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However, from (7) it follows that range [ Wl and  null [HI are equal and 
necessity has been  shown. Sufficiency is obvious. 

Lemma 2: rank [ H T ,  BTHT = n is both necessary and sufficient for 
(6). 

Proof (Sufficiency): Suppose rank [HT, BTHT] = n. Therefore. if 
x E null [HI ,  then x €E null [B] and x €E null [HB] and (6) holds. 

Proof (Necessity): Suppose (6) holds. Therefore. if H.Y = 0, then 
HBx # 0 and rank [ H T ,   B T H g  = n. 

It  is interesting to note that a necessary condition for the rank condition 
of Theorem 1 to be satisfied is m 2 n/2.  

It remains to investigate conditions on the system triple ( A ,  B,  H )  
which ensure that T can also be chosen so the F is stable. 

IV. OBSERVER STABILIZABILITY 

Assume that the conditions of Theorem)  are satisfied and  that a basis 
for the state space has been chosen so that H is given by (7). If  an observer 
exists. then the basis for the observer's state space can be chosen so that T 
has the form. T = [K ,  In-,,,].  Therefore. assuming that Tis  in this form 
and that G is null, it  is seen that ( 3 )  and (4) are satisfied with 

F = & + K A ] ~  (1 1) 

0 = &? + KBlz  (12) 

E=[K&,+&]fi;' D = [ K A l l + A 2 1 - F K J A [ 1  (13) 

where A,j, B;, are partitions of A and B with 8 1 2  = H,HBW, 82: = 
QB W (9). 

Notice that E and D (13) can always be calculated once K is determined 
so that F (1 1) is stable and (12) is satisfied. Since the conditions of 
Theorem 1 are assumed. it follows from the proof of Lemma 1 that  null 
[El2] is empty and therefore K can always be found to satisfy (12). The 
existence of an observer of the type being proposed here rests finally on 
the existence of a stable F matrix (1 l ) ,  for  some K matrix satisfying (12). 
The condition which ensures that there is a potential observer which  is 
stable is given now  in the following. 

Theorem 2: If the condition of Theorem 1 is satisfied, then the 
necessary and sufficient condition for the existence of a delayless observer 
is that all transmission zeros for ( A ,  BOT, H )  be stable where Qo is any 
matrix satisfving range [QT) = null [HI and where so is a transmission 
zero of ( A ,  BQ,', H )  if rank [I&)] < 2n - m where 

r(s)= [ - XIHA - - - - - j "o"] - . . . 

The proof of this theorem relies on the following lemma. 
Lemma 3: If the condition of Theorem 1 is satisfied: then it is always 

possible to choose a basis for the given system (1) such that 

f i = [ f i l ,  01 and B=[B1, 

where = [BT, O] with B2 nonsingular. 
Proof:  There is no loss of generality [7] if Q in V-'(8)  is chosen as 

Q = Qo + LHwhere L E R ( n - m r x m  and range [Q,'} = null [ H I .  Then 
Win V ( 8 )  can be taken as Q,'(QoQ3-'. Thus, (9) becomes B : 2  = 
QBW = [QJIQT + LHBQz](QoQo)-'. Now L can be chosen so that 
822 is null only if  null [QaQT 3 null [HBQ,']. This requirement is 
satisfied since z E null [HBQT] implies that z E null [BQg.  This 
implication follows from the facts that range [Qg = null [HI and range 
[B(null [HI)] A null [HI = {O], (6). Thus, L can be chosen to make B 2 ;  

null. Since the columns of B,: = AIHBWare independent (Lemma 1):it 
follows that the arbitrary nonsingular matrix A, can be chosen so that B$ 
= [ET, 01 with B2 nonsingular. 

proof of Theorem 2: Let the basis for the given system be chosen in 
the manner specified in Lemma 3 .  Then (12) is satisfied by K in the form 
K = [0 Kl] where Kz E R'n-"l)xh-n is arbitrary and 0 is  an n - m by 
n - m matrix of zeros. Then F becomes + K,A,,, where A;  = 

A:,]. A,,, E R(n-m)r'n-m) , A E R(h-n)x(n-*J) . Th us. the 
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unobservable eigenvalues of (A,:?, Azz) are eigenvalues of F which are 
fixed for all potential delayless observers. Therefore. the location of these 
invariant eigenvalues in the left half plane is seen to  be necessary for the 
existence of delayless observers. It was shown in 161 that  the necessary 
and sufficient condition for h, to be an unobservable eigenvalue of the 
pair (Al2:, A??) is that rank [F(X,)] < 2n - m where in the present 
instance 

Finally, notice that Z-'I'(s)ZY = f(s) where Z and Y are square 
nonsingular with Z = Diag [ V ,  Y = Diag [I,-  m ,  (Q,,QT)- '1 with V 
taken in the manner specified in Lemma 3. Thus, rank [r(s)] E rank 

v. c o N c L u s l o ~  

In this note it has been shown that delayless observers for linear 
systems having a time delay in the state can be constructed if  and  only if 
two conditions are satisfied. These conditions which are given in the 
theorems can readily be checked using available computer packages 
developed for use in automatic control. 
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A Lyapunov Theory for Linear Time-Delay Systems 

E. B. LEE, W.-S. LU. AND I'!. E. WU 

Abstract-Some relationships between a Lyapunov based stability test 
and linear control system models with time delays are explored. The main 
result is a generalization of the result that if (A,  B) is a reachable pair of 
matrices, then square A is a stability matrix if and only if there is a 
positivedefinite matrix K such that A K  + KA' = -BB'.  

I. INTRODUCTION 

For a long time Lyapunov stability theory has played a central role in 
stability analysis of various dynamical systems. In the linear time- 
invariant case. the theory can be  used  to conclude that  the  null solution 
(x(r) = 0 )  of the ordinaT differential equation X = Ax is asymptotically 
stable if and only if for any given positive-definite symmetric matrix Q 
there exists a positive definite (symmetric) matrix P that satisfies the 
Lyapunov equation 

A ' P +  PA = - Q.  (1) 
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As a variant of this, an important observation was made by Kalman [ I ]  
for the control system model 

x=Ax+Bu 

y =   c x  (2) 

which  may be stated as follows. 
Lemma 1. I :  When (A, B) is a reachable pair, square A is a stability 

matrix (i.e., all its eigenvalues lie in the open left-half plane), if and only 
if there exists a  positivedefinite matrix K that satisfies 

AK+KA'=   -BB' .  (3) 

When (C, A)  is an observable pair,  square A is a stability matrix if  and 
only if there exists a positive-definite matrix W that satisfies 

A ' W +  WA= - C ' C .  (4) 

Lemma 1 . 1  has been used extensively in various system-related 
applications. The recent evidence, among others. include the balanced- 
realization-based model reduction approaches of Moore [2] and Glover 
[ 3 ] .  and the synthesis of minimum roundoff noise fixed point digital filters 
by Mullis and Roberis [4] and Hwang [SI. 

For linear time-delay type systems, Brierley et al.  [6] considered 
asymptotic stability independent of delay (i.0.d.) [7] of the null solution 
x(r)  3 0 of systems with differential-difference equation models i ( t )  = 
A (z)x(f) where z represents a delay (right shift) operator and A ( z )  is an n 
x n polynomial matrix in z .  They related stability i.0.d.  to the existence 

of a  positivedefinite solution P(z )  of the generalized Lyapunov equation 

A*(z)P(z) + P(z)A ( z )  = - Q(z)  ( 5 )  

where A *(z)  denotes the complex conjugate transpose (Hermitian 
transpose) of A (z ) ,   Q(z )  is any given positivedefinite Hermitian matrix, 
and z = ejd with we[O,  Zn]. However, the counterpart of the above- 
mentioned reachability-stability result for timedelay type systems is  not 
available as yet. 

The purpose of this note is to provide such a result for linear neutral 
type systems with commensurate delays. After a brief introduction (some 
notation and preliminaries in Section II), we present a Lyapunov criterion 
in Section 111 for retarded delay systems. The results are then extended to 
a class of linear neutral delay type systems with stable D-operator [lo]. 
One of the potential applications of the results presented here is to derive a 
realization of a balanced type for  a given timedelay model that  would 
make it possible to do model reduction in a nearly optimal way. 

II. NOTATION AND PRELIMINARIES 

Let R [ z ]  be the  set  of all polynomials in z with real coefficients. A 
linear multivariable retarded system with commensurate delays can be 
represented by differentialdifference equations 

b( t )=A(z )x ( t )+B(z )u ( t )  (6a) 

m = c ( z ) x ( r )  (6bl 

where z is a delay (right shift) operator, i.e., ~ ( t )  = x( t  - h) ,  h 2 0, 
A ( z )  E R n X " [ z ] ,   B ( z )  E R n x m [ z ] ,  and C ( z )  E R r x " [ z ] .  Let A(s, e-5h)  
= det [sl - A(e-")],  then the (null solution x(t) = 0 of) system (6) 
(with ~ ( t )  = 0) is asymptotically stable independent of delay if and  only if 
101 

A(s, e-d)#O for Res2Oand all h 2 0  (7) 

Kamen [ 7 - [ 9 ]  has established that if 

A(0, z )  # 0 for IzI = 1 (8) 

then condition (7)  is equivalent to  the two-variable criterion 

A@, z)#O for Res20, Iz( = 1. (9) 

A linear neutral type of control system with commensurate delays can be 

represented by the differential-difference equations 

D ( z ) ~ ( r ) = A ( z ) x ( t ) + B ( z ) u ( t )  

~ ( t )  = c ( z ) x ( r )  
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where D ( z )  E R"""[z] with D(0) nonsingular. The neutral equations 
considered in this note are those where D ( z )  is formally stable [ l o ] ,  i.e., 

det D(z)#O,  for Izl<l+S for some 6>0 (1 1) 

and will be referred to  as neutral delay systems with stable D-operator. 
Fix 6 > 0, and define Si, = { p ( z )  E R [ z ] [ p ( z )  # 0 for IzI 2 1 + 61 
and define Rb = S ; ' R [ z ]  = {q ( z ) /p ( z ) lq ( z )  E R [ z l ,   p ( z )  E SB}.  
Given the neutral delay system (10) with stable D-operator, define the Ra- 
associated differential-difference equations 

x ( t ) = F ( t ) x ( t ) + G ( z ) ~ ( t )  (123) 

Y( t l=C(z )x ( r )  ( 12b) 

where F(z)  = D - ' ( z ) A ( z )  E G ( z )  = D - ' ( z ) B ( z )  E R t x m .  
Since condition ( 1 1 )  implies that det D(e-5'') # 0 for Res 2 0 and all h 
2 0,  the null solution of (IO) (with u(t) = 0) is asymptotically stable 
i.0.d.. if and only if 

det [sI-F(e-'*)] # O  for Res20 for all h 2 O .  (13) 

111. A LYAPUNOV CRITERION FOR RETARDED SYSTEMS 

Let [A(z)IB(z) ]  and [ A ( z ) / C ( z ) ]  denote the reachability and the 
observability matrices associated with the differential-difference equa- 
tions (6). 

Theorem 3. I :  Assume that 

rank [A(eJ')(B(eJ")] =n,  for all u [ O ,  2 n ] .  (14) 

Then the  null solution x(?) = 0 of (6) with u(t )  = 0 is asymptotically 
stable i.0.d.. if there exists a  positivedefinite Hermitian matrix K ( e 9  V 
wt[O. 2n] that satisfies 

A(eJ-')K(eJ") + K(eJ")A *(e'") = - B(eJ")B*(ej"). (15) 

Assume that 

then the null solution x ( f )  = 0 of (6) with u(t) = 0 is asymptotically 
stable i.0.d. ~ if there exists a  positivedefinite Hermitian matrix W(eju) V 
w [ O .  2 r ]  that satisfies 

A*(@') W(eJ") + W'(eJL)A (e'") = - C*(e'")C(eJ0). (17) 

Moreover, if 

det A(e'")#O, vwe[O, 271 (18) 

then the above sufficient conditions are also necessary. 
Proof: Suppose the Lyapunov equation (15) has a positive-definite 

solution K(e'") V W E  [0, 2 n ] .  Fixing any wc[O, 2n] condition (14) implies 
(A (e'"), B(ejY)) is a (complex) reachable pair. Let V [ x ]  = x*  K(ej")x, 
then for any x # 0,  V [ x ]  > 0. It turns out that along any solution 
trajectory of the differential equations x = A (eJu)x(t) ,  

- V [ x ( t ) ]  = -x*(t)B(eJ')B*(e'")x(r)$O d 
dt (19) 

which, along with the reachability of (A (e'.), B(eI")), means that d  V/dt 
is  not identically zero along any trajectory of x ( r )  = A(ej")x(t) .  Then 
ksal le 's  well-known extension of the Lyapunov stability theorem 
allows one  to claim that det [sl - A(ej")] # 0 for Res 2 0, i.e., det [sl 
- A ( z ) ]  f 0 for Res 2 0 and IzI = 1. Therefore, using results of [9] 
one concludes that the null solution of the equations ( 6 )  with u(t)  E 0 is 
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asymptotically stable i.0.d. Conversely, notice that condition (18) is  the 
same as condition (8). Thus, the asymptotic stability of null solution i.0.d. 
along with condition (18) implies (9). So one can define, for arbitrary 
fixed WE [O, 2T1. 

Straightforward manipulations then indicate that K(ej") satisfies (15). It is 
routine to show that K(ej") is positive-definite through the use of the 
reachability of (A (e'"), B(ej")). A similar argument can be given for the 
other part of the theorem. 

Remark 1: The asymptotic stability i.0.d. of the null solution of the 
equation (6) with u(t)  = 0 along with condition (17) also implies the 
uniqueness of the positive-definite solution of (15) as well as  (17). 

Remark 2: It can be observed that if the matrix A(z)  in (6) is 
independent of z then there is no difference between condition (7) and 
condition (9). Consequently in such a case, condition (18) in Theorem 3.1 
i s  no longer needed. Theorem 3.1, therefore. is a natural extension of 
Kalman's result (Lemma 1.1) to the time-delay setting. 

Remark 3: Reachability condition (14) and observability condition (16) 
are much weaker than R[z]-reachability and R[z]-observability, respec- 
tively. Moreover. (14) and (16): in the delay-free case become the 
ordinary notions of reachability and observability. 

Iv. EXTENSlON  TO NEUTRAL DELAY SYSTEMS 

In this section we consider a class of neutral delay systems as modeled 

Let F(z) = A ( z )D- ' ( z ) ,  then the Lyapunov result is stated as follows. 
Theorem 4.1: Assume that 

by diffe_rential difference equations (10) with stable D-operator. 

rank [F(el")]B(eju)] = n  V wc[O, 2 4 .  (20) 

Then the null solution of homogeneous (u( t )  = 0) differentialdifference 
equations (10) is asymptotically stable i.0.d. if there exists a positive- 
definite Hermitian matrix I?(ej=) V we[O, 2?r] that satisfies 

F(eJ-')ii(e'u)+R(ei.)F*(ef") = - G(eJ-')G*(eJ-'). (21) 

Assume that 

then the null solution x( t )  I 0 of homogeneous (u(r)  = 0) differential- 
difference equations ( IO)  is asymptotically stable i.0.d. if there exists a 
positive-definite Hermitian matrix @(eld) V W E  [0, 2 ~ ]  that satisfies 

If 

det A (el-') f O  VWE[O, 2x1 (24) 

then the above sufficient conditions are also necessary conditions. 
Proof: Note first that 

rank [F(eJ")(G(e'-')]=n t/ m [ O ,  2771. 

If (21) has a positive-definite solution, one can now  use the same 

argument as in the proof of Theorem 3.1 to conclude that for any W E  [0, 
2Tl 

det [SI- F(eJ')] # 0 for Res 3 0 

which, by the observation made in Section 11, leads to the asymptotic 
stability i.0.d. associated with the null solution of the differential- 
difference equation (10) with u(t)  = 0. Conversely, write 

A(s, e-'")=det  [D(e-5h)s-A(e-S*)] 

=det D(e -5k)~n+  C ~ _ , ( e - s h ) ~ n ~ ' + . . .  + Co(e -$"), (26) 

then the asymptotic stability i.0.d. of null solution of (IO) with u(t) = 0 
means that 

A(s, e - s h )  # 0 for Res 2 0 and all h 2 0 (27) 

and, condition (24) is the same as 

d(O, Z)#O for 1z1=1. (28) 

In the retarded delay case the demonstration 171, [9] that condition (7) plus 
condition (8) imply condition (9) is based on Theorem 1 of [8] where the 
fact that A(s, e-rh) is monic in s is a key point (treating e-sh = z as 
another variable). Notice that in the present case Z(S, e-sh) in (26) is no 
longer monic in s. However, since ldet D(ejw)I is a continuous real 
function in W ,  condition (10) implies that there exist 0 < CY 6 p < m 
such that 

a< (det D(Jd)l <& 

i.e., the coefficient of s" in A(S, e-fh) is always nonzero and u n i f o 9 y  
bounded for all m [ O ,  2x1.  It is easy to check for such a polynomial A(s, 
e -s*), [8, Theorem 13 still holds. Therefore, condition (27) plus condition 
(28) will  lead to 

i(3, z )=O for Res20 and IzI = 1. 

The rest of the proof is exactly the same as that of Theorem 3.1 0 
Similar remarks as at the end of the previous section can also be made 

here. 
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