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Realizations of 2-D Filters and Time Delay Systems II. PRELIMINARIES 

S.H.kAK, MEMBER,IEEE, E.B.LEE, FELLOW,IEEE,AND 
W.-s. LU,MEMBER,IEEE 

Given a proper 2-D transfer function matrix H(s, z) E 
RPx’(s,z), it is always possible [5], [6] to find a 4-tuple 
{A, B, C, D} such that the following Roesser model (system of 

Abstract-Possible techniques for achieving an absolutely minimal dynamical equations) realizes H(s, z): 
realization of an input/output system described by a matrix of rational 
functions in two indeterminates are described. [ls]=[:: ~;][~]+[~;]U-AX+Bu 

I. INTRODUCTION r T 

Dynamical systems which can be modeled by a p X r proper Y=tcl c21 x1 
I I X2 

+ Du=Cx+ Du. (1) 
transfer function matrix, say H(s, z) as a proper rational matrix 
in two indeterminates s and z are considered. Quarter-plane That is 
causal 2-D digital filters, retarded or neutral delay systems, are 
examples of such dynamical systems (see [l] and [2] for detailed H(S,Z) =c 

[ 

sI-A, -A, -’ 
-A 

3 zI-A, I 
B+D 

interpretation). Write H(s, z) as 
and the dimensions of X1 and X2 determine the number of s-l 

N(s, z) 
HdH(s,z) =- 

a(s, z> 

and z-l dynamical elements in the implementation of (1). 
Similar to the 1-D case [8], the system matrix ~(8, z) of (1) is 

defined as 
where N(s, z) E RPXr[s, z], a(s, z) E R[s, I]. The properness of sZ-A, 
H means that i) deg, a(s,z) > deg, N(s,z), ii) deg, n(s, z) 2 

-A, B, 

deg, N(s, z), and iii) the leading monomial u,,s”z”’ of 
.a(s,z) = -A, 

[ 

zI-A, B, . 1 (2) 
-Cl -C, D 

n(s,z) = t 2 UijSiZ’ Two system matrices vi and rZ are said to be system equivalent 
i=Oj=(J (SE), to be denoted by ?r, - ?r,, if one can be obtained from the 

other by the elementary operations described in [8, p. 591. It is 
is not zero. 

neously. In the sequel, such a realization will be referred to as an 
absolutely minimal realization. 

One of the fundamental issues studied in systems theory is the 
realization of a given transfer function by a system of dynamical 
equations. Here, we are interested in finding a realization of a 
given H(s, z) with such property that the numbers of both types 
of dynamical elements (i.e., integrators s-l and delay lines z-‘) 
required in an implementation of H are minimized simulta- 

It should be mentioned that the concept of absolutely minimal 
realization in the 2-D setting is not new [3]-[7]. The main 
purpose of this paper is to further explore the main difficulties in 
obtaining such a realization. Possible techniques for achieving a 
minimal realization will also be addressed. In the next section, 
some preliminaries which enable us to tackle the central issues 
are given. Based on the use of a class of admissible transforma- 
tions at the first level and the use of the system equivalent 
operation of an augmented system matrix, respectively, Section 
III contains a description of two procedures leading (possibly) to 
absolutely minimal realizations of a given 2-D transfer function 
matrix. These two methods are illustrated by examples. 

+{D+C,[sZ-A,]-‘B,} 

~~(s)[zl--T(s)]-‘B(s)+.f(s) =H(s,z) (3a) 
and 

easy to 

T(S,Z) - { Cl+C2[~~-A4]-‘A3} 

4s 

check that 

:,z) - {C,+C,[sZ-A,]-‘A,} 

.{z~-A4-A3[~I-A1] 

.{B~+A~[sI-A~]-~B~ > 

-lA,} -’ 
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.{B,+A,[zI-A,]-~B,} 

+{D+Cz[zI-A,]-‘B,} 

~~(s)[sZ-n(z)]-‘g(z)+.f(z) = H(s,z) (3a) 

where {x(s),B(s),C(s),.!(s)} and {A”(z),~(z),C(z),~(z)} are 
known as the first-level realizations of H(s, z) [6]. By (3), it can 
be observed [5] that 

= : [d-A,]-‘[A, B,]+ A4 “,2 [ 1 [ 1 c2 
(44 

1 

0098-4094/86/1200-1241$01.00 01986 IEEE 



1242 IEEE TRANSACTIONS ON CIRCUITSAND SYSTEMS,VOL. CAS-33, NO,12,DECEMBER1986 

and 

= “c2 [ZI-A,]-‘[A, B,]+ 
I I 2 

Therefore, in order to realize H(s, z), one may find a mini- 
mal- firs~level~rea.liz$on {A(s), B(s), C(s),J(s)} over R(s) 
({A(z), B(z), C(z), J(z)} over R(z)) ad then form P(s) <Q(z)> 
and find its minimal realization 

Clearly, the use of the above realization approach implies that 

sizeofA,=sizeofz(s) andsizeofA,=6,(P(s)) (5a) 

and 
sizeofA,=sizeof~(z)andsizeofA,=6,(Q(z)) (5b) 

where S,( P(s)) denotes the McMillan degree of P(s). 
The following controllability and observability concepts are 

needed in the realization theory. Given a first-level realization of 
H, say (A(s), B(s),C(s),J(s)) of order n over R(s), pair 
(A(s), B(s)) is said to be R(s)-controllable if 

Span[B(s) A(s)B(s)...A”-‘(s)B(s)I =R”(s) 

and pair (C(s), A(s)) is said to be R(s)-observable if (AT(s), 
C?(s)) is R(s)-controllable. At the second-level, pair (A, B) of 
(1) is said to be modally controllable if 

sl-A, -A, 

-A3 zl-A4 I and B are left-coprime (64 

and pair (C, A) of (1) is said to be modally observable if 

Cand 
sI-A, -A, 

-A3 zI-A, 1 are right-coprime. (6b) 

It turns out that the minimality of a 2-D state-space model is 
closely related to the concept of modal controllability and ob- 
servability. In fact, for a scalar 2-D proper rational function 
h (s, z) of order (n, m), it has been shown [4] that only a 
state-space realization with order (n, m), i.e., the same order as 
the transfer function, can be both modally controllable and 
modally observable. Therefore, a formal definition of absolutely 
minimal realization can be given as below. 

Definition: Realization {A, B, C, D} in (1) is said to be ab- 
solutely minimal if (1) is modally controllable as well as modally 
observable. 

With x(s), B(s), c(s), A(z), 8(z), and d(z) defined as in 
(3), the following theorem relates ring controllability (ring ob- 
servability) to modal controllability (modal observability). 

Theorem [9]: 
1) Equation (1) is modal controllable iff (x(s), B(s)) is R(s)- 

controllable and (2, (I), B(z)) is R (z)-controllable; 
2) Equation (1) is modal observable iff (c(s), x(s)) is R(s)- 

observable and (C(z), d(z)) is R (z)-observable. 
As an immediate consequence of the theorem, we have the 

following corollary. 
Corollary: Assume that {A(s),B(s),C(s),J(s)} and {A”(z), 

B(z), C(z), f(z)} are minimal first-level realizations of H( s, z), 

z Possible dimensions 

of Z-D realizations 

I! 

of a given H(s,z) 
Q(Q(Z)) 
= size of A4 --, 

I i S 

6M(p(s)) = size of A1 

Fig. 1. Graphical representationofthe Corollary. 

then (1) is absolutely minimal iff 

&(P(s)) =sizeofA”(z) (74 
~,,,(Q(z)) =sizeof x((s). VJ) 

The above corollary can be illustrated by Fig. 1 (suggested to 
the authors by Prof. L. Markus). 

III. REALIZATIONPROCEDURES 

The problem of finding an absolutely minimal realization of 
H(s, z) still remains open [4]. In this section, two procedures 
leading possibly to an absolutely minimal realization for a given 
proper 2-D transfer function matrix are considered. 

Procedure 1: The first suggested procedure is based on the fact 
that the McMillan degree of Q(z) (P(s)) defined as in (4) may 
be different among the equivalent first-level realizations. To be 
more precise, assume that {A(z), B(z), C(z), b(z)} is a minimal 
first-level realization of H and that size of k(z) = n. A trans- 
formation T(z) E Cnxn(z) is said to be admissible if TA”T-‘, Ti 
and CT-’ are all proper rational matrices. Clearly, such a 
similarity transformation leads to an equivalent and minimal 
first-level realization. Note that 

Q,(z) p 
T(z)a(z)T-l(z) T(z)j(z) 

c(z)T-‘(z) w> I 

=[ ‘b” ;]Q(z)[ “A’ ;I-’ (8) 

and 6,(Q,(z)) might be different from ~,,,(Q(z)). Thus, one 
may try to use an admissible transformation adequately such that 
hAQr(z>) is less than hAQ(z>). 

As an example, let us consider a SISO retarded delay-differen- 
tial system with the transfer function 

Obviously 

Fl( z) = [z-2 z-l] (10) 
is a first-level realization of h(s, z), which minimizes the number 
of integrators. Note that 

s 

[ 

&> m =3. 
IV El(Z) 0 1 

Thus, (10) generates a Roesser model requiring two integrators 
and three delay elements. Further notice that with 

T(z) = [ “0’ y] 
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we have Using one of the standard methods [lo], one can check that the 0 z-2 
Z,(Z)=T&T-~= -1 o , [ I 

order of a minimal realization of (14) is 3. Next, form the 
augmented first-level system matrix as 

13 0 0 
and 

0 
Z,(z) =&T-l = [l z-‘1 P) 

d-A(z) B(z) 
0 -C(z) f(z) 1 

which leads to 

& u4 &2(z) 

[ &(z) 

2 

0 = . 1 
Thus, {b,(z), ?)2 (z), c’,(z)} generates an absolutely minimal 
realization of (9). 

It was shown [4], [5] that for the following 2-D transfer 

13 ! 0 I I 0 
--+--------------j-------- 

I I 1101 
0; s 

-- z-l z-l I- 
I -1 s ’ z2 O = --~-------------~-------- (15) 
I z I 
I I 0 --I 0 0 ,-I I 

function 
ssz 

0; z L-L 1 

h(stz) =x L i 
-- 

z-l 0 ; 0 
I 

no real 2-D state-space realizations of dimension (1,l) exist. Using elementary operations leads (15) to 

0 
1 

Therefore, it is necessary to let T(z) belong to C”‘“(z) instead 
of Rnx”(z). 

S -1; 1 0 1;o 0 

We now suggest a method for possible reduction of the size of 0 s; 0 1 010 -1 

a realization of a 2-D transfer matrix. The method consists of the 
following steps:_ 1) F_ind a first level minimal realization of 

----l-~-;~i--o~ol~o~~o 
0 
1 01 0 z 010 0 

H(s, z), say {A(z), B(z),e(z),.f(z)}. 2) Find the size of a 0 0; 0 0 zll 0 
minimal realization w.r.t. the second variable. Note the size of m. ----- J----------L----- 
3) If S,(Q( z)) = m, we are done. If not, try to use an admissible 1010 00; 

T(z) such that S,+,(Qr(z)) given by (8) is reduced. Definitely, 0 II -1 0 0; 0 

effort is needed to give a systematic way yielding such an sZ2 - A, -A, B, 
admissible transformation (if any). A = 

Procedure 2: The second suggested procedure of finding an -A3 zI,-A, B2 . (16) 
absolutely minimal realization is dependent upon the use of SE -c, -c, 0 1 
operation of an augmented system matrix, as explained by the Since size of A, = 2 and size of A, = 3, 4-tuple {A, B, C, D} 
following example. given in (16) is absolutely minimal. 

Example: Consider the transfer function matrix of a neutral Thus, the second procedure uses the 2-D system matrix and 
delay-differential system 

H(s,z) = [ 
s/z z/tz -1) 

l/z(z-1) sz/(z-1) I 
s2-1 

z-l 
It is easy to check that 

Atz)=[y +]? w=[(z~~),z2 ;] 
Z 

0 - 

d(z)= z 
z-l L I 0 

z-l 

and 

_ &-A, 

[ 

-A, B, 

-A3 z&,-A, B, 
-Cl -C, D 1 
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On Complementarily and Sensitivity of Generalized 
Wave Digital Filters 

STUART S. LAWSON, MEMBER, IEEE 

Abstract -In recent literature, a general theory bas been developed to 
design low-sensitivity digital filter structures in the z-domain. These 
structures are two-ports with two inputs and two outputs and wave digital 
filters belong to this general class. This paper explores the significance of 
the para-unitary or complementary condition on generalized wave digital 
filters. Satisfying this condition allows, for example, the simultaneous 
generation of low- and high-pass filter outputs. There is discussion too of 
sensitivity and its significance to those generalized wave digital filter 
structures that do not satisfy the para-unitary condition. 

I. INTR~DIJ~TI~N 

In recent literature, a systematic approach to the design of a 
low-sensitivity digital filter structure has been described [l]-[3]. 
This approach treats the digital filter as a two-input and two-out- 
put system, which, of course, is also a characteristic of wave 
digital filters [4]. One of the underlying assumptions used is that 
the para-unitary condition holds. That is, with reference to Fig. 1, 

STS* = E (1) 

where S is the two-port transfer or scattering matrix and E is the 
unit matrix and 

Y= sx. 

From (l), we can derive simply that 
(2) 

&I2 + lS2112 =1 

I l&212 + lS2212 =1 

Equation (1) holds for wave digital filters (WDF) that are pseu- 
dolossless, i.e., derived from lossless analog networks [5]. 

If the analog reference filter is also reciprocal, then 

s21 = s12 (4) 

and, from (3), we have also that 

lSd2 = lS2212. 

The para-unitary or complementary property has the important 
characteristic of providing, for example, both low-pass and high- 
pass filter outputs or both bandpass and bandstop outputs [S]. 
This fact has been found useful in certain filtering applications 
191. 

In this paper, we will consider the implications of the para- 
unitary condition on generalized wave digital filters (GWDF) [6]. 
,, A brief review of GWDF is appropriate and will be given here. 
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(b) 
Fig. 1. (a) Two-port analog network. (b) Transformed two-port analog 

network. 

The relationship between voltage, current, and wave variables 
can be generalized as follows: 

[:]=p[:] 

[:]=Q[:] 

(5) 

(6) 

where Xi and X, are input variables and Y, and Y, are output 
variables. P and Q are 2 X 2 nonsingular matrices. The realizabil- 
ity conditions that impose constraints on the elements of P and 
Q have been examined elsewhere [5]. We shall see that further 
constraints are necessary to ensure the complementary property 
holds. 

For a two-port analog network, we may express the relation- 
ship between port voltages and currents by the ABCD or trans- 
mission matrix 

[;]=$j (7) 

This form is useful for cascading two-ports. Combining (5)-(7) to 
eliminate the voltages and currents gives 

[:]=#j (8) 

where R = PTQ-1 is the transmission matrix of the transformed 
two-port. 

We can obtain finally 
Y=oX (9) 

where 

OH= R,, /RI, 
u 12 = - det R/R,, 

a 21= ~/RI, 

u 22 = - R,,/R,, 

and det R = det P.det T/det Q. 
For reciprocal two-ports, det T = - 1. 
Note that for the generalized scattering matrix, the symmetry 

condition ui2 = a,, holds if det R = - 1. For an analog reciprocal 
two-port as reference, the condition that uT= u is 

detP=detQ. 

This relationship is satisfied by voltage and current waves and 
indeed all transformations listed in [6]. 

A description of how signal-flow diagrams are derived for the 
various analog components by substituting for T and applying 
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