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Design of Signal-Adapted Biorthogonal Filter Banks
Wu-Sheng Lu, Senior Member, IEEE,and Andreas Antoniou, Fellow, IEEE

Abstract—A method for the design of signal-adapted,
-channel biorthogonal filter banks of finite length is presented.

The design problem is formulated as a constrained optimization
problem and is solved by converting it into an iterative line-search
problem through a first-order parameterization of the perfect
reconstruction constraint. It is also shown for the two-channel case
that if the analysis and synthesis lowpass filters are of different
lengths, a refinement of the algorithm is possible that leads to a
solution in a very small neighborhood of a local minimizer, which
satisfies the perfect reconstruction (PR) constraint precisely.

Index Terms—Biorthogonal filter banks, coding-gain maximiza-
tion, constrained optimization, signal-adapted filter banks.

I. INTRODUCTION

DURING the past several years, there has been a great
deal of interest in the design of optimal orthogonal and

biorthogonal filter banks in terms of some coding gain criterion
[1]–[11]. Biorthogonal filter banks can offer improved perfor-
mance over orthogonal filter banks [12], [13], but the optimal
design of an -channel biorthogonal filter bank requires the
solution of a sophisticated constrained minimization problem
[11].

In this paper, the design of signal-adapted,-channel,
biorthogonal filter banks of finite length is considered as a
constrained optimization problem that attempts to minimize
a coding gain related objective function [7], [11] subject to
the perfect reconstruction condition. The basic approach to
solve this problem is to first parameterize a first-order approx-
imation of the perfect reconstruction (PR) constraint and then
convert the constrained problem into an iterative line-search
problem. In each iteration, the line search is carried out along
a direction within the null space of a matrix characterized by
the approximated PR condition. Closed-form formulas for the
gradient vector and Hessian matrix of the objective function are
derived to facilitate the identification of a good search direction
such as a quasi-Newton or modified Newton direction. It is
also shown for the two-channel case that if the analysis and
synthesis lowpass filters are of different lengths, a refinement
of the algorithm is possible that leads to a solution in a very
small neighborhood of a local minimizer, which satisfies the
PR constraint precisely. Simulation results are presented to
illustrate the proposed design methods.
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Fig. 1. M -channel maximally decimated uniform filter bank.

II. PROBLEM FORMULATION

A. -Channel Filter Banks and Perfect Reconstruction
Condition

We consider the class of -channel maximally decimated
uniform filter banks where filters Hand F for
are finite-duration impulse response (FIR) filters represented by
transfer functions and , respectively. Fig. 1 illus-
trates such a subband system, where the input signal is
assumed to be wide-sense stationary (WSS) [14] with a power
spectral density and variance , and each of the blocks
labeled with a represents a quantizer.

An -channel filter bank is said to have the PR property if
signal is a delayed version of the input signal when
the quantizers are replaced by direct paths. It is known [15] that
an -channel filter bank has the PR property if and only if the
transfer functions and for are
constrained to satisfy the conditions

(1a)

for (1b)

where

(1c)

Parameter in (1a) is an integer that depends on the lengths
of the FIR filters used. In the sequel, the above conditions are
referred to collectively as the PR condition and an-channel
filter bank satisfying these conditions is called abiorthogonal
filter bank. Note that we are assuming a normalized sampling
period s throughout the paper, i.e., the Nyquist frequency
is deemed to be rad/s.

B. Design Based on Coding Gain Criterion

Assume that the quantizer in the th channel takes an ar-
bitrary real number and converts it into a-bit fraction using
some arithmetic rule. We also assume optimal bit allocation with
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fixed bit rate . It has been shown in [11] that the
mean-square reconstruction error is given by

(2)

where is a constant and

(3)
with and being the frequency responses of fil-
ters H and F, respectively.

For a WSS input, the performance of the subband system can
be measured in terms of the coding gain, , which is
defined as the ratio of the mean-square value of the roundoff
quantization error, , to the average variance of the recon-
struction error in the subband system given by

i.e.,

(4)

As shown in [11], the coding gain can be expressed as

where is defined in (3).
In the next section, we develop a method for the design of
-channel biorthogonal filter banks that maximizes the coding

gain by minimizing in (3). The problem at hand is formulated
in terms of the nonlinear constrained optimization problem

minimize (5a)

subject to the constraints in (1) (5b)

III. N EW DESIGN METHOD

A. Objective Function

Assume for the sake of simplicity that all the filters involved
in the subband system have the same length, and denote

for (6a)

for (6b)

and let

and

be the coefficient vectors of the filters. Functionin (3) can be
expressed as

(7a)

where

...
...

(7b)

Note that matrix in (7b) is a symmetric positive definite
Toeplitz matrix whose first column is where

(7c)

Now let

(8)

be the vector comprising all the coefficient vectorsand for
and define

(9a)

(9b)

(9c)

(10a)

(10b)

(10c)

The gradient vector can be computed explicitly as

(11a)

where

... (11b)

with

for

and

... (11c)

with

for

Similary, the Hessian matrix can be computed as

(12a)
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where

...
... (12b)

with
for

for

...
... (12c)

with

and

...
... (12d)

with
for

for

The dimension of parameter vectorin (8) is . Since
these parameters are constrained to satisfy the PR condition and
possibly additional conditions (e.g., to achieve linear phase re-
sponse, etc.), they are not independent of each other but are re-
lated to a reduced set of independent parameters. Accordingly,
the minimization problem in (5) can be reduced in size but the
gradient vector and Hessian matrix ofwith respect to the new
(and independent) parameter vector need to be evaluated. These
computations can be carried out using and in con-
junction with the use of the Jacobian of vectorwith respect to
the new parameter vector as described in Section III-E.

B. Time-Domain PR Condition

The PR condition in (1) can be expressed in the time domain.
Compared to its frequency-domain version, the PR condition in
the time domain does not depend on the frequency parameter
and can be made more explicit in terms of the filter coefficients.
Consequently, it is more suitable in an optimization setting.

Let and be the matrices that comprise the coefficients of
the analysis filters and synthesis filters, respectively, i.e.,

...
... (13)

Without loss of generality, we assume that for
some integer , and partition each of matrices and into

blocks as

(14)

where each and is an matrix. The time-domain
PR condition can then be expressed as [16]

(15)

where is the block Toeplitz matrix with
as its first row and

as its first column,
, and

with

with ..
. (16)

Alternatively, the PR condition can be expressed as

(17)

where and are obtained from and with blocks
and replaced by and , respectively.

For two given matrix sequences
and , we define thematrix convolu-
tion of and as

(18)

where

for (19)

with the understanding that and for or
are zero matrices. The matrix convolution is a natural extension
of the discrete convolution of two scalar sequences, with which
the time-domain PR condition can be simply stated as

(20)

where is the impulse sequence defined by

(21)

with defined in (16).
Note that, for matrix sequences, the convolutions conv

and conv are not the same in general. However, an alter-
native PR condition can be obtained from (17) as

(22)

By replacing the frequency-domain PR condition in (5b) by
the time-domain PR condition given in (20) or (22), the opti-
mization problem at hand can be formulated such that the vari-
ables appear in the constraints explicitly in a bilinear form. This
bilinear representation is suitable for the subsequent first-order
approximation of the PR condition and, for this reason, the time-
domain PR condition will be used in the proposed method.

Given a nonoptimal initial design, which might not even sat-
isfy the PR condition, the proposed design algorithm iteratively
modifies the filter coefficients so as to better satisfy the PR con-
dition and at the same time reduce the objective function. This
design approach is illustrated by the flow chart in Fig. 2.

C. Independent Design Variables

An additional constraint to the optimization problem at hand
comes from the necessity of normalizing the filter coefficients.
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Fig. 2. Flowchart for the design ofM -channel filter banks.

If all the analysis filters are rescaled by multiplying their co-
efficients by a nonzero scalarand at the same time all syn-
thesis filters are rescaled by multiplying their coefficients by

, then the value of the objective function remains the
same. Under these circumstances, if the filter bank has the PR
property and/or linear phase response, then so does the rescaled
filter bank. Since this invariance holds for any, a solution may
be obtained where the coefficients of are very large and
those of are very small, or vice versa, and for such a solu-
tion numerical ill-conditioning could ensue. This problem can
be prevented by imposing a constraint on the filter coefficients.
A linear constraint of this type can be derived by requiring the
sum of the filter gains at to be a constant, e.g., we can
impose the constraint

With this additional constraint incorporated, the problem for-
mulation becomes

minimize (23a)

subject to: (23b)

(23c)

If the length of each of the filters Hand F are assumed to be
for , then the total number of filter coefficients

is . The number of constraints in (23b) is equal to the
number of entries in matrix in (15), which is equal to

. This in conjunction with the constraint
in (23c) gives the number of independent design parameters in
(22) as , which grows very rapidly with the number

of channels . It is interesting to note that is independentof
the length of the filters involved.

A technical difficulty in dealing with the constraint in (23b) is
that the matrix convolution conv is bilinear with respect
to the filter coefficients in and . Early methods handle this
problem by fixing one of the filter banks so that (23b) becomes a
set of linear constraints. However, by doing so, half of the filter
coefficients cannot participate in the design and, consequently,
the linearized constraints in (23b) become overdetermined [16].
In Section III-D, we shall develop a new linearization approach
for (23b) by characterizing all acceptable changes in the filter
coefficients surrounding a nominal -channel filter bank such
that the perturbed filter bank satisfies a first-order approxima-
tion of the PR condition.

An additional constraint, which is desirable in applications
such as image compression, is that all filters Hand F for

have linear phase response. If both the number of
channels and the filter length are even, then a linear-phase
analysis filter bank contains filters with symmetrical im-
pulse responses and another filters with antisymmetrical
impulse responses [17]. In such a case, the lower half of the
equations in (15) are redundant and the time-domain PR condi-
tion reduces to

...
...

... ...
... (24)

where , each of the first rows of
and defined in (14) is symmetric, and each of the last

rows of and is antisymmetric.
In (24), there are equa-

tions while the number of independent filter coefficients is .
Thus there are independent parameters that can be
used in the design. Again, the degrees of freedom for the design
of -channel linear-phase biorthogonal filter banks grows with
the number of channels quickly but, as in the general case, it is
independent of the filter length . The optimization problem for
the design of signal-adapted linear-phase-channel biorthog-
onal filter banks can now be stated as

minimize (25a)

subject to: Eqn. (24) (25b)

(25c)

D. Parameterization of Design Variables

In this subsection we focus our attention on the general
problem in (23). The objective function in (23a) depends on
vector defined in (8). In the th iteration of the optimization,
point is updated as

(26)
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where such
that

1) if does not satisfy the constraint in (23b), then
is a better approximate solution of the equations in (23b)
than , and

2) is significantly smaller relative to .
Requirement 1) implies that the design will allow an initial

point which corresponds to a filter bank that does not have the
PR property, and if the algorithm converges, then the PR prop-
erty will be satisfied at the limit point to within a prescribed
tolerance. Requirement 2) assures that convergence will even-
tually be achieved.

Let and be the matrix sequences
associated with and , respectively. It follows

from (26) that these two sequences are related by

(27a)

(27b)

where and are two perturbation sequences that arelin-
earlydependent on . The matrix convolution defined by (18)
and (19) satisfies the equations

(28a)

and

(28b)

where and are constants. Hence at theth iteration, con-
straint (23b) becomes

(29)

which leads to

(30)

where

(31)

There are two ways to deal with the quadratic term
conv in (31). Suppose the design algorithm con-
verges, then in (26) approaches zero as . Since both

and are linearly related to , we have and
as . Hence in (31) is a small

quantity in terms of higher powers of the perturbation and can
be neglected to linearize (30) with where

(32)

In addition, the constraint in (23c) at remains linear,
i.e.,

Since (23c) is satisfied at , we have

i.e.,

(33)

where is the vector of dimension
with the first half of its components equal unity and the

remaining half equal to zero. The linearized equation (30) with
is now combined with (33) to form the complete set of

linear constraints as

(34)

where and .
For any , the linear system in (34) is underdetermined;
consequently, all of its solutions can be parameterized as a linear
function of an -dimensional free parameter vector.
This parameterization can conveniently be achieved by using
the singular-value decomposition (SVD) of matrix[18], i.e.,

(35)

where and are orthogonal matrices of sizes
and , respectively, and with

, i.e., is a positive definite
matrix. All the solutions of (34) can be characterized as

(36)

where with being the Moore–Penrose pseudo-
inverse of , consists of the last columns of

, and is an -dimensional free parameter
vector.

An alternative way to handle the nonlinearity in (31) is to
use the increment matrix sequences and obtained
from the preceding iteration to evaluate the bilinear term
conv . Denoting and as and ,
respectively, (30) can be linearized with where

(37)

Accordingly, (34) is replaced by

(38)

where is determined by in (37) and
all the solutions of (38) are characterized by

(39)

where .

E. Design Algorithm

The design of a signal-adapted -channel biorthogonal
filter bank is achieved by solving the constrained minimization
problem in (23) in an iterative manner as described below.

1) Given the number of channels and filter length with
for some integer , the algorithm starts with an
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initial set of FIR filters H F that
form an -channel filter bank. Since (23) is a constrained
nonlinear programming problem, a good initial point is
preferred as it can affect the performance and efficiency
of the algorithm in a positive way. A reasonable initial
point that does not need to be optimum or to satisfy the
PR condition can be obtained in a number of ways, for
example, by using the method in [15]. Before going to the
next step, we perform coefficient normalization to ensure
that the constraint in (23c) holds for

.
2) At the th iteration, a point , which is associated with

transfer functions ,
is available. Point is updated as

(40)

where is given by either (36) or (39) depending on
whether in (30) is set to or . In what
follows, is assumed so that is parameter-
ized in terms of (36). The algorithm described below also
holds for the case .

Since with given by (36) gives a first-order
parameterization of the constraints in (23b) and (23c), at
the th iteration the problem in (23) is reduced to the
unconstrainedminimization problem

(41)

where is the variable vector of dimension .
There are a number of robust and efficient algorithms
available for unconstrained optimization [19]. These in-
clude the class of quasi-Newton methods, which require
only the gradient vector , and the modified Newton
method, which needs, in addition, the evaluation of the
Hessian matrix . The gradient vector and Hessian
matrix of with respect to variable can be computed in
closed form as

and

where denotes the Jacobian of with re-
spect to , which is given by according to (36),
is given by (11), and is given by (12). Thus, we
have

(42)

(43)

If is a descent direction of at
, then with reduces the value of ob-

jective function . In a steepest-descent method (SDM),
vector is taken to be

(44a)

where

(44b)

while in the Broyden–Fletcher–Goldfarb–Shanno
(BFGS) method

(45a)

where is given by (44b) and is the positive-definite
approximation of the inverse Hessian matrix. is gen-
erated through the recursive relation

(45b)

where , , and .
Once the search direction is calculated, the optimum

positive scalar is determined by minimizing the func-
tion with respect to . This one-di-
mensional (1-D) minimization, often called a line search,
can be performed efficiently if the gradient of the func-
tion is available [19]. In our case, however, the line search
must be carried out in the vicinity of point so that the
vector increment in (40) has a small magnitude and
hence in (32) remains a good first-order approxima-
tion of in (31).

Suppose that the algorithm starts with an initial point at
which the PR condition is at least approximately satisfied.
Then in (36) is small in magnitude. Further, notice that

and hence . This suggests
that point should be updated as

(46)

with

(47)

where is given by (44) or (45) and is of length equal to
unity, and solves the 1-D minimization problem

(48a)

subject to (48b)

The upper bound in (48b) is selected to keep the
norm of small. With a normalized and a
reasonably small , an between 0.1 and 1.0 usually
leads to satisfactory design results.

3) The two-norm of is then used to check the progress
made in the th iteration in reducing as well as in
satisfying the PR condition. If is less than a pre-
scribed tolerance, is taken to be the solution
of the minimization problem and the algorithm is termi-
nated. Otherwise, is incremented to and the pro-
cedure is repeated from Step 2).

In effect, we have reduced the constrained optimization
problem in (23), which contains design variables, to an
iterative line-search problem on a small interval, as formulated
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Fig. 3. Detailed flowchart for the design ofM -channel filter banks.

in (48). At a solution point of the problem in (48), the PR
condition is approximately satisfied. This can be seen from
(30) with , i.e.,

(49)

If the algorithm converges as , then and
approach the zero sequence; therefore, at thetheoreticallimit
point , (49) becomes

As described in Step 3), however, our algorithm terminates
as long as . This implies that a numerical solution

obtained from the algorithm can only satisfy the PR
condition approximately, i.e.,

(50)

However, since the degree to which the PR condition is sat-
isfied depends on the termination tolerance, obviously, anar-
bitrary precision can be achievedby reducing the termination
tolerance. The algorithm is illustrated by the flowchart of Fig. 3.

IV. TWO-CHANNEL CASE

The two-channel case is of particular interest and will be fur-
ther explored in this section for the following reasons. First,
two-channel filter banks have been used extensively as building
blocks in multirate digital signal processing systems with tree
structures. Second, in the biorthogonal case, the lengths of the
filters in the analysis filter bank can be different from those in
the synthesis filter bank, as is often the case in subband image

Fig. 4. Two-channel maximally decimated uniform filter bank.

processing applications [20]–[22]. As will be shown here, the
difference in filter lengths can be utilized to develop a two-stage
design strategy for signal-adapted biorthogonal filter banks that
satisfy the PR conditionprecisely.

A. Two-Channel Biorthogonal Linear-Phase Filter Bank

Throughout this section we consider the two-channel filter
bank shown in Fig. 4 where H, F , H , and F are linear-phase
filters with transfer functions

with (51a)

with

(51b)

where are even and . The above choice of
and cancels the aliasing error and leads to the PR

condition

(52)

From (52), it follows that the orders of filters Hand F ,
and , respectively, must be chosen such that be
an odd integer. Under these circumstances, (52) becomes

(53)

where and are zero-phase FIR filters whose transfer func-
tions are defined in (51).

The objective function in (7) can now be written as

(54)

where , ,
, and
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Fig. 5. Flowchart for the design of two-channel filter banks.

It can be verified that matrices and in (54) are related
to sequence defined by (7c) as

(55)

where is the identity matrix of dimension ,

..
. (56)

and is the symmetric Toeplitz matrix with
as its first row, and

(57)

where is the symmetric Toeplitz matrix with
as its first row.

The design problem at hand is to find transfer functions
and that minimize in (54) subject to the

PR condition in (53). In what follows, we develop a two-stage
approach to obtain the design. The first stage is similar to
that of Section III-D to generate a two-channel filter bank that
satisfies a first-order approximation of the PR condition. The
second stage takes advantage of the fact that which
allows, for a fixed , a parameterization of the perturbations of

. This parameterization is then utilized in H and F to
satisfy the PR condition in (52) exactly. If the length difference
satisfies the inequality , then further reduction
of the objective function can also be achieved. The design
method is illustrated by the flow chart in Fig. 5.

B. Design Stage 1

In the th iteration, we update the coefficient vector
as

(58)

such that is less than and satisfies the PR
condition in (53). In the first stage of the design, the increment
vector in (58) is parameterized so as to satisfy a first-order

approximation of the PR condition, and the parameterized ex-
pression of is then utilized to minimize the objective func-
tion defined in (54). This is done in a way similar to that
of Section III-D. It can be shown that vector in (58) sat-
isfies a first-order approximation of the PR condition in (53) if
the increment vector satisfies the linear equation

(59)

where , and matrices
,

are obtained as follows:

1) Generate Toeplitz matrix with
as its first

column and as its first
row.

2) Take the last rows of to form matrix
.

3) Compute

4) Form matrix by deleting the even numbered rows of
.

5) Similarly, form matrix with
replaced by

and
replaced by

.
As for the general -channel case discussed in Section III,

it is necessary to add an additional constraint to normalize the
filter coefficients. If the sum of the coefficients of and

is required to be a constant, say, 1, the relation
and the linear phase-response constraint lead to

(60)

which further leads to a constraint on as

(61)

with
. Combining (59) and (61), the linear

constraints on can be expressed as

(62)

where

- - - - - - - -

The total number of constraints in (62) is ;
hence the number of degrees of freedom contained in the

-dimensional vector is

(63)
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Fig. 6. Example A: (a) Amplitude responses of filters H(solid line), H (dashed line), H (dash-dotted line), and H(dotted line). (b) Amplitude responses of
filters F (solid line), F (dashed line), F(dash-dotted line), and F(dotted line). (c) Power spectral densityS (e ) in decibels.

If the SVD of is given by and is formed
using the last columns of , then all the solutions of (62) can
be characterized by

(64)

where and is a free parameter vector.
Now from (64) and (58), we have

(65a)

with

(65b)

where is a descent direction of and is
a positive scalar that solves the line-search problem

(66a)

subject to (66b)

Typical choices of descent direction include the steepest-
descent direction

(67a)

where

(67b)

and the quasi-Newton direction

(68)

where is updated by using the BFGS formula given by (45b).
Having determined , the 2-norm of in (64) is

examined. If is less than a prescribed tolerance,
is taken to be the solution of the first stage of the design.
Otherwise, with , and are updated using (62),

and are recalculated using (64), and the 1-D minimization
problem in (66) is solved to obtain a new .

C. Design Stage 2

The solution obtained from design stage 1 satisfies the PR
condition in (53) onlyapproximately. As in the design method
addressed in Section III, a solution with improved approxi-
mation accuracy for the PR condition can be achieved by using a
reduced toleranceat the cost of more iterations. As described
below, an alternative approach for the solution of problem is
possible by virtue of the fact that the lengths of filters and

are different.
In a neighborhood of , there are many

points that satisfy the PR condition precisely. As a matter of
fact, if we perturb by but keep unaltered, then the
first-order approximation of the PR condition in (59) becomes
exact since the PR condition in (53) at point

(69)

contains no second or higher order terms. Therefore, in this case,
(59) represents the PR condition exactly and can be written as

(70)
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Fig. 7. Example B: (a) Amplitude responses of filters H(solid line), H (dashed line), H (dash-dotted line), and H(dotted line). (b) Amplitude responses of
filters F (solid line), F (dashed line), F(dash-dotted line), and F(dotted line). (c) Power spectral densityS (e ) in decibels.

TABLE I
CODING GAIN COMPARISONS FOREXAMPLES A AND B

where and are the matrices and evaluated using
and , respectively. Accordingly, the constraint in (61) be-

comes

(71)

where

By combining (70) with (71), we find that is required to
satisfy

(72)

where

The linear system in (72) contains equa-
tions and unknown components, which leads to the
number of degrees of freedom

(73)

Recall that the filter lengths and are assumed to be
even with and odd. This implies that

is related to in terms of the equation

for some integer (74)

Hence

(75)

If , i.e., , then (72) is a square and
nonsingular system with the unique solution

(76)
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Since well approximates the PR condition, given by (76)
is a vector with small magnitude, and the outcome of the second
stage of the design is given by

(77)

If , then all the solutions of (72) are characterized by

(78)

where , is the matrix formed by using the last
columns of matrix from the SVD of , and is
an -dimensional parameter vector. The free parameter vector
can be used to further reduce the objective function in (54).
Since is now fixed, minimizing is equivalent to
solving the optimization problem

(79)

For applications in image compression, typical values ofare
in the range ; hence (79) is an unconstrained opti-
mization problem that involves only one or two variables. If we
denote a local minimizer of (79) as , then the solution of the
design problem is given by

(80)

V. DESIGN EXAMPLES

We now present four examples to illustrate the design
methods described in Sections III and IV. In the first two
examples, we designed four-channel biorthogonal filter banks
with filter length . The input signal was an autoregressive
process AR(2) with poles at where the values of
are specified below. We applied the algorithm proposed in Sec-
tion III with an initial point that corresponds to an orthonormal
four-channel filter bank designed using the method proposed
in [10] and [23].

Example A: With and in the AR(2)
process, it took the algorithm 39 iterations to converge to the
solution . The frequency responses of the various filters
and power spectral density are shown in Fig. 6. The objective
function was reduced from the original value of

to which corresponds
to an improvement in the coding gain from 5.8555 to 6.6411.
The PR constraint was satisfied to within the Frobenius norm
(F-norm) value

(81)

Example B: With , , and an initial
point that corresponds to an orthonormal filter bank, it took the
algorithm 37 iterations to converge to the solution . The
results obtained are plotted in Fig. 7. The objective function was
reduced from to

TABLE II
FILTER COEFFICIENTS FOREXAMPLES C AND D

. In this case, the coding gain was increased from 4.2512
to 4.9174. The -norm in (81) was .

The coding gains of the biorthogonal filter banks designed
are compared with those of the discrete-cosine transform
(DCT) based, Karhunen–Loéve transform (KLT) based,
brick-wall-filter based, and the orthonormal four-channel filter
banks in Table I. From the table it is observed that the optimal
biorthogonal filter banks designed offer improved coding gains
over several orthogonal transform coders as well as the optimal
orthonormal subband coder.

Example C: Next we applied the method proposed in Sec-
tion IV to design a two-channel biorthogonal filter bank with

and . The initial point used corresponds to the
well-known 9/7 filters (see [24, p. 216]) with

Again we used an AR(2) process with as the input
signal. With it took the algorithm 25 iterations to
converge to a solution which reduced the objective function
from to ; this corresponds
to a coding gain increase from 0.9703 to 3.2753. The point
satisfies the PR condition approximately with

(82)

The second stage of the design resulted in the solution in
columns 1 and 2 of Table II, for which the 2-norm in (82) is fur-
ther reduced to . The coding gain associated with

was approximately the same as that for, i.e., 3.2753. The
amplitude responses of the filters and the power spectral density
corresponding to are shown in Fig. 8.

Example D: Next we considered an AR(2) process with
as the input signal. With the same initial point and,

the two-stage design resulted in the solution shown in columns
3 and 4 of Table II, which reduced the objective function from

to ; this corresponds to a
coding gain improvement from 2.1554 to 4.3267. The results
obtained are plotted in Fig. 9.
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Fig. 8. Example C: (a) Amplitude responses of filters H(solid line) and H (dashed line). (b) Amplitude responses of filters F(solid line) and F (dashed line).
(c) Power spectrum densityS (e ) in decibels.

Fig. 9. Example D: (a) Amplitude responses of filters H(solid line) and H (dashed line). (b) Amplitude responses of filters F(solid line) and F (dashed line).
(c) Power spectrum densityS (e ) in decibels.

VI. CONCLUSION

We have proposed an optimization based approach for the de-
sign of -channel biorthogonal filter banks that are adapted to

the statistics of the input signal. By parameterizing a first-order
approximation of the PR constraint, we were able to convert the
constrained nonlinear minimization problem of size to an
iterative line-search problem. The solution obtained satisfies the
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PR condition only approximately but an arbitrary precision can
be achieved in practice by reducing the termination tolerance of
the algorithm. We have also shown for the two-channel case that
if the analysis and synthesis lowpass filter lengths are different,
a refinement of the algorithm is possible that leads to a solution
in a very small neighborhood of a local minimizer, which satis-
fies the PR constraint precisely.

Like many nonlinear optimization algorithms, the proposed
design algorithms do not guarantee a global minimizer. For a
local minimizer to be satisfactory, it is of critical importance
to start the minimization with a good initial point. This simply
means that one should, as far as possible, start with any known
good suboptimal design.
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