domain.
Compared to its frequency-domain version, the PR condition in
the time domain does not depend on the frequency parame
and can be made more explicit in terms of the filter coefficients.

Consequently, it is more suitable in an optimization setting.

with J defined in (16).

Note that, for matrix sequences, the convolutions ¢BnQ)

and conyQ, P) are not the same in general. However, an alter-
%trive PR condition can be obtained from (17) as

conv(Q, P)=J. (22)

Let P and@ be the matrices that comprise the coefficients of By replacing the frequency-domain PR condition in (5b) by

the analysis filters and synthesis filters, respectively, i.e.,

ho fo
P= : Q= (13)
hy_1 Sri—

Without loss of generality, we assume thdt = AL for
some integel., and partition each of matrice® and @ into
L blocks as

P=[Py - P4 Q=[Qy - Qp ]
where eaclP’; and@, is anM x M matrix. The time-domain
PR condition can then be expressed as [16]

(14)

AP)Q=C (15)

the time-domain PR condition given in (20) or (22), the opti-
mization problem at hand can be formulated such that the vari-
ables appear in the constraints explicitly in a bilinear form. This
bilinear representation is suitable for the subsequent first-order
approximation of the PR condition and, for this reason, the time-
domain PR condition will be used in the proposed method.
Given a nonoptimal initial design, which might not even sat-
isfy the PR condition, the proposed design algorithm iteratively
modifies the filter coefficients so as to better satisfy the PR con-
dition and at the same time reduce the objective funabichhis
design approach is illustrated by the flow chart in Fig. 2.

C. Independent Design Variables

An additional constraint to the optimization problem at hand
comes from the necessity of normalizing the filter coefficients.
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of channels\. It is interesting to note that is independenof
the length of the filters involved.

A technical difficulty in dealing with the constraintin (23b) is
k=0 that the matrix convolution cof?, Q) is bilinear with respect
to the filter coefficients irP and Q. Early methods handle this
problem by fixing one of the filter banks so that (23b) becomes a
set of linear constraints. However, by doing so, half of the filter

Initialize filters
{(HO , FO for0 < i g M-1}

o iy bt coefficients cannot participate in the design and, consequently,
new set 1lter: ; , Ff . . . . .

fhafbe:erosaﬁsfyihe PR condition 40 the linearized constraints in (23b) become overdetermined [16].

and reduce ®. In Section IlI-D, we shall develop a new linearization approach

for (23b) by characterizing all acceptable changes in the filter
coefficients surrounding a nominaf-channel filter bank such
that the perturbed filter bank satisfies a first-order approxima-
tion of the PR condition.

An additional constraint, which is desirable in applications
such as image compression, is that all filtegsadd F, for 0 <
i < M — 1 have linear phase response. If both the number of
channeldV/ and the filter lengthV are even, then a linear-phase
analysis filter bank contain&/ /2 filters with symmetrical im-
pulse responses and anothidy2 filters with antisymmetrical
impulse responses [17]. In such a case, the lower half of the
equations in (15) are redundant and the time-domain PR condi-
tion reduces to

Is the progress
made significant?

Output {H&+D, F#+D for 0 < i <M-1)

as the solution and stop.

Fig. 2. Flowchart for the design dff -channel filter banks.

If all the analysis filters are rescaled by multiplying their co- - pr 0 0

efficients by a nonzero scalarand at the same time all syn- OT . Qo 0

thesis filters are rescaled by multiplying their coefficients by Py Py o 0 Q, 0

1/7, then the value of the objective functich remains the : : : . I (24)
same. Under these circumstances, if the filter bank has the PR . T ' 0
property and/or linear phase response, then so does the rescaled” £—2 Prs - 0 Qr» i7

filter bank. Since this invariance holds for anya solutonmay | 1P | 1PY , ... IPY Qr—

be obtained where the coefficients Bf(z) are very large and .

those ofF}(z) are very small, or vice versa, and for such a soliwherel = [I,/5 0] € RM/2*M, each of the firsti/ /2 rows of
tion numerical ill-conditioning could ensue. This problem ca#’ and@ defined in (14) is symmetric, and each of the [&5t2
be prevented by imposing a constraint on the filter coefficient@Wws of P andQ is antisymmetric.

A linear constraint of this type can be derived by requiring the In (24), there arg2L — 1)M?/2 = MN — M?/2 equa-
sum of the filter gains ab = 0 to be a constant, e.g., we carfions while the number of independentfilter coefficientd4sv.

impose the constraint Thus there aré/?/2 — 1 independent parameters that can be
used in the design. Again, the degrees of freedom for the design
M—-1N-1 of M-channel linear-phase biorthogonal filter banks grows with
Z Z hix=1. the number of channels quickly but, as in the general case, it is
i=0 k=0 independent of the filter lengtN'. The optimization problem for

}_he design of signal-adapted linear-phdgechannel biorthog-

With this additional constraint incorporated, the problem foonal filter banks can now be stated as

mulation becomes

M-1
M1 minimize & = k! Rh)| £, 25a
minimize & = H (ki RR)| £ (23a) g( R 28
. =0 subjectto: Eqn. (24) (25b)
subject to: conv(P, Q) =7 (23b) M—1N/2—1
M—-1N-1 1
hip=—. 25¢c
S S hie=1 (23¢) 2 2 s (20
=0 k=0

If the length of each of the filters $and F;, are assumed to be D. Parameterization of Design Variables
Nfor0 <4 < M—1, then the total number of filter coefficients | this subsection we focus our attention on the general

is 2M N. The number of constraints in (23b) is equal to thSrobIem in (23). The objective functioh in (23a) depends on

number of entries in matrig’ in (15), which is equal t¢2L —  yectorg defined in (8). In thekth iteration of the optimization,
1)M? = 2M N — M?. This in conjunction with the constraint pgint 4, is updated as

in (23c) gives the number of independent design parameters in
(22) asp = M? — 1, which grows very rapidly with the number Tp+1 = T + Ax (26)
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whereAz = [ARY - ARY, | AfS - Afy;_]F such Since (23c) is satisfied at,, we have
that M-1N-1
1) if ; does not satisfy the constraint in (23b), then, Z Z Ahi =0
is a better approximate solution of the equations in (23b) i—e k0
thanz;, and
2) ®(x141) is significantly smaller relative t@(xy,).
Requirement 1) implies that the design will allow an initial L Az =0 (33)
point which corresponds to a filter bank that does not have the
PR property, and if the algorithm converges, then the PR pragheree = [1 --- 1 0 --- 0]% is the vector of dimension
erty will be satisfied at the limit point to within a prescribed2 N with the first half of its components equal unity and the
tolerance. Requirement 2) assures that convergence will eveamaining half equal to zero. The linearized equation (30) with
tually be achieved. J = Jo is now combined with (33) to form the complete set of
Let (Py, Q) and (Pr11, Ort+1) be the matrix sequenceslinear constraints as
(P, Q) associated withr,, andx;1, respectively. It follows
from (26) that these two sequences are related by FAz =1, (34)

ie.,

2Mn—M241)x2Mn 2Mn—M?41)x1
Pt = Pr+ AP (27a) Wherel € R¢ CHLEMr andy, € R >
_ A 27b For anyM > 1, the linear system in (34) is underdetermined,;
Qi1 = +AQ (27b) consequently, all of its solutions can be parameterized as a linear

. 5 ) !
whereAP andAQ are two perturbation sequences thatlare  function of an(AM* — 1)-dimensional free parameter vector.
earlydependent oi\z. The matrix convolution defined by (18) This parameterization can conveniently be achieved by using

and (19) satisfies the equations the singular-value decomposition (SVD) of matki{18], i.e.,
. T
conv(aPy + 8P, Q) r=u3xsv (35)
= aconv(Py, Q) + Sconv(Ps, Q) (28a) wherelJ andV are orthogonal matrices of siz&&/ N — M? 41
and and 2M N, respectively, andx = [¥; 0] with 3; =
conv(P + Qs + 4Q) diag{e1, -+, oapm_m2y1} = 0,1.€., X1 is a positive definite

matrix. All the solutions of (34) can be characterized as
= aconv(P, Q1) + Beonv(P, Qo) (28b)

_ _ Az =060+ V€ (36)
where« and 3 are constants. Hence at thth iteration, con-
straint (23b) becomes whereédy = I‘Jffy0 with Tt being the Moore—Penrose pseudo-
inverse ofT', V,, consists of the lasy = M? — 1 columns of
cony(Pr1, Q1) = conv(Pr, Qx) + conv(AP, Q) V, and¢ € R7<! is an(M? — 1)-dimensional free parameter
+ conv(Py, AQ) + conv(AP, AQ)  vector.
=7 (29) An alternative way to handle the nonlinearity in (31) is to
use the increment matrix sequencA$ and AQ obtained
which leads to from the preceding iteration to evaluate the bilinear term
R conAP, AQ). Denoting AP and AQ as AP and AQ,
conv(AP, Qi) + conv(Py, AQ) =T (30) respectively, (30) can be linearized with= 7; where
where Ji =T — conv(Py, Qi) — conv(AP, AQ). (37)

J =T —conv(Pr, Q) — conv(AP, AQ).  (31)  Accordingly, (34) is replaced by

There are two ways to deal with the quadratic term TAz =1y, (38)
con(AP, AQ) in (31). Suppose the design algorithm con- ) .
verges, them\z in (26) approaches zero &s— co. Since both Wherey, € R(2Mn=M"+1)x1 is determined by/; in (37) and
AP andAQ are linearly related ta\z, we haveAP — 0 and  all the solutions of (38) are characterized by
AQ — 0ask — oo. Henceconv(AP, AQ)in (31) is a small
guantity in terms of higher powers of the perturbation and can
be neglected to linearize (30) with = 7, where

Az =6 +V,¢ (39)

whereéd; = I‘qu.

Jo = J — conv(P, Q). (32) g Design Algorithm
In addition, the constraint in (23c) at. + Az remains linear, The design of a signal-adaptet-channel biorthogonal
ie., filter bank is achieved by solving the constrained minimization
M1 N1 problem in (23) in an iterative manner as described below.
Z Z (hix+ Ah3) = 1. 1) Given the number of channelg and filter length/V with

imo k=0 N = ML for some integeL, the algorithm starts with an
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2)

initial set of FIR filters{H'”, F{”), 0 < i < M —1} that
form anM -channel filter bank. Since (23) is a constrained
nonlinear programming problem, a good initial point is
preferred as it can affect the performance and efficiency
of the algorithm in a positive way. A reasonable initial
point that does not need to be optimum or to satisfy the
PR condition can be obtained in a number of ways, for
example, by using the method in [15]. Before going to the
next step, we perform coefficient normalization to ensure
that the constraint in (23c) holds fc{rhEO,Z, 0 <1<
M-1,0<k<n-1} ’

At the kth iteration, a omtvk, which is associated with
transfer functlons{H (), F, (")( ),0<i< M -1},

is available. Poink;, is updated as

Trt+1 = T + Az (40)

where Az is given by either (36) or (39) depending on
Whether7 in (30) is set ta7 = Joor 7 = J;. In what
follows, J = Jo is assumed so thakz is parameter-
ized in terms of (36). The algorithm described below also
holds for the case¢/ = J;.

Sincez+Azx with Az given by (36) gives afirst-order
parameterization of the constraints in (23b) and (23c), at
the kth iteration the problem in (23) is reduced to the
unconstrainedninimization problem

minimize ®(xx + 6o + V,€)

41
i (41)

where¢ is the variable vector of dimension= M? — 1.
There are a number of robust and efficient algorithms
available for unconstrained optimization [19]. These in-
clude the class of quasi-Newton methods, which require
only the gradient vectow, ¢, and the modified Newton
method, which needs, in addition, the evaluation of the
Hessian matriXV/¢®. The gradient vector and Hessian
matrix of & with respect to variablé can be computed in
closed form as

I(Ax)

(P:
Ve €

and

T
ngq) _ I(Ax) 8(Az)}

23 23
where 8(Azx)/0¢ denotes the Jacobian dfz with re-
spect tag, which is glven byV according to (36)V,®

is given by (11), andv2_® is given by (12). Thus, we
have

VL) |

Ved =V]IV,0(z)
Vi =VIVi. e(z)V,.

If d is a descent direction 6b(x; + 6o + V,;§) at
xx+89, thent = ady, with o > 0reduces the value of ob-
jective function®. In a steepest-descent method (SDM),
vectord,, is taken to be

(42)
(43)

3)

95

where

g, =V} Vo @(zp + 80) (44b)

while in the
(BFGS) method

Broyden—Fletcher—Goldfarb—Shanno

di = —Sig; (45a)

whereg,, is given by (44b) and}, is the positive-definite
approximation of the inverse Hessian mati$, is gen-
erated through the recursive relation

T T
Vi StV \ 0r0x
Si+1 =51+ <1 + )
e vE8, ) AEo
(81 Sk A+ Srvi63) (45b)
Vi, 6
k
whereSy = I, 6 = zi41 — xx, andy;, = gj 1 — Gi-

Once the search directieh is calculated, the optimum
positive scalary, is determined by minimizing the func-
tion &(xr+60+aV ,+d;.) with respect tar. This one-di-
mensional (1-D) minimization, often called a line search,
can be performed efficiently if the gradient of the func-
tion is available [19]. In our case, however, the line search
must be carried out in the vicinity of poinf, so that the
vector incremenfAz in (40) has a small magnitude and
henceJ, in (32) remains a good first-order approxima-
tion of .7 in (31).

Suppose that the algorithm starts with an initial point at
which the PR condition is at least approximately satisfied.
Thenég in (36) is small in magnitude. Further, notice that
|V,|l = 1 and hencé|aV ,dx| = a||/dx||. This suggests
that pointz;, should be updated as

Tpp1 = g + A*g (46)
with
A%z = g+ oV, dy, 47

wheredy, is given by (44) or (45) and is of length equal to
unity, anda;, solves the 1-D minimization problem

(48a)
(48Db)

minimize ®(zx + 6o + aV,di)
subjectto 0 < a < pax-

The upper bound,,,, in (48b) is selected to keep the
norm ofég + avgdk small. With a normalized;, and a
reasonably smafly, anay,.x between 0.1 and 1.0 usually
leads to satisfactory design results.

The two-norm ofA*z is then used to check the progress
made in thekth iteration in reducingb(x) as well as in
satisfying the PR condition. IfA*«|| is less than a pre-
scribed tolerance, x;.; is taken to be the solutiog*

of the minimization problem and the algorithm is termi-
nated. Otherwise is incremented t& + 1 and the pro-
cedure is repeated from Step 2).

In effect, we have reduced the constrained optimization

problem in (23), which containd} N design variables, to an

di, =—g; (44a)

iterative line-search problem on a small interval, as formulated
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Input initial filter-coefficient
vector X, and tolerance €.

Set k=0.

Parameterize the search direction

Fig. 4. Two-channel maximally decimated uniform filter bank.

processing applications [20]-[22]. As will be shown here, the

with free parameter vector & as

Ax=8)+ V& such that xo+Ax linearly difference in filter lengths can be utilized to develop a two-stage
approximates the PR condition. design strategy for signal-adapted biorthogonal filter banks that
+ satisfy the PR conditioprecisely

Compute a scaled modified Newton’s
direction d of ®(x, + §;) and set & = oul;.

+ k40 Throughout this section we consider the two-channel filter
bank shown in Fig. 4 whereHFy, Hy, and | are linear-phase
filters with transfer functions

A. Two-Channel Biorthogonal Linear-Phase Filter Bank

Find the value of o, that minimizes
D(x; + § + 0Vyd,) using a line search.

Hy(z) ==~ N/2Hy(2),

| Set Xj, =X+ 8+ O0Vdy l . Ni/2 ‘
Ho(Z) = Z hiz_z, with h; = h_; (51a)
i=—N1/2
Fo(z) =2~ N2 Fy (),
r2/2
or] Fo(z) = 27t with f; = f_;
| Output X, as the solution and stop. 0(7) . zj\:f /2 fz7 ’ fz f ¢
1=—DNg
Fig. 3. Detailed flowchart for the design 8f -channel filter banks. H, (z) = FO(_Z)
Fy(2) = —Ho(~2) (51b)

in (48). At a solution pointe* of the problem in (48), the PR
condition is approximately satisfied. This can be seen fro
(30) with 7 = T, i.e.,

where N1, N, are even andV; > N,. The above choice of
Th(z) andFi (z) cancels the aliasing error and leads to the PR
condition

conv(Py, Qp)+conv(AP, Op)+conv(Py, AQ) = 7. (49) Ho(2)Fo(z) — Ho(—2)Fo(—7) = 9, —(N1+N2)/2. (52)

If the algorithm converges as — oo, thenAP and AQ
approach the zero sequence; therefore, athbereticallimit
point (P**, Q**), (49) becomes

From (52), it follows that the orders of filtersgtand Fy, Ny
andN,, respectively, must be chosen such {1ét + N, )/2 be
an odd integer. Under these circumstances, (52) becomes

conv(P™, Q) = J. Ho(2)Fo(2) + Ho(—2)Fo(—2) = 2 (53)
As described in Step 3), however, our algorithm terminatgs, oo ' and£; are zero-phase FIR filters whose transfer func-

as long ag|A*z|| < e. This implies that a numerical solutiontionS are defined in (51).

(P, .Q.*) obtaine_d from the algorithm can only satisfy the PR The objective function in (7) can now be written as
condition approximately, i.e.,

O(x) = (B Rb)(f T Ro f) (BT Q1) (ST Q) (54)

conv(P*, Q") =~ J. (50)
wherez = [T 115, h = [ho b1 - hyplt f =

However, since the degree to which the PR condition is s [ Tf ] tho P el S
- T . ™ 1 fnyy2]” s and
isfied depends on the termination toleraacebviously, arar- )
bitrary precision can be achleveby reducing the termlnatl_on L= Sua()en, (w)c}@l (w) dw
tolerance. The algorithm is illustrated by the flowchart of Fig. 3. 27 Jo

. 1 27 s T
IV. Two-CHANNEL CASE Ry = ; Szz(e?)en, (w)ey, (w) dw

The two-channel case is of particular interest and will be fur- Q, =diag{1, 2, ---, 2} € RUHN/2)x(A+(N1/2))

ther explored in this section for the following reasons. First, Q, =diag{1, 2, ---, 2} € RUFT(N2/2))x(1+(N2/2))

two-channel filter banks have been used extensively as building N T
blocks in multirate digital signal processing systems with tree ¢y, (w) = {1 2cosw -+ 2cos {—lw”
structures. Second, in the biorthogonal case, the lengths of the 2

filters in the analysis filter bank can be different from those in

: Ny, 11
. =|1- ce (=1)N2/2 2
the synthesis filter bank, as is often the case in subband imagecf\‘z(w) [1 2eosw (=1)7 2 cos [ 2 w” '
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Stage 1

A A
Design FIR filters H, and F
that minimize @ and approximately

approximation of the PR condition, and the parameterized ex-
pression ofc;41 is then utilized to minimize the objective func-
tion ®(x) defined in (54). This is done in a way similar to that
of Section III-D. It can be shown that vectsf..; in (58) sat-
isfies a first-order approximation of the PR condition in (53) if

satisfy the PR condition.

{h*, £*}
the increment vectoAx satisfies the linear equation
Stage 2
Fix f* and parameterize the perturbations [Q1 P7] Ax=—-P.f,. +e (59)
Ah so that
o {;l:azﬁ;l,af:jl satisties the PR condition Wheree,, — [1 0 --- O]T c R(Nl +No +2)/4><1’ and matrices
’ (N14+N2+2)/4x(Na+2)/2 (N14Na+2)/4x (N1 +2)/2
* if N| > N, + 4, ® can be further reduced. P, eR . ! Q” €R
are obtained as follows:

1) Generate Toeplitz matri%’o with [y, /2 --+h1 ho

Fig. 5. Flowchart for the design of two-channel filter banks.

hi -+ hyye 0 <o 0]F € RMiHNeF1)xlag jts first
B , . column andfhy, ;5 0 --- 0] € RIX(N2+1) as jts first
It can be verified that matriceB; and R, in (54) are related row iy ]

to sequencér;, ¢ = 0, 1, -- -} defined by (7c) as

2) Take the lastV; + N3)/2+1 rows ofY o to form matrix

R 5T Yl.
R, = |:IN1/2 11+(N1/2)} T, [ Iny/2 } (55) 3) Compute
1+(N1/2) .
wherel n, /2 is the identity matrix of dimensioh + NV, /2, Y,=Y, [I Iy, )2 } .
1+(N2/2)
0 --- 0 4) Form matrixP, by deleting the even numbered rows of
Iy ,n= € RU+IN1/2)x(N1/2), 56 Yo _ _
Nu/2 . (56) 5) Similarly, form matrix@, with [hiy, 2 --hy ho B
1 - hyya 0 -+ O replaced by fn,/2 -+ fi fo fu
f]\’2/2 0 --- O]T c R(Nl-l-Nz-l—l)xl and [h]\fl/Q 0
andT n, is the symmetric Toeplitz matrix withg 71 -+ 7] - 0] € R>WNV2+D) replaced bylfn,/0 O -+ 0] €

as its first row, and RIX(Ni+1)

As for the general\f-channel case discussed in Section I,
it is necessary to add an additional constraint to normalize the
filter coefficients. If the sum of the coefficients é{y(~) and
Hy(z) is required to be a constant, say, 1, the relafibrz) =

where Ty, s Nthe symmetric  Toeplitz  matrix  with g/ "y anq the linear phase-response constraint lead to
[ro —r1 --- (=1)"2rn,] as its first row.

The design problem at hand is to find transfer functions

AT
Ty,

Ry = [jNQ/Q Il+(N2/2):| T, [
Tii(vay2)

} (57)

Ny /2 Na/2

Ho(z) and Fy(z) that minimize ®(z) in (54) subject to the ho+2> hi+fo+2 ) (-1)fi=1 (60)
PR condition in (53). In what follows, we develop a two-stage i=1 i=1

approach to obtain the design. The first stage is similar g . :

thpaet of Section IlI-D to generaq[e a two-channelgfilter bank thg‘@mh further leads to a constraint dz as

satisfies a first-order approximation of the PR condition. The Az =0 (61)
second stage takes advantage of the factdhat> N, which

allows, for a fixedf, a parameterization of the perturbations ofvith ¢, = [1 2 2 1 -2 (—1)N/22T ¢

h. This parameterization is then utilized inf#) and fy(z) to  RUN1+N=)/242)x1 = Combining (59) and (61), the linear
satisfy the PR condition in (52) exactly. If the length differenceonstraints om\z can be expressed as
satisfies the inequalityy; — N2 > 4, then further reduction

of the objective function® can also be achieved. The design I') Az =, (62)
method is illustrated by the flow chart in Fig. 5.
where
B. Design Stage 1 .
g . g _ N Q, P, [P fite
In the kth iteration, we update the coefficient vectoy = Fo=1--- T i I Y2 = 0 .

[hi fi]" as €

The total number of constraints in (62) (871 + Na + 6)/4;
hence the number of degrees of freedom contained ifi Hie+

such thatb (zy,, ) is less tharb(z;,) andzy., ; satisfies the PR V2)/2 + 2]-dimensional vectonz is
condition in (53). In the first stage of the design, the increment Ny +Ny—2
vectorAz in (58) is parameterized so as to satisfy a first-order n=—4

Tpy1 =Tk + Az (58)

(63)
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Fig. 6. Example A: (a) Amplitude responses of filters {golid line), H, (dashed line), H (dash-dotted line), and Hdotted line). (b) Amplitude responses of
filters R, (solid line), R (dashed line), F (dash-dotted line), and;Hdotted line). (c) Power spectral densiy.. (e?«) in decibels.

If the SVD of I's is given byI', = USV?' andV,, is formed

using the last) columns ofV, then all the solutions of (62) can

be characterized by

Ax = és + an (64)

whereS), is updated by using the BFGS formula given by (45b).
Having determined = ayd;, the 2-norm ofA« in (64) is

examined. Ifl| Az|| is less than a prescribed toleranger;.

is taken to be the solutios* of the first stage of the design.

Otherwise, withk := k£ + 1, I'; and-y, are updated using (62),

4, andV,, are recalculated using (64), and the 1-D minimization

whered, = I‘;rny and¢ € R is a free parameter vector.Problem in (66) is solved to obtain a netur.

Now from (64) and (58), we have

Tyl = + 62+ V€ (65a)
with

§ = ondy (65b)

whered, is a descent direction &(x;. + 6> + V ,£) andey, is
a positive scalar that solves the line-search problem

minimize @(zy + 82 + aVydi) (66a)

subjectto 0 < a < apax- (66b)

C. Design Stage 2

The solutionz* obtained from design stage 1 satisfies the PR
condition in (53) onlyapproximately As in the design method
addressed in Section lll, a solutiafi with improved approxi-
mation accuracy for the PR condition can be achieved by using a
reduced tolerance at the cost of more iterations. As described
below, an alternative approach for the solution of problem is
possible by virtue of the fact that the lengths of filtdfg and
Fy are different.

In a neighborhood of* = [h*" f*T]7, there are many
points that satisfy the PR condition precisely. As a matter of
fact, if we perturbh® by Ah but keepf* unaltered, then the

Typical choices of descent directiah include the steepest- first-order approximation of the PR condition in (59) becomes

descent direction

di =—g; (67a)
where
Ji= V?‘Pm(iﬂk + 82) (67b)
and the quasi-Newton direction
di = =519, (68)

exact since the PR condition in (53) at point

F (69)

contains no second or higher order terms. Therefore, in this case,
(59) represents the PR condition exactly and can be written as

¥ 4+ Ax = [h” +Ah}

Q. Ah=—-P.f" te, (70)
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Fig. 7. Example B: (a) Amplitude responses of filterg (3olid line), H, (dashed line), K (dash-dotted line), and Hdotted line). (b) Amplitude responses of
filters F, (solid line), R (dashed line), E (dash-dotted line), and;Hdotted line). (c) Power spectral densiy,. (e?*) in decibels.

TABLE |
CODING GAIN COMPARISONS FOREXAMPLES A AND B
Coding Gain
0
DCT KLT | Brick Wall Filter | Orthonormal | Biorthogonal
m/1.75 | 1.3684 | 3.3473 2.8383 42512 49174
/2.8 | 1.4127 | 3.7674 4.4431 5.8555 6.6411

where P and@Q;. are the matrice®’,. andQ,. evaluated using  The linear system in (72) contaiti®/; + N> + 6)/4 equa-
Rh* andf*, respectively. Accordingly, the constraint in (61) betions and N; + 2)/2 unknown components, which leads to the

comes number of degrees of freedom
AR =0 71) = W, (73)
where

Recall that the filter length&v; and N, are assumed to be
) even withN; > N, and(N; + N;)/2 odd. This implies that
es=[12 - 2" € RN/, N, is related talV, in terms of the equation
By combining (70) with (71), we find thahh is required to N = No 4 2(2k + 1), for some integek > 0.  (74)
satisfy
Hence
Q.Ah =1 (72)
7=k (75)
where
If £ = 0,i.e,N; = N + 2, then (72) is a square and
nonsingular system with the unique solution
Q;k _ _P;kf* +er
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Sincez™* well approximates the PR conditiaak given by (76) TABLE I
is a vector with small magnitude, and the outcome of the second FILTER COEFFICIENTS FOREXAMPLES C AND D
stage of the design is given by Example C Fxample D
3
f 0.1199336126 | —0.0352836130 | 0.0793347557 | —0.3502983702

If &> 0, then all the solutions of (72) are characterized by~ 0.1485891876 | —0.0437138787 | —0.0449592738 |—0.1985152686
—0.1394533112 | 0.5003663650 | 0.0290358572 | 0.8555481808
0.4519362058 | 0.7020461316 | 0.1993215310 | 1.4375905277

whereds = Qlwg, V; is the matrix formed by using the lagt  0.7478924906 | 0.5003663650 | 0.4444738905 | 0.8555481808

columns of matrid’. fromthe SVD 0fQ, = Uc3c Ve, andCis 4519362058 | —0.0437138787 | 0.1993215310 | ~0.1985152686
anr-dimensional parameter vector. The free parameter véctc

can be used to further reduce the objective functign) in (54). —0.1394533112 | —0.0352836130 | 0.0290358572 | —0.3502983702
Sincef* is now fixed, minimizing®(z* 4 Ax) is equivalentto ~ 0.1485891876 —0.0449592738
solving the optimization problem 0.1199336126 0.0793347557

Ah =83 +V( (78)

L. 3 A o~k T ~ ok
mmlleze 2O =Lk + VO Rl Vi) 108, In this case, the coding gain was increased from 4.2512
HRE ATy (R ) t0 4.9174. The -norm in (81) was.3876 x 10710,

(b + Vi) @nh + V()] (79) The coding gains of the biorthogonal filter banks designed

For applications in image compression, typical valueg afe are compared with those of the discrete-cosine transform
in the ranged < 7 < 2; hence (79) is an unconstrained opti{DCT) based, Karhunen-Loéve transform (KLT) based,
mization problem that involves only one or two variables. If wbrick-wall-filter based, and the orthonormal four-channel filter
denote a local minimizer of (79) &%, then the solution of the banks in Table I. From the table it is observed that the optimal

design problem is given by biorthogonal filter banks designed offer improved coding gains
. . over several orthogonal transform coders as well as the optimal
= [h +és + Vil } . (80) orthonormal subband coder.
f Example C: Next we applied the method proposed in Sec-

tion IV to design a two-channel biorthogonal filter bank with
N; = 8 and N, = 6. The initial point used corresponds to the

well-known 9/7 filters (see [24, p. 216]) with
We now present four examples to illustrate the design

methods described in Sections Il and IV. In the first two  p =1 1 0 -8 16 46 16 -8 0 1]7/64
examples, we designed four-channel biorthogonal filter banks T

with filter length N' = 8. The input signal was an autoregressive fo=[-1 0 916 9 0 —1]//16.
process AR(2) with poles @& 975¢+7¢ where the values of _ _ ,
are specified below. We applied the algorithm proposed in Sdtgain we used an A_Ré(_Z) process with= 7 /1.5 as the input
tion Il with an initial point that corresponds to an orthonormaf'9nal- Withe = 107" it took the algorithm 25 iterations to

four-channel filter bank designed using the method proposEgNVerge to a solution™ whicr: reduced the objective function
in [10] and [23]. from ®(zo) = 1.0622 to &(z*) = 0.0932; this corresponds

Example A: With 6 = = /2.8 ande = 6 x 107 in the AR(2) to a coding gain increase from 0.9703 to 3.2753. The pgint

process, it took the algorithm 39 iterations to converge to tifatsfies the PR condition approximately with

solutionz = z*. The frequency responses of the various filters

and power spectral density are shown in Fig. 6. The objective |I=P}f" +e.]| = 0.6377 x 107" (82)
function ®(z) was reduced from the original value &fz,) =

1.2979 x 10~% to ®(x*) = 7.8443 x 10~° which corresponds ~ The second stage of the design resulted in the solution in
to an improvement in the coding gain from 5.8555 to 6.641¢0lumns 1 and 2 of Table II, for which the 2-norm in (82) is fur-
The PR constraint was satisfied to within the Frobenius noriher reduced t0.4178x10~'¢. The coding gain associated with

V. DESIGN EXAMPLES

(F-norm) value £** was approximately the same as that#dri.e., 3.2753. The
amplitude responses of the filters and the power spectral density
1PSQollr + 130 — P3Qy — PLQollr + 1P Q|| F corresponding ta** are shown in Fig. 8.
= 2.3405 x 1072, (81) Example D: Next we considered an AR(2) process wWitk-

7/1.25 as the input signal. With the same initial point and
Example B: With § = 7/1.75, e = 2 x 1077, and an initial the two-stage design resulted in the solution shown in columns
point that corresponds to an orthonormal filter bank, it took tiand 4 of Table II, which reduced the objective function from
algorithm 37 iterations to converge to the solutios- =*. The ®(xzo) = 0.2153 to ®(z**) = 0.0534; this corresponds to a
results obtained are plotted in Fig. 7. The objective function wasding gain improvement from 2.1554 to 4.3267. The results
reduced from®(xo) = 4.6717 x 1078 to ®(z*) = 2.6096 x obtained are plotted in Fig. 9.
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Fig. 8. Example C: (a) Amplitude responses of filters(dolid line) and H (dashed line). (b) Amplitude responses of filtegs(Bolid line) and kr (dashed line).
(c) Power spectrum densit§.... (¢’ ) in decibels.
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Fig. 9. Example D: (a) Amplitude responses of filters ¢dolid line) and H (dashed line). (b) Amplitude responses of filtegs(Bolid line) and k (dashed line).
(c) Power spectrum densit§.... (¢’ ) in decibels.

VI. CONCLUSION the statistics of the input signal. By parameterizing a first-order
approximation of the PR constraint, we were able to convert the

We have proposed an optimization based approach for the denstrained nonlinear minimization problem of sk2d NV to an
sign of M -channel biorthogonal filter banks that are adapted tterative line-search problem. The solution obtained satisfies the
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PR condition only approximately but an arbitrary precision carf21] J. D. Villasenor, B. Belzer, and J. Liao, “Wavelet filter evaluation
be achieved in practice by reducing the termination tolerance of ~ for image compression,[EEE Trans. Image Processingol. 4, pp.

1053-1060, Aug. 1995.

.the algomhm- We have als‘_) shown for Fhe two-channel case th?ﬁZ] A. Said and W. A. Pearlman, “A new, fast, and efficient image codec
if the analysis and synthesis lowpass filter lengths are different,  based on set partitioning in hierarchical trd&EE Trans. Circuits Syst.
a refinement of the algorithm is possible that leads to a solution __ Video Technol.vol. 6, pp. 243-250, June 1996.

[23] A. Kira¢ and P. P. Vaidyanathan, “Theory and design of optimum

'n a very small nelghborhoqd of a local minimizer, which satis- FIR compaction filters,""EEE Trans. Signal Processingol. 46, pp.
fies the PR constraint precisely. 903-919, Apr. 1998.

design algorithms do not guarantee a global minimizer. For a

Wellesley-Cambridge, 1996.

local minimizer to be satisfactory, it is of critical importance
to start the minimization with a good initial point. This simply

means that one should, as far as possible, start with any kn
good suboptimal design.
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