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2) The determined calibration plane can in turn be used to detect
errors associated with the range images of a 3-D LIDAR.

3) Both a polynomial model and a polynomial-ARV model have
been proposed in this new method to compensate for the range
image errors.

The experimental results indicate that the compensation based on
the polynomial model can reduce the range image errors from 163
counts to 18 counts. The polynomial-ARV model can further reduce
the range image error by more than seven counts by considering the
dynamic characteristics imbedded in the range image errors.
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Regressor Formulation of Robot Dynamics: Computation
and Applications

W.-S. Lu and Q.-H. Meng

Abstract—Two approaches to the evaluation of the manipulator regres-
sor of a general n-degree-of-freedom (DOF) robot are presented. The first
method is an “energy-based” approach using Lagrangian formulation
of robot dynamics as a starting point. A key fact used in deriving the
solution is that the manipulator Lagrangian is linkwise additive. The
second approach generates an iterative algorithm for efficient numerical
evaluation of the regressor. It is obtained by reformulating the New-
ton-Euler recursion using vector analysis type techniques. In addition, a
modified Slotine-Li algorithm for adaptive motion control is presented
and is then applied in a simulation study to a 4-DOF PUMA-type robot,
where the manipulator regressor is evaluated using the iterative algorithm

proposed.

I. INTRODUCTION

The manipulator regressor, often denoted by Y (g, ¢, ¢).is a key
quantity in derivation as well as implementation of the many estab-
lished adaptive motion and force control algorithms [1], [2]. This is
because its availability enables one to express the dynamics of a robot
armas Y6 = 7 with § € R" representing the manipulator parameters,
thus a Lyapunov approach may lead to a linear law for updating the
parameters. Studies on this linear parameter-dependence issue from
an identification point of view can be found in [3]-[5] among others.

In principle, the regressor can be obtained by using a two-step
approach. The first step is to formulate the manipulator dynamics as

H(g)¢+C(g,9)d +G(g) = 7. 1)

This can be accomplished, for example, by using the Newton—Euler
or Lagrange formulation, see [6, ch. 6] for the details of these
formulations and their computation complexity. Having done this,
the second step of the approach defines a parameter vector 6 and
then works on every entry on the left-hand side of (1) to extract
vector 6, leading (1) to the regressor formulation Y§ = 7. So we
see computationally that this is an indirect approach that requires
formulating (1) plus a parameter extraction procedure. As the entries
of 4 are, in general, spread over all the entries of H(q),C(q,§), and
G(gq), the second step is also computationally complicated.

In this paper, we propose two methods that compute the regres-
sor of a general n-degree-of-freedom (DOF) robot without using
(1). Our first method provides a closed-form solution, which is
obtained by extracting parameter ¢ from link Lagrangians during
the Lagrangian formulation; our second method gives a recursive-
type solution, which is obtained by extracting parameter § from joint
velocities, accelerations, forces, and torques during the Newton—Euler
formulation. As opposed to the conventional two-step approach, in
which one derives (1) with the entries of 6 spread widely over the
terms and then extracts these parameters term by term, the proposed
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methods perform the parameter extraction and dynamics formulation
simultaneously and, therefore, more efficiently. Furthermore, unlike
the two-step approach, which defines parameter vector 6 by trial-and-
error until § can be extracted from every term on the left-hand side
of (1) (see the example in Section III-C for details), the formation of
6 in the proposed methods has an explicit rule to follow. It is found
that, if for a specified link the mass, mass center, and inertia tensor
are the parameters to be extracted, then this portion of vector 8 has
dimension 16 although the number of physical parameters related to
the link is 10. In addition, the so-called filtered regressor adopted
in several adaptive motion control algorithms [7], [8] can readily be
obtained from the proposed formula.

The paper is organized as follows. Preliminaries on the manipu-
latorregressor and its relation to link Lagrangians are discussed in
Section II. In Section III, we present a closed-form solution to the
regressor evaluation problem. Special cases for robots having point-
mass links (or load) and links with regular geometry are addressed.
In Section IV, we propose an iterative algorithm for evaluating the
manipulator regressor. The proposed methods are applied to obtain
the regressor of a 2-DOF robot grasping a non-point-mass object.
In Section V, a modified version of the Slotine-Li algorithm for
adaptive motion control [5] is described, and its stability is shown
via a Lyapunov approach. The proposed algorithm is then applied in
a simulation study to a simplified 4-DOF PUMA-type robot, where
the major steps of the control algorithm are expressed in terms of the
regressor, which is evaluated using the proposed recursive algorithm.

II. PRELIMINARIES

A. Y., (q,q, §)—Regressor Associated with Unknown Parameters
It is known [1], [5] that (1) can be written in the form of

Y(g.4.9)0 =, )

where Y (g, ¢,d) € R"*" is the manipulator regressor and § € R}
is the vector formed by the dynamic parameters of the manipulator
in a certain manner. Denoting

— ek
- [2

with 8 € R™ and 8, € R" representing the known and unknown
parameters, respectively, and

Y =[Yi Vi) @)
with Yy € R**" and Y, € R"*"2, (1) and (2) imply that
Hi+ Ci+ G =Yibi + Y, 0,. 5)
If 6, is an estimate of 6,, then
Hi+Cj+ G =Yibi + Yabo, ©

where f?,C‘, and G assume the same forms as H,C, and g,
respectively, with 6, replaced by 6. It follows that

Hi+Ci+G=Y.b., M

where (¥) = (%) — (). It is (7) that plays a role in the establishment
of the many stable algorithms for adaptive control of robots.

B. Relation of Y (q,4, ) to the Lagrangians
of Manipulator Links and Load

Consider an 7-DOF manipulator grasping firmly a non-point-mass
load. Denote by k) and «((1 < i < n) the kinetic and potential
energy of link i, and by k(**V) and u("*1) the kinetic and potential

energy of the load, respectively. If the load is treated as link n + 1
and the link Lagrangian of link ¢ is defined as

L£O=k® _ 4O  1<i<n+1, ®

then the manipulator Lagrangian is

£=>Y " (¢)]

=1

If follows that the manipulator Lagrangian is linkwise additive; that
is, if a new link is added to the robot, its manipulator Lagrangian is
then equal to the original £ plus the Lagrangian of the new link. This
property turns out to be a key fact in the subsequent derivation of the
regressor as it allows one to separate the parameters of a specific link
from the parameters of other links. From (2), (9), and the Lagrange’s
equation of motion

d (focC oL
a(a_q> -t (10)
we obtain
n+1 B
d (LD oL
=)= = i,4)0. 11
;[dt( 3 ) 3 ] Y(q,4,4) an
Now if 8 is partitioned as
o)
9(2)
0= . (12)
0(n’+1)

with 8 representing the dynamic parameters of link i, that is, its
mass, mass center, and inertia tensor, and if ¥ is partitioned into
n + 1 blocks

y=[y® y® Yy (13)
with dimensions consistent to (12), then
d (oYY oLy i
Y -2 L v O 1O) 1<i< . 1
dt( 8q’) B Y s <i<n+l (14)

In the next section, (14) will be used to obtain a formula of Y,

Once Y is computed, Y and Y, in (4) can readily be foundas
follows. Vector # in (12) can be regrouped as in (3), where 8., is
formed by collecting the entries, each of which involves at least one
of the unknown parameters, and 8y, is simply the complement of 6.,
in #. Obviously, this regrouping can be done by premultiplying § by
an elementary transformation matrix 7', that is,

T = [zk] ) 5)
¥ I (ry4ro)x1

From

Yo=YTTTo =YTT [zk] 16)
it follows that

Y; = first 7, columns of YTT an
and

Y, = last r» columns of YT, (18)
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Fig. 1.

Frame setup for link ¢.

C. Two Identities from Vector Analysis
The identities

(axb)Te=(bx o)Ta=(cx a)Tb

19)
and

(axb)xc=(cTa)b— (bTc)a (20)

with a,b,¢ € R®*? are well known in vector analysis. In Appendix
I, we consider several expressions that will be used in the subsequent
sections and show how identities (19) and (20) can be applied to
extract the unknown parameters from the expressions.

II. FormuLa ofF Y)(q, 4, ¢)

As is shown in Fig. 1, denote by {i} the frame attached to link
¢ according to the Denavit-Hartenberg convention, and by {c:} the
frame attached to the mass center of the link, which differs from {i}
only by a translation. Denote by m, ‘p.; = [p. p, p:]”, and °I;
the mass, mass center, and inertia tensor of the link, respectively,
where ‘p., is expressed in {i}, and °I; is expressed with respect
to {c;} and is explicitly given by (105). Further denote by ?R the
rotation matrix describing frame {i} in the world frame {0} and
by J® € R®*" the link Jacobian expressed in frame {0}, which
will often be partitioned into JS € R3x"fthe Jacobian associated
with the translational velocity of {i} and J5) € R**"_the Jacobian
associated with the rotational velocity of {i}, that is,

. (i)
JO = [j:(:)]
For the sake of simplicity in what follows the superindex i in the
Jacobian will be omitted. In the sequel, J,, and J., will sometimes
be used in the form

Jv - [Jul Jv2 JU"]!
Jo =t Jur Tonl,

where J,,; and J,; are the jth columns of .J,, and J., respectively.

@n

A. Formula

By (8), the left-hand side of (14) is equal to
4(20) k0 o
dt\ 94 bq dq "’

(22)

where the kinetic energy of link ¢ is given by

KO = Zmlllue, |+ 3l 23)
with
®ve; = Jug + Jug x {Rp, 24)
and
‘wi = yRJ.4, 25)
and the potential energy of the link is given by
u = —m °pl, % (26)

with °g the gravity vector and ° Pe; the position vector from the origin
of frame {0} to the link’s mass center, as is shown in Fig. 1.
From (23)—(25) it follows that
(i) o T
ak—.— = ma Ues Oy, + JTORE (o RJLq.

94 ] '
With ovci given by (24), (126) can be used to express the first term
in (27) as W1(q, §)8s with Wi (q, §) defined by (127) and 65 defined
by (125). Furthermore, let

27

d= 4RIG=[d dy ds)T. (28)
Formula (107) gives
JIURL, 3RIZG = I (RB(d)8s = Wa(g,d)8s,  (29)

where 83 is defined by (106) and B(d) is given by (108). Equation
(27) can now be written as

ok® . e
25 =M@ Wa(e,dl® 30)
with
M _ |
8\ = [ 03]. 31)
By (23)25) the second term in (22) becomes
) 0,T T JT 0 v
_ Ok - 0 v, O, — 9(¢" J, ;R) I i RJug. (32)

dq m dq ¢ 0q
By repeatedly using (19) and (20), it is found that

8°%T 0 . . . .
—m—aq—' ve, = [Y11(¢,4) Yi2(q,4) Yis(g,d) Yia(g,4)ds
= Yi(g,9)bs, (33)
where
Yii(g,§) = D] Joq (34)
Yi2(q,4) = ~[Do x Jug+ Jug x DJJTR-S  (35)
. aJr . aJ%t 17,
Yis(g,¢) = - [WJM] o m uqJ q (36)
aJ, aJ. aJ. aJ.
D, = |4 =24, D, =|=—%j... =< 37
[aql T B4 q} [3411 T B "] ©n
O4R , . 8LR . R }
S= Jog X Juq) o ——(Jug x Jo 38
[aql( d q) aqn( g q) (38)
and Yi4(q, ) is determined by
iPZ‘i E, ip':i
. = Y14(q,4)0s, 39)

‘pLEn pe,
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where 8, is defined by (112), and

; L70JT o 9LR
Ej = (RJ.4i" == IR~

e dg; d4;
With d defined by (28) and (107), the second term in (32) can be
written as

(Wwdl*Is = Judd" J2)? R. (40)

8GTITIR) ., ; . .
——(QT—_) I, 4RJ.¢ = Y2(q,4)03 (41)
q
where
. 8GRJ.). OGRJ) .
Ya(a,d) = —[ GRL),... % )q]B(d). @
Bm BQn
To compute the last term in (22), note that
T
0. = d(o )= ‘901’2
T dt Pes dq e
which, in conjunction with (24) and (99), leads to
70°pe, .
—mi" 50 = TV, @3
where 6, is defined by (101) and
Ys(q) = [Yar(g) Ys2(q)] 44
Yarlg) = —J5 °9 @s)
Ya(q) = (Ju x “9)" IR. (46)
Using (14), (22), (30), (32), (33), (41), and (43), we obtain
YO = [Wi(q,d) + Vi(a.9) Walg,d) +Ya(g:9)] (4D
where
Yi(g,4) =[Yi1 +Ys1 Yio+Yse Yiz Yud]. (48)
Remarks

1) From (47) and (31) it is observed that, although there are only
ten physical parameters involved in a link or load, in general,
the dimension of §*) is 16. This parameter redundancy, pre-
sented in vector 85 which is defined by(125), appears to be
necessary to reform the dynamics so that a linear appearance
of vectord'® in the dynamics is achieved. Conversely, if
the link(load) has a regular geometry, the dimension of )
will very likely be reduced, leading to a simplified solution.
Additional discussion on this issue will be given in the next
subsection.

Another feature of (47) is that the formula as it stands is suitable
to serve as a starting point to derive a closed-form solution for
the so-called filtered regressor that has been used in several
globally stable adaptive control algorithms [7], [8].This is due
to the fact that in (47), Y depends implicitly on ¢ through
the time derivative of W, and Woa.

2)

B. Special Cases

1) Point-Mass Link (or Load): If the link (or load) can be treated
as a point mass, then () = @5, which is defined by (125).
Consequently, Y® is given by

[EEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 9, NO. 3, JUNE 1993

2) When Axes of c; are the Principal Axes of the Link: If link 4
has a regular geometry, such that the axes of c; coincide with the
principal axes of the link, that is,

CI{ = diag{szvIvnyzz} (50)

and if the mass center of the link lies on the z or z axis of frame c;,
then 69 is reduced to a six-dimensional vector of the form shown
in (51), at the bottom of the page, and expressions for matrices
Wy, W2, Y1, and Y; can be simplified considerably.

For ‘p; = [p- 00]”, matrix Wi(g,¢) € R™*® becomes

Wilgsd) = [T Tud (o X Jug + Jud x Ju)T Im1

JTJ.g - b) (52)

where %, denotes the first column of {R, and b is defined by
b= [by---ba]" with

b= 2T J,d" 0%, 1<j<n (53)

Matrix W3 (q,q) defined by (29) becomes a 3 X 3 matrix with
B(d) € R**? given by

B(d) = diag(5 RJ..4) (54)

that is, the 3 x 3 diagonal matrix with y RJ.,¢ as entries along its
main diagonal. Matrix Y; becomes

Vi=[Yii+Ys wer+ysn Yis+ Y141 (55)
where .
aJ 8J aJ. aJ. NF
= 4|y 2y XJW'+JU'_“‘..._”‘]}
Y121 { {aql q 34n Q} q q [ a0 q 94n q
0. T 0,T T
Dy - [ai‘-uvq' X Jud) -+ ST (i de)] (56)
Oq Oqn
oz = —(Ju x °9)T It 7
Y141 = [811 v '61n]T (58)
_oT ~-T3J$Q _3?7‘1T
ei; = it Jwdd 3a,; U g
(Mwdll?Ts = Jugd"™JE)ir,  1<i<n (59)

and Y2 € R™*3 is given by (42) with B(d) given by (54).

For ‘pe, = [00p.]", a simplified formula can also be established
that is almost identical to (52)—~(59) except that 9%, there should be
replaced by {r3—the third column of °R.

C. Example

Consider the 2-DOF planar arm shown in Fig. 2, where the length
of link i is denoted by I;. It is assumed that the links are of point-
mass type, with each mass center at the origin of its link frame.
The robot handles a rectangular bar with uniform material density.
The parameters of the load include mass m3, mass center 3 Pes, and

inertia tensor °I.,, where
%pe; =[pe 0 0] and I = diag(Lex, Lyy, I:2)-

For comparison, the manipulator regressor will be evaluated using
the conventional approach described in Section I and the approach

YO = Wi(g,4) + Yi(g,d)- (49) proposed in Section IIL.
o) — [m mp: mp: Lo Iy LT, if the mass center on x axis 61
fm mp. mp? Lz Iy L%, if the mass center on z axis
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X2

(0}

(1}

= X0

Fig. 2. Two-DOF planar robot handling a nonpoint-massload.

Conventional Approach: ~ As mentioned earlier, there are two
steps that need to be carried out in this indirect approach.

Step 1—Establishing the Robot Dynamics: Following [14], we com-
pute

3
H(g) = S Imi(FO) I + (IO LIL),
i=1
where J$? and J& form the link Jacobian for link ¢ that relates the
joint velocity to the velocity of the frame {ci} which is obtained
by translating{:} to the mass center of link i. In our case, {a1} =
{1}, {c:} = {2}, and °I, = °I; = 0,50 J{" = JWJD = g,
where

00 —l18 0
Jl()l) =10 0 and J'(f) = L 0f. (60)
00 0 0

Since the linear velocity of {cs} is

Vez = [—Ilslél —(l2 +pz)812(é1 + 02)
'11010'1
+(l2 + p2)era (b1 +62)],
we obtain

F® = [—1181 — (I2 4+ p=z)s12

lici + (I2 + p2)erz
Furthermore, notice that

I = [

—(I2 + pz)s12
(I2 +p)erz |

==
- o o
[e—
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hence the equation at the bottom of the page results. Denoting
H(q) = (Hi;), it follows from [14] that the term Cqgin (1) is

C(q’q)q =

i(ayl,- ~ laH,‘l)q., i(aHU ~ 1aH,-2)q_
—\ 0 20a )" H\b: 20n !
2 n

asz_laHjl)._ (asz__l_asz),'
le( o 2 0g2 )% ; o 2 0m )Y

_[-h + po)samsg2 (241 + d2)
L (I2 4+ pz)samadi ’

Finally, we compute the total potential energy of the system as

U = maglisy + magflisy + (L2 + pe)s12]

hence
ou
G= 3—?} _ [(mz + ma)liger + mag(lz +P:)012]
v mag(l2 + pz)ci2
dq2

Step 2—Parameter Extraction: As mentioned in Section I, this
step begins with defining a parameter vector 6. Suppose that the
parameters of interest are link mass mz (note that the link mass m1
plays no role in the dynamics), and the parameters associated with
the load, that is, m3, pz, and I... From what we have done in Step 1,
it is observed that every entry of H,C, and G involves some of these
parameters. In addition, in a number of entries, parameters present
themselves in a nonlinear manner such as map.. It takes a while to
figure out that

6 =[me msz map: maps  L.]"

defines a parameter vector with minimum dimension such that for
every entry of H,C, and G, the parameters of interest can all be
extracted. Note that one does not need to include p, as a single
component in 6, as parameter p. in all the terms involved always
presents itself together with m3. Obviously, such a parameter vector
cannot be defined adequately before a careful inspection of all entries
is completed. For a robot with more non-point-mass joints, this step
will become quite involved and time-consuming.

With 8 as defined earlier, we can now extract it from the entries
of H,C, and G as

Hiu=[ B+2be+15 2he+l) 1 1)§=huf
Hiy=[0 Z4hlgey hica+2ly 1 1]6 = hi28
Hyp=[0 13 22 1 1]0=hyt
[0 —lil2s2d2(241 +¢2) —l15242(241 +42) O O
C(g,9)i= [0 11128243 118262 00
9=Y.0
licig (hei+laciz)g cizg 0 0], _
G= 9 = Y.
[ 0 l2c129 cizg 0 0 G

Therefore, the manipulator regressor associated with 6 is given by
(61), at the bottom of the next page.

H(g) = ma(JP)TID + ma (ST I + (IO LI

Bmg + [ + (2 + p=)?
+201(I2 + pz)ealms + L.:

[(I2 + p2)* + (2 + pz)c2)ms + Lzz

[z + p=)? + (2 + pz)ea]ms + L:
(I2 +pz)?ms + L.
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Proposed Approach: The problem of computing Y®(q,4,q) falls
obviously within the special case addressed in Section III-B-2. Using

=lis1 —las12 —l2812
Ju(g) = | her+lzcr2 lac12 and
0
0 0
Ju(g)= (0 04,
1

(52) becomes the equation shown at the bottom of next the page.
Since B(d) = diag(0,0, 41 + g2), (29) gives

Wi =g o B1%
By (34), (45), and (56)~59), we obtain Y: with
(lher +l2c12)g
hilasagi(gr + g2) + l2ci2g
Y121 + Y321 = [

ci2g ]
Y141 = [

1152¢1(g1 + ¢2) + c129
0
ol
Furthermore, by (42) it is found that Y2(q,¢) is a 2 X 3 zero matrix.

Since Y> and the first two columns of W, are all zero, 6 can
be redefined as

Yu+Ys = [

|
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Since the link mass m; does not play a role in the dynamics, Y (the
zero column) can be dropped in Y, that is

y=[v® v® (65)
with § = [ma m3 m3p, map? Izz]T-

On comparing these two approaches and their results, namely
(63)~(65) and (61), it is observed that the proposed approach finds the
regressor by directly and, therefore, more efficiently manipulating the
link Jacobians. As our method is evolved from Lagrange’s equation
of motion, it may be viewed as a counterpart of the Lagrangian
formulation for the evaluation of regressor dynamics.

IV. ITERATIVE COMPUTATION OF Y (g, ¢, q)

We begin our analysis by reformulating the Newton—Euler recur-
sion [9] using the techniques developed in Appendix L. For the sake
of simplicity, all joints are assumed to be revolute. Notation adopted
below will be consistent with those used in [6, chap. 6].

A. Outward Iterations (i: 0 — n)
By (104), the outward iterations [6, p. 200] imply that

H i Az‘+19§i+l) (66)

where 9§"“> is defined by 62 in (101) with the understanding that

8 = [ms map. map?  L]" (62) m.s1 is the mass of link i +1,"" pe,y, = [Pz py p:]", and
TS I
and Y® is now obtained as (63), shown at the bottom of the page. To Ay = .:1’“ H'+1.]+ L . 2 ©7)
compute Y and Y, note that each link is of point-mass involving Hip1 = Q( M 0i) 4+ T 00 = T win|I'T - (68)
only one parameter—its link mass. The link Jacobians for link 1 and i = Tlwig Tl
2 are given by (60), and (49) gives
. 10 i
Y(]) - [0] Y(g) - [ngl +llclg] ) By (107), we obtain
0 0 N = B 6yt (69)
[Ri1d1 + hi2g2
Y = . . Y. + Y
| hi2d1 + h11G2 tlet¥o
r (13 + 21112 + 1)y 2(hez + )
(g1 +c19) +a(lice +12)42 +(l1c2 + 212)g2 @G1+4d2 @1 +4Ge
—ll2s2G2(241 + q2)  —l15242(241 + ¢2)
= +(lhe1 + laci2)g +ci129 61
0 Io(lica + I2)gr + 3d2 (lica + 212)¢1 + 208G, d1+d2 di+4d2
L +l1l252d} + laciag +11524% + c129
Wi(a,d) = (12 413 4+ 2Lilpe0)d1 + (13 + lilaca)ge 2(hicz +12)gr + (hiee + 2l2)42 41+ G2
’ (13 + hilzea)dr + 1342 (hhez + 22)d1 + 2l2ge 1 + g2
(13 + 20,1 + 13)¢a 2(Lica + l2)d1
+a(lice + 12)¢2 +(lhe2 + 212)42 dg1+4d2 g1+ ¢
ye - —11128242(241 + ¢2) —1152¢2(241 + ¢2) ©3)

+(l1ey +l2c12)g
la(lice + 12)d1 + 1342
+111282¢% + laciag

+ci129

(liea +202)g1 + 20342 G1+d2 d1+§2
+l15263 + c129
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where 0§i+1} is defined by 65 in (106) with Iz, .-, I, from °I;41,
and

Eiy1 = B("M'oin) + (T wir) B(  wigr). 70)

B. Inward Iterations (i: n+1 — 1)

If no contact occurs between the load and its environment, we
canbegin the inward iteration with zero boundary conditions. By (66)
and (69), the inward iterations [6, p. 200] imply that

1 1 1
="M= 1‘1n+19(2"+ )

n+ egn+1) + n+1 ogn+1)

1
N1 = Enta Pepgy X Ant1

Q)]

where

n+1 P

n+1l
Cnt1 9(2 ) =

X Anyy = Mp41 "+1Pcn+1

X ("+li)n+1 + H.1 n+lpcn+1)

with m, 41 the mass of link n+1 (i.e., the load) and H,. 4, is defined
in (68). From (109)—(116) it follows that

(n+1)
n+1pcn+] X An+l€£n+l) = ¢n+l [e%n_'_l):l (72)
4

where 6{"*") and 65"+ are defined by (98) and (112), respectively,
with

m = Mn41, [PzPsz]T = "+1pcn+17
and
Brpr = [ M On41) o] (73)
with ¥, defined by (114). Hence,
"y = Moy 80T (74)
where
Hop1=[¢ @at1 Eunr), o¢=[0 0 Q7. (75

To obtain the iterative relation of IT; 1, to II; fori = n,n—1,.--,1,
first we write the vector 6 in (12) as

T
p=[6007 o7 T g@PT g7 gD .. g0

ognﬂ)T ogn+1)T]T (76)
and write (71) and (74) as

" 1 = Anpa an

with
Apn1=00 0 0 Any1 0] (78)

and
"Hoeg: = Mnyi8 (79)

with
Mer=[0 0 0 Mpi1] (80)

where A,, 4, is placed in a position consistent with that of 0%"‘“) in
(76), and II,.4; is placed in a position consistent with that of ("1,
By (77) and (66), the inward iterations {6, p. 200] for 1 < ¢ < n give
fi =t RA;10+ A65)
A0 (81)

where

Ai= i RAc +[0 -~ 0 A4 O - 0] (82

with A; placed in a position consistent with that of 9&0 in (76).
Furthermore, by (69), (79), (72), (102), and (81), the inward iterations
give

n; = 11,0 (83)
where
i =iy Rilips + QCpig1)ipi RAin
+[0 0 & E 0 --- 0 (84)

with ®; placed in a position consistent with that of 05“ (which is the
last three components of 0£i)) and 0‘(,‘), and E; placed in a position
consistent with that of 0},”, respectively.
We now obtain the manipulator dynamics as 7 = Y(q,4,4)0,
where
31,
Y(¢,4,4) = (85)
¢,
with £ = [001] and 1l; given by (84) for 1 < ¢ < n. Obviously, if
joint i is not revolute but prismatic, then the ith row of Y in (85)
should be :A;. In summary, the computation of Y (g,4,q) in (85)
can be accomplished by following the steps listed below.

Algorithm for Computation of Y (¢, 4, ¢)

Step 1: Compute A,41 using (67) and (68).

Step 2: Compute E,, using (69) and (70).

Step 3: Compute ®,41 using (73).

Step 4: Form A, and Il.y; using (78) and (75), (80), respec-
tively.

Step 5: For¢ = n,n —1,---,1.

. Compute A; using (67) and (68).
. Compute E; using (69) and (70).
. Compute ®; using (73).
. Compute A; using (82).
. Compute I using (84).

Step 6: Form Y (g,q,¢) where
, . $11; if joint ¢ is revolute
The ith fY(g,d,4) =4 = 5" J
¢ ith row of ¥'(¢,4.9) {iA,, if joint i is prismatic.
C. Example

We consider the robot used in Section III and perform the iterative
algorithm to compute its regressor as follows.
Following the steps given in Section IV-B, we compute

Az =3 QCds) + *Us — [Pwsl*1]

B —(dl+42)2 —(g1+4¢2) O
=|pB 41 + g2 —(@1+¢)? 0
0 0 0 0

where
B = lisagy — hcad? + s129 — la(d1 + d2)°
B2 = licadn + l152¢7 + c12g + l2(d1 + ¢2).
Because of the regular geometry of the load, we have p, = p. =0,
hence 0§3) can be regarded as a two-dimensional vector
65" =[ms  map.]”.
Consequently, the last two columns of matrix A3 are not needed in
the computation and A3 can be redefined as
B —(d1 +d2)°
As= |82 (41 +42)
0 0
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Similarly, we compute

0

0
g1+ g2

E; =

with
) =1I...

9@3) _ [map=
o | T [map?
hence, we only need the first and fourth columns of ®3. By (73) it

is found that
0 0
$;=10 0

B2 ¢1+42
Using (78), (75), and (80), we have

Next note that

. 0 0 B1i —(1+4d)* 0 0
As= |0 0 B2 g1 + g2 00
00 0 0 00
and
~fooo o0 o 0
II;j=(0 0 0 O 0 0
0 00 B qg+4d¢ di+g
Furthermore, using (84), it is found that
o foo o 0 0 0
fl,={0 0 0 —(ji+d) O 0
0 0 B lLgi+4¢) dG1+d2 G1+a
and
o0 0 « 0 0
I, =10 0 0 * 0 0
0 m32 w3 W3 G1+d2 g1+ ge
where

w2 =111 + licng
was = li(s201 + c2f2) + 1232
m3a = (Iz + lic2) (@1 + d2) — lis2(d1 + d2)° + Be.
The parameter vector associated with I, is
9 =[ms ms map. msp: L]
Using (85), the corresponding regressor Y (g, ¢, ¢) is given by

T32 33 T34 g1+4d2 g1 +ge
0 D82 L(@i+d)+08 di+d d+d)

Note that the Y obtained is identical to the one given by (65).

Y =

V. STABLE ADAPTIVE MOTION CONTROL AND ITS
IMPLEMENTATION USING THE REGRESSOR

In the first part of this section, a modified version of the Slotine-Li
adaptive scheme [5] is presented, and its global stability is shown
through a Lyapunov approach. Unlike the algorithm in [5], the
modified version enables us to use directly the regressor Y in
controller implementation. Another adaptive motion control algorithm
that uses Y directly was proposed by Craig et al. [10]. Contrary to the
algorithm of [10], however, the approach proposed below does not
require the use of joint acceleration measurements ¢ and inversion
of the estimated mass matrix. In the second part of this section, we
present a case study that simulates the two adaptive motion control
algorithms where the regressors encountered are evaluated using the
iterative algorithm described in Section IV.

A. Modified Slotine-Li Adaptive Control Algorithm

Following the discussion in Section II-A, we define
gr =qda—Ag (86)

where ¢q is the desired velocity, § = ¢—ga, and A > 0, and note that

Hir + Cq+ G = Yu(q, 4, 4r )b @7
If a control torque vector 7 is assigned as
r=H¢+Ci+G—-Ks (88)
with s = ¢ — ¢» and if b, is updated according to
b. = -T¥ (¢,d,d)5, T[>0 (89)

then for any s(0), 8. (0), and a bounded g4(t), there exists a K > 0
such that the position and velocity tracking errors converge to zero.
To show this, consider the Lyapunov function

v= %[STHS +8IT714,] (90)

and compute its time derivative along trajectories of (1) as
o= T (Hj— Hir) + 60T 6, + %STHS
=sT(r = C4r — G- Hi,) + 67T 74,

where the fact that H — 2C is skew symmetric has been used. If
control (88) and parameter update law (89) are employed, then

o =—s"[K - C(q,9)]s

=—s"[K - C(¢,9))s )

where C(g,4) = [C(g,4) + CT(¢,4)]/2 is a symmetric matrix. By
(91) in conjunction with the same argument as was adopted in [5]
and [11], it can be shown that both § and ¢ converge to zero.
Concerning the algorithm implementation, note that generating a
new control torque vector requires that Y, (g,4,4r) be evaluated to
update parameter vector 8, in (89), and then Y (g, ¢, ¢-) be computed
to obtain 7 as (88) can be written in the form
N .
T:Y(q,q,q,)[ék} — Ks. 92)
As is noted in [5], if one chooses A = AI in (86) and K = \H (9)
in (88), then the time derivative of v in (90) along trajectories of
(1) is given by
o= —s"\H(9) - Cla, )]s, 3
provided that the unknown parameters are updated according to
8. = —TY (4,4, (4r — Xs))s. 94
Since H(q) is uniformly positive definite, ¥ in (93) is negative if A
is sufficiently large. Note that the control torque in this case becomes

r=Y@¢fﬂ2] )

where
§* = da— 20§ — \°g. (96)

Obviously, (95) and (96) represent a quasi-computed-torque con-
troller, which would be identical to the well-known computed-torque
algorithm [6] if 6, = 8.
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sideal & actual trajectories of 1st joint

X4, Xca

N

Fig. 3. Simplified PUMA-type 4-DOF robot handling an unknown
point-mass load.

B. Case Study

In what follows, we consider a 4-DOF manipulator, shown in Fig.
3,with a geometry identical to the first four links of a PUMA 500
robot. Its dynamic parameters are, however, simplified as follows:
all four links are of point-mass with m; = ma = m3 = 2 kg and
my4 = 0.5 kg. For the first three links, the mass center of each link is
at its midpoint, and the mass center of link 4 is at its distal end. The
robot carries a 0.5-kg point-mass load, tracking in the joint space a
trajectory specified by

q1(t) c1 + ag sin wt

g2() c2 + ag cos(wt/2)
g3(t) | = | c3 + aasin(wt/3)
qa(t) ¢4 + a4 cos(wt/4)

with ¢1 = 87/%¢ca = 27/3,¢3 = 37/4,ca = 157/18,a1 =
4n/9,a2 = 7/3,a3 = 7/4, and a4 = 87/18 for 0 < t < 2 s.
Under these circumstances, the robot can be treated as if mq = 1
kg and carrying no load.

Now assume that the user does not know the load mass and makes
an initial guess of m4 = 0.5 kg. The initial robot configuration
is set with 20% relative error in joint displacement for each joint.
Both the modified Slotine-Li algorithm and the algorithm of Craig
et al. [10] are applied to control the robot motion, and their tracking
errors as well as parameter estimation errors are shown in Figs.
4 and 5. The regressors Y (q,¢,4") and Yi[g,d,(¢r — As)] in
the modified Slotine-Li algorithm, and the regressor Y, (q,¢,4) in
Craig’s algorithm are evaluated using the iterative algorithm proposed
in Section IV. From the figures, it is observed that it takes less
than 0.3 s for the modified Slotine-Li algorithm and about 0.35
s for Craig’s algorithm to see the tracking error converging to
an acceptable tolerance. Both algorithms are able to identify the
unknown mass of the load, but the modified Slotine-Li algorithm
can do it quicker. As mentioned earlier, the control algorithm in
Section V-A is computationally more efficient as compared with the
algorithm of [10]. In addition, our simulation experience indicates
that parameters A and I' in the modified Slotine-Li algorithm are
less sensitive than their counterparts in Craig’s algorithm, which is
consistent with the observations made in a force control study [12].

An issue that is often encountered in simulation of robot dynamics
is the computation of ¢ given g, ¢, and 7. The steps listed below form
a regressor version of an approach suggested in [13] for computing ¢.

3 sideal & actual trajectories of 2nd joint
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Fig. 4. Simulation of modified Slotine-Li algorithm. (a) Actual and ideal
joint-space trajectories. (b) Tracking errors. (c) Estimated mg4.

Evaluation of ¢ in Simulations

Step 1: Compute Cqg+ G = Y (q,4,0)8 = Yob.

Step 2: Compute H(g)ei + C¢+ G = Y(g,4,€e:)0 = Yib, for
1<i< n

Step 3: Compute H(q) = [(Y1 — Y0)8 - (Y — Y5)8).

Step4: ¢ = H '(q)(r — Yob).
where e; is the ith column of the identity matrix. By replacing 6
in the first three steps with [6] 6217, H(q) in Craig’s algorithm can
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Fig. 5. Simulation of Craig’s algorithm. (a) Actual and ideal joint-space

trajectories. (b) Tracking errors. (c) Estimated m4.

also be evaluated using the first three steps.

VI. CONCLUSION

An attempt has been made to derive a closed-form solution as well
as iterative algorithm for symbolic and numerical evaluation of the
manipulator regressor. Similar to the Lagrangian and Newton—Euler
formulations of robot dynamics, the closed-form solution obtained
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offers physical insights of the regressor in terms of its relation to
link Jacobians of the robot, whereas the proposed iterative algo-
rithm provides an efficient approach to numerical evaluation of the

regressor.

APPENDIX 1
PARAMETER EXTRACTION VIA VECTOR ANALYSIS TECHNIQUES

Throughout this appendix we assume that m € R™!,p =
[Pz py p:]7,d = [d1 d2 ds]”, and & = [&1 22 23]".
1) Consider

m(J.q x Bp)'g Y]

where J, € R**", R € R**® and g € R**! are given.
Denoting

0 = [mpz mpy mpz]T (98)

and applying (19) to (97), we have

m(Jug x Rp)Tg =" Y01 99)

where
Yo=[gxJuy 9XJuy -gxJu,) R
is an » X 3 known matrix.
2) Consider the vector given by

m[w X p+w X (w % p) +7] (100)
where m and p are parameters to be extracted. Define

8y =[m mp. mp, mp.] (101)
and note that

w X p=Qw)p, (102)

where §2(w) is a skew symmetric matrix characterizedby

0 —Z3 X2
Q(w) = x3 0 —T (103)
—x T1 0

From (20) it follows that
wx (wxp) = (pTww — (W wp = - |l«|*p,
where U = wTw. Hence

mlw X p+w X (wxp)+0] = [0 Q@)+ U — [|w||*1]02. (104)

3) Let
Iz:n _Izy _Izz
_Ixy Ivy _Iyz (105)
_Ixz _Iyz Izz
be the unknown inertia matrix. Define
03 =[Ios I,y L. Iy IL.. I (106)
It can readily be verified that
°I;d = B(d)0s, (107)
where
di 0 0 —-dy —dsz O
Bd)={0 d2 0 -di 0 —ds (108)
0 0 di 0 -—-di —d2
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4) Consider the vector product

mp X (0 + Hp)

(109)

where H is a 3 X 3 known matrix. By (102), the first vector

product in (109) is
mp X U = —§(0)02.

If we write
hi
H=|nr!
hi
and define
i 0 kY —hrY
¥ = —hg 0 h{
hg _h? 0 3x9
then
h?g(mpyz)) - h%T(mpzp)
mp X Hp = | hi (mp.p) — h3 (mp:p)
hi (mp.p) — h3 (mpyp)
~ mpzp
=¥ | mpyp
MPzP 91
By defining

9a=mp2 p2 P pepy Prp: Pyp:]’
(111) can be written as
mp X Hp = Wo,,

where

U="Ue; e; es ex+es ester e+ es

(110)

(111

(112)

113)

(114)

and e; is the ith column of the 9 x 9 identity matrix. Hence

mp x (0 + Hp) = ®[67 631"
with
d=[-Q) 9]

5) Finally, let us consider
P T
m g (ol Jud Rp)| (Jug+Jud x {Rp).

By (102)
a%uvq +Juix °Rp) = Ju — QCRp)J...
Thus (117) can be written as

m[JT Jog + JT (Jud x 2Rp) — JTQT O Rp)Jod
- JZQT (¢ Rp)(J.d x? Rp)].

By (19):
TS (Jui x {Rp) = (Ju X Jud)" Rp
the second term in (119) is equal to
(Jo x Jug)" {R(mp)
where

Jo X JuG = [Jog X Jud -+ Ju, X Jug].

(115)

(116)

(117

(118)

(119)

(120)

(121

333

Since Q(Rp) is skew symmetric, —(? Rp) = Q(?Rp). By
(102) and (19), the third term in (119) can be written as
~JE(Jug x {Rp) = (Jug x J.)T {Rp (122)

where
Jog X Ju = [Jod X Juy + - Jod X Jun ) (123)
Using (102) and (20), the last term in (119) can be expressed as
JTORp x (Jug x IRp) = IplI*J5 Jui
~ (" RJLG)IL I Rp. (124)

From (119), (120), (122), and (124), it follows that if we define
a ten-dimensional vector 65 as

9s=m[l p. py P: P. Py P: PIPY P: P: PyP:]
=07 651" (125)
then (117) can be expressed as
9 . .0 T i L0
m a—q.(Juq+Juqx iRp)| (Jui+ Jug x iRp)
= Wi(g,9)0s (126)

(11
[2

—

[31
[4]

{5]
[6

[7]
(8]
91

[10]
[11]

(12}

[13]

[14]

with
Wi(q,d) = [JTJed (JuxJuitduixJ)T§R —D] (127)
where
D=D-[J%Juq JEJug JEJug O O Oluxe (128)
and D is determined by
(p" RJ.G)JS I Rp
=Dlp? p> b2 pepy Pep: pypel’. (129)
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