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Weighted Least-Squares Method for Designing
Variable Fractional Delay 2-D FIR Digital Filters

Tian-Bo Deng Senior Member, IEEBNnd Wu-Sheng LuFellow, IEEE

Abstract—This paper proposes a closed-form weighted spectral parameters that control the magnitude characteristics
least-squares solution for designing variable two-dimensional of the variable filters. Since the stability of variable IIR filters
(2-D) f:”'te"mpgjllsez gs?ons_e (T'Rd)ld'g'tal filters WI':th COT{ should be guaranteed during the tuning process, one method
tinuously variable 2-D fractional delay responses. First, the . o o
coefficients of the variable 2-D transfer function are represented for solving the stability problem has been pfop‘?sed In [6]. The
by using the po|yn0mia|s of a pair of fractional de|ays 171, p2)_ approaCheS can a.ISO be extended to the tWO—dImenSIOI’]a| (2'D)
Then the weighted squared-error function of the variable 2-D  case [7], [8]. To simplify the 2-D design problem, the decompo-
frequency response is derived without sampling the two frequen- sjtion-based approach is very efficient [9]. In the recent paper
cies fv1, w2) and two fractional delays (py, pz), which leads to - 114] most of the existing methods for designing variable filters
a significant reduction in computational complexity. With the in this category are surveyed and compared. This paper will not
assumption that the overall weighting function is separable and "’ g y_ . Yy ; - p : p p
stepwise, the design problem is reduced to the minimization of the discuss the variable filters in this category, and the interested
weighted squared-error function. Based on the error function, the reader is referred to [10] for details. The second category with
closed-form optimal solutions for the coefficient matrices of the which we are concerned in this paper deals with the variable
variable 2-D transfer function can be determined through solving filters with only variable phase or group delay responses. The

a pair of matrix equations. In addition, Cholesky decomposition is ; ) . - .
applied to the final closed-form expressions in order to avoid some variable filters with variable fractional delay (FD) responses

numerical instability problem. An example is given to illustrate ~are extremely useful in applications such as timing adjustment
the effectiveness of the proposed design method. in a digital modem [11], [12], music instrument modeling,
Index Terms—Two-dimensional digital filters, variable digital audio signal processing [13], [14], incommensurate-ratio

filters, variable fractional delay filters, weighted least-squares Sampling rate conversion, and speech coding [15], since the
design. group and phase delay time of this kind of variable filters can

take values which are not necessarily multiples but fractions
of the sample interval. So far, many design methods for this
class of variable 1-D filters have been proposed. For example,
N MANY signal processing applications and telecommuFarrow proposed a polynomial-based method [16], which is
nications, the frequency characteristics of digital filtergery simple to design and implement. Paper [17] examines
need to be variable (adjustable). Such digital filters are referredme methods of FIR designs including the Lagrangian inter-
to as “variable digital filters.” Since digital filters have manypolation method. Recently, weighted least-squares methods
advantages over the analog ones, especially in the variable caggh and without discretizing parameters have been proposed
digital filters are more flexible to implement, and research a improve the design accuracy with reduced computational
the design and implementation of variable digital filters hausomplexity [18], [19]. Paper [15] provides a comprehensive
received considerable attention. For simplicity, this paper wileview and comparison of the existing methods for designing
take the term “variable filter” to mean “variable digital filter.”and implementing such 1-D variable filters. As mentioned in
Generally speaking, variable filters can be classified basica[lys], variable FD filters have many potential applications in
into two main categories. The first one includes variable filtesd-D digital signal processing fields. For example, variable
with only variable magnitude responses. For example, varialtgee-dimensional (3-D) FD filters can be used in continuous
finite-impulse response (FIR) filters are designed for tuninigame interpolations of video data, and 2-D ones can be applied
magnitude responses in [1]-[4], and one-dimensional (1-B) the continuous subpixel interpolations of still images for
infinite-impulse response (IIR) filters are investigated in [Slimage magnification and minification. In addition, 2-D FD
[6], where the coefficients of the recursive variable filters aiiters based on piecewise polynomial interpolations have
expressed as the multi-dimensional (M-D) polynomials of thgeen investigated in the contex of image resampling; see, for
example, [20]-[24] and the references therein. No matter what
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able 2-D transfer function as the polynomials of the fractional d&imilarly, we can expresH(z2, p2) as

lays (p1, p2), and then derive a weighted squared-error function N K

of variable 2-D frequency response without discretizing the 2-D = o) kz
frequenciesy , w-) and 2-D fractional delay(, p-). Finally, 2(72,2) Z D aalnz k)
closed-formexpressionsforthe optimal coefficientmatricesofthe T
variable 2-D FIR filter are obtained by minimizing the error func- =z Aopy ©)
tion. Asignificantadvantage ofthe proposed methodisthatitdoggere

not need the discretizations of the parametersvs, p1, andps

to derive the weighted squared-error function; thus, the final de- 22 =[1 231 272 ... 2;M] (10)
sign accuracy is not affected by the grid densities of the sampling

points. Also, the discretization-free approach leads to a consider-

no =0 kz =0

able reduction in computational complexity. An example is given a2(0,0) a2(0,1) a2(0, Ko)
todemonstrate thatthe method canachieve extremelyaccurate de- a2(1,0)  ap(1,1) - ax(l, Ko)
signs efficiently. Ay = : : : : (11)
Il. PROBLEM FORMULATION AND OBJECTIVE FUNCTION az(N2,0)  az(Nz, 1) -+ az(Na, K>)
The desired variable 2-D FD response is
Hy(wi,wa,p1,p2) = eI lwr (D14p1)+wz (Dz+p2)] (1) po=1[1 p p3 --- pé‘z 1% (12)

where(wy, wo) are the normalized 2-D angular frequencies, The ordersy; in (4) andK> in (9) are chosen by the designer to

wa € [—m, 7], (p1,p2) are the 2-D variable fractional delays, produce an FD filter with satisfactory performance and manage-

p2 € [0,1], and(Dy, D) are the positive integers that represerible computational complexity. High ordéi& , K») yield im-

the integer parts of the total group delays. Obviouyslyandp.  proved design with increased computation cost at the design as

are continuously variable in the above ranges. Here, we wantiell as implementation stages, while low ordéfs, , K») lead

use the variable FIR transfer function to inexpensive design and implementation but degraded perfor-
H(z1, %2, p1,p2) = Hi(z1, p1)H2(22,p2) (2) mMmance.

Th fth I I 1
to approximate the desired variable frequency response (&Adl)e;n;?gecrhzz:z c;st  total group delays in (1), nandejy

where
N N —1
'~ foroddn;
17, p1) Z G, (P1)2 " () D=4 n2 (13)
=0 ?’, for evenh;

can be regarded as the 1-D transfer function with Va”a%erm — 1,2. This is because we want to use the transfer

coefficients a1, (p1) which are the functions op;. The function (2) to approximate the desired frequency response (1),

reason why the transfer .functld{(rl,@,pl,m) in (2) a which is linear phase. Therefore, the variable 2-D transfer func-
sumes a separable form is that the desired frequency resp (2) can be expressed as

Hy(wi, w2, p1,p2) in (1) is separable. Like in [16], for the sake

of generality and easy treatment, we also assumezthatp; ) H(z1,22,p1,p2) = 2} A1p 2% Asp, (14)
are the 1-D polynomials gfy, i.e.,
Ky whose frequency response is given by
k
alnl P1) = ai 711,]()1 Y4 1. (4)
(#) 1}:20 ( i H(wi,w2,p1,p2) = wi Aipyw; Asp, (15)
Substituting (4) to (3) gives where
Ny K
71,])1 Z Z a1 711,/{}1 ™ kl { = []_ eIwr  emi2wr L @—lewl]
n1=0 k=0 w; — []_ e Iwz  gmi2w2 . o—ilNaws ]
_ T
=z Aip, ) .
where Defining the complex-valued error
; =H
le =1 Zfl 2;2 21—1\1] (6) e(wr, w2, p1,P2) (w1, w2, p1,P2)
— Hy(w1,w2,p1,p2) (16)
a1(0,0) a1(0,1) a1 (0, K1) our objective here is to find the optimal coefficient matricks
A = ai(1,0) ai(L,1) - au(l, K 7 and A, such that the total weighted squared-error
ar(N1,0) ay(Ny,1) - ar (N, Ky) J(A17A2)=/ / / W(wi,w2,p1,p2)
wi=—7 Jwg=—7 Jp1=0 J p2=0

po=[1 p p} - p )% 8) Je(wr, w2, p1,p2)|*dwy dws dpy dps  (17)
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is minimized, wheré¥ (w;, w2, p1, p2) IS @ nonnegative four- Substituting (18) and (27) into (17), we obtain
dimensional weighting function. In this paper, we assume that
the weighting function is separable, i.e., J(A1, Az) = J1(A1, As) + Jo( A1, As) + . (28)

Wiwr,w2,p1,p2) = Wi(w)Wa(w2)Wa(p1)Wa(p2)  (18) By using the matrix propertytdB) = tr(BA) [25], where tr()
and the 1-D functionsV; (w; ), Wa(w2), Wa(p1), Wa(ps) are denotes the trace of the matrix involveti{A;, 4,) in (28) can
piecewise constant. For example, for the frequenciem the D€ expressed as
range[0, 7], we first divide the interval0, =] into the union of e e,
several small intervals (sub-intervals) as Ji(Aq, As) :/ / / / Wi (w1)Wa(wa)Wa(p1)Wa(p2)

w1 Y w2 Y p1L v p2

[0,7] = [0, 01 (D] U [wr (1), wn(2)] U ---

g (w{Alplp{A{wl) (W§A2P2P§Agw2)
Ulwi (L1 — 1),wi1(L1)]  (19)

dw, dwo dp; dps>

wherew,(L1) = w. Then, the sub-weighting functioi; (wy )
is chosen to be constant in each sub-interval, i.e., = {/ / W1 (w1)Ws(pr)
Wi P1

Wl(wl) Ty s for w1 € [wl(ll 1),(4)1([1)] (20) ' w{Alplp{A{wl dos, dpl
wherery;, are constants fol; = 1,2,---,L;. In addition, i
we assume that the sub-weighting functidf (w;) for w; €
[, 0] is symmetric with respect to; = 0. Likely, Wx(w») is ' |:/u.2 /pz Walwa)Walpa)
defined as _

- wl Aop,pt AL, dws dp
Walws) = rar,,  for wa € [walla — 1), wa(l2)]  (21) 2 alally #Ra e T T2

wherels = 1,2,---,Ls. As for the sub-weighting function _ T
Ws(p1), the interval [0, 1] is divided into the union of sub-in- =t or o Wi(w)Ws(ppipy
tervals as

. A{leTAl dwl dp1:|
[0,1]=[0,p (D] U [p2(1), pr(2)] U - - - U [pr (M1 — 1), p1 (My)]

(22) xtr [ / / Wo(w2)Wa(p2)pops

wherep; (M) = 1. For each sub-interval, the corresponding w2 VP2
sub-weighting functiois(p, ) is constant, i.e., - AYwowl Ay dws dp2}

Wa(p1) = 73m,, for pi € [pi(mi—1),pi(m1)] (23)
wherem; = 1,2,---, M;. Similarly, W4(p,) can be defined as =tr [/ Wa(p1)ppi dpy - A]
P1

Wi(p2) = 74m,, for pa € [pa(ma —1),pa(m2)] (24)

. / Wl (wl)wlwf dwl . A1:|
wherems = 1,2,---, M. Note that wi

|@(w17w27P17P2)|2 =e(w1, w2, p1,p2)e’ (w1, w2, p1,p2) xr {/ W4(p2)P2P§F dp2 ~Af§
P2
=[H (w1, w2, p1,p2)— Ha(wi, w2, p1, p2)]
* * . Wo(wo)@ows dws - A
- [H™ (w1, w2, p1, p2) —Hg(wi, w2, p1,p2)] L, Rt Tz
25
(25) =tr(P AT 2, A)) tr(Py A} 25 Ay) (29)
with
" 7 7 where
H" (w1, w2, p1,p2) = w; Aip1w; Aop,
= [U{AlplmgAQPQ]T / ! T aut
_ _ Pl = W3 D1)p1D dpl = T3m Plrn, (30)
iAlopiAle,  (29) , Tatppirt dp = 3 ram P,

wherew; = w}, w> = w}, and[-]* means the complex-conju-
gate off-]. Substituting (1), (15), and (26) into (25), we obtain p1(m1)
|e(wr, wa, p1, p2)|* = wi Aip Wi Asp,ps Ay wop! ATy Pam, = /m (mi—1)

— 2 Rew? Arp,wl Asp, 1 m P2 I’J’{(j—l

* 2%

- Hg(wi,wa,p1,p2)] +1 P1 » pr ot p

= (i Aup,p{ A1) (w5 Aop,p3 AT 2) L A e

— 2 Re{w! A1 p,wi Asp, p{‘l p{‘l"'l p{‘l"'? p%l‘l

. ej[wl(D1+P1)+w2(D2+P2)1} +1. (27) = [Plnn (L,J)] (31)
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and P, (¢, 7) is the (4, j)th entry of the matrix’y,,,, , which _ / / W1 (w1)Wa(pr)eF Aip, dwy dp,
can be written as w1 Jp1
k k
P, (i, ) ALY _zl(ml — 1); i=1,2,--, (K +1); : / / Wa (w2)Wa(p2)e; Aopy dws dps
w2 P2
J:17277(K1+1)7 / / T
— Wi(w)W: s Aip, dwi d
it (32) oA 1(w1)Ws(p1)s1 Aip; dwi dp;
In addition, the matrixf2; in (29) is given by . / Wa(wa)Wy(p2)ss Aspy dwo dpo
71— L, Wz P2
2, = Wi(w)@wi dw; =2 Z ruf21,  (33) =tr {/ / W1 (w1)Wa(p1)p,et dwy dp; -Al}
- I1=1 w1 p1
where we have (34), shown at the bottom of the page, with S tr / / W (wo)Wa(p2)poct dwsy dps - Ag
.. L W2 P2 -
Qlll (1’7])
wi (1) — wi(ly — 1), fork =0 —tr U / Wi(w)Ws(p1)pysi dwr dp ~A1}
— 1 — g — w1 Jp1
sinfkwy (11)] — sinfkw; (I 1)]7 for k%0 | : .
k o tr / Wa(w2)Wa(p2)pasy dws dps - Ay
(35) L W2 P2 d

being the (¢, j)th entry of the matrix2y;,, and 4,5 = = (U1 A) r(U24z) — r(V1 A1) (V2 A2) (39)

1,2,---,(Ny + 1), k = ¢ — j. Obviously, £2;, are Toeplitz where

matrices, henceé?; is also a Toeplitz matrix. MatriceB> and ™ 1 -
£2, can be evaluated in a similar manner. U= / / Wi(w1)Ws(p1)piep dwr dpr
In the second term of (27) o OMI
Wl Ap,wl Aop, - oIl (Pr4p1) 4z (Da+p2)] =2 Z Z 10 73m, Uty my (40)
= [w?ejwl(Dl-l'Pl)]Alpl[wgejwz (D2+P2)]A2p2 g li=1 mi=1
. ) an
= (C{ + JS{)Alpl (Cg + Jsg)AQPQ (36) w1 (l1) p1(my)
thus Ulllm,l = /wl(ll_l) /pl(,nl_l) p16¥1 dwr dpl
Re{w! A1p,wi Asp, - ej[wl(D1+p1)+w2(D2+pz)1} = [U11,m, (3, )] (41)
=¢f Aip, & Aop, — 51 Aip;s; Aop,  (37) In (41)
p1(ma) )
Wh_ere we have_z (38), shown at the bottom of the page_.Therefore, Uty (3, 5) = / pgz—l)ql (p1) dpr (42)
using the matrix propertytilB) = tr(BA), J2(A;, A>) in (28) p1(ma—1)
can be evaluated as is the (i, 7)th entry of the matri@J/1,,,,, , and
Jo(A1,Az

Sin[kwl(ll)] — Sin[kwl(ll — 1)]

)
L L e e

- Wa(p1)Wa(p2) (¢] Aipyc] Asp,

wl(ll)—wl(ll —1), fork=0
q(p1) = {

T T
— 51.A1p; 85 Agp,) dwy dwy dpy dps by using fast and reliable numerical integration methods such
1 COS w1 cos 2w1 _— cos Niwy
Ccos wy 1 CoSs w1 <o cos(Ny — Dwy
wl(ll)
2, = / cos 2w COS W1 1 -+ cos(Ny — 2)wy dwy = [Qu, (i, §)] (34)
wi(l1—1) : : :
cos Niwy  cos(N; — Dwr  cos(Ny — 2wy -+ 1
C{ COS(Dl —l—pl)wl COS(Dl +p1 — l)wl e COS(Dl +p1 — Nl)wl]
S{ = Sin(Dl —i—pl)wl Sin(Dl +p1 — 1)w1 A Sin(Dl +p1 — Nl)wl]

[
[
¢t =[cos(Day +p)ws cos(Dy+ps — Dwa -+ cos(Do 4 pa — No)ws]
83 = [sin(Da +p2)wz  sin(Dy+pa — Dws  ---  sin(Da + p2 — Na)ws]. (38)

wherek = D; +p; — j+ 1. The integral (42) can be calculated
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as the adaptive Simpson’s rule or the adaptive Newton-Cofes,
rule [26]. The matriXJ, in (39) can be determined in a similar

fashion. Furthermore, matric&5 andV in (39) are given by

™ 1
V= / / Wi(w1)Ws(p1)p st dwi dp:
—7 0

T 1
Vo= / / Wo(w2)Wa(p2)pass dws dpo.
—7 JO
It can be readily shown that
Vi=0
Vs, =0.
As a result, we obtain the second term in (28) as

JQ(Al, AQ) = tl’(UlAl) tl’(UQAQ). (44)
The last term in (28) is a constant
Jg = / / / Wl(wl)WQ(CUQ)
Wi Wz P1 P2
-Wa(p1)Wa(p2) dwi dwy dpy dp:
= constant (45)

Xtr(Y) =Y tr(X) (54)
where
X = PyAT Ay
Y =U,A,. (55)
Hence, if tr’) # 0, then
X=aY (56)
where« is a nonzero scalar. Consequently, we have
 tr(PaAT2,4,) o
Ay = 251U P (58)
Iftr(Y) =0, i.e,
tr(UyA) =0 (59)

Substituting (29), (44), and (45) into (28) leads the final

weighted squared-error function to
J(Al,AQ) = tr(PlAlT.QlAl) tr(P2A§QQA2)
+tr(U; A;) tr(U> A5) + constant  (46)

IIl. CLOSED-FORM SOLUTIONS FORA; AND As

we can find an infinite number o, satisfying (59), but from
(50), this leads to

A =0, (60)

Hence, trf") cannot be zero and; andA; in (57) and (58) are

the final optimal coefficient matrices.

Furthermore, although a nonzero scalén (57) and (58) can
chosen arbitrarily, in considering the fact that the variable

2-D filter H(z1, 22, p1,p2) in (2) is the cascade dff;(z1,p1)

andHs(z2,p=2), it seems reasonable to determine the value of

Our objective here is to find the optimal coefficient matrice
A; and A, in (46) such that the error functiof(A;, Az) is
minimized. The closed-form optimal solutions can be obtain%%
as follows.

Differentiating the objective functiod(A;, As) in (46) with
respect to the coefficient matricels and A,, respectively, we

biai as follows.
Oaga(ﬂ A) The frequency response &f;(z;,p1) in (5) at(wy,p1) =
% =20, A, Py tr(PAY 2, A5) — 2UT tr(U,A;)  (0,0) s
1
H1(0,0) = wi,Aip
8J(A1,A2) . T T 1M 10 10
87/12 =2025A,P tr(P1A1 .QlAl) — 2U2 tr(UlAl). _ wfll"ogl—llflrpl—lplo (61)
(47) o
. . I . where
Setting the above partial derivative matrices to zero results in .
the matrix equations wp=[11 1]
2,1 A, Py (P2 A3 2, A2) = UT tr(UsAy) (48) plo=[1 0 0] (62)
and the frequency response Bf(zs, p2) in (9) at(ws,p2) =
2, A4,P5 tr(PlA{.QlAl) = Ug tr(UlAl). (49) (0 0) is q y P ( 2 2) ( ) ( 2 2)
From (48), we obtain H3(0,0) = wl;Asp,g
= (@2 UT P ) (U Ay) (50) = awyofly U3 Py 'pag (63)
tr(P2 A3 25 A5) where
Sinces?,; and P, are symmetric matrices, we have wgo —[1 1 1]
U, tr(U> A
P AT = ﬁ. (51) Po=[1 0 0] (64)
Substituting (51) into (49) Iead52t02 o2z It should be noticed that the vectars, andwsg, p;, andpy,
9 in (62) and (64) may have different dimensions.
Py A} 2, tr(UsAz) = Us tr(P2 A} 25 A,) (52) The corresponding 1-D magnitude responses are
which yields M:(0,0) = |H1(0,0)
(P2 AY 25 A2) tr(Us Ag) = (Ug Ay) tr(P2 AL 2,A5)  (53) M5(0,0) = |H2(0,0)|.
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If one requires to havé/, (0,0) = M>(0,0), then the value of TABLE |
a can be determined using (61) and (63) as VARIABLE FREQUENCY-RESPONSEERRORS
\/|w’{091—1[]fp1—1p10| p1 | P2 | Balp1,p2) (%) | Ermas(pr, p2)
o= . (65) 0 0.0280 0.0013
\/|W§FOQEIIIQTP51P20| 0 [05] 00860 0.0016
This a balances the frequency responses of the cascaded 1 0.0280 0.0013
1-D variable transfer function&l; (z1,p1) and Ha(z2,p2) at 0 0.0860 0.0016
(wi,w2) = (0,0) and(py, p2) = (0,0). 0505 01195 0.0027
1 0.0860 0.0016
0 0.0280 0.0013
IV. NUMERICAL EXAMPLE 1]05] 00860 0.0016
1 0.0280 0.0013

In this section, we describe a design example to illustrate the
proposed method, where the desired variable 2-D FD respo
(1) is approximated by a 2-D variable FIR filter with the fol-
lowing design parameters:

n
T?mus the actual variable FD responses are given by
00(w1, w2, p1, p2)

Ti(wy, w2, p1,p2) = — 2 - D
Ny =Ny =35 961 (w wl)
Ki=Ky=5 = _18—1,171 — Dy (in wy direction)
1w e0,04r), =12 “ (69)
2 w; €[047,0.6m) 08(wr,ws, pr, pa)
_J 4 w; €[06m,0.77) To(w1,wa, P1,P2) = — L2, e — Dy
Wilw;) = Owo
8 wi€[077r087r) 96 )
50 w; € [0.87,0.97] = 2P b (inw, direction)
0 w; € (0.9, 7] Owo -
Walpr) =1, P € (0.1] Therefore, the variable fractional delaysdn and d'(rec)
, vari i irec-
Wilp) =1,  p2e[0,1]. (66) Yo ane W

tions are completely determined by the phase responses of
Obviously, the passband of the desired variable 2-D filter is tl}gzl(zl’pl) and H,(z2, p2), respectively. That is, the function
rectangular rang@(w, ws): |wi| < 0.97, lwz| < 0.97} andthe 7 (W, w,, p1, p2) only depends on the variables andp; , and
remaining region outside the passband is the “don’t care” frgye functionrs (wy, ws, p1, p2) only depends on the variables
quency band. Here, the weighting function§ (w1 ), Wa(w2),  w, andp,. To evaluate the design performance, the normalized
Wi3(p1), andWa(p2) are chosen such that the 2-D frequency repot-mean-squared (RMS) error of the variable 2-D frequency
sponse of the designed variable filter is almost uniformly flat ifresponse in (71), found at the bottom of the page, and the

the passband. By looking at the valued®f(w;) andWz(w2)  maximum absolute frequency-response error
we know that larger weighting coefficients are put near the pa

s
band edges where the frequency response is difficult to apprcé&“ax(pl’p?) = max{|[H (w1, w2, p1,p2) = Ha(wi, w2, p1, p2)l

imate. |lwi] < 0.97, lwa| <097} (72)
From _(2) we know that the actual variable 2-D frequency regre used, wher&s (py, p2) and Ey..(p1, p2) are the functions
sponse is given by of p; andp,. Table | lists the normalized RMS errabs (p;, p2)

H(wy,ws, p1.p2) and the maximum absolute el’l’(ﬁﬁlax(p.l,pg) for some fixeql
— Hi(w VHa(w ) (p1,p2) values. From Table I, we can f|nd_ that the normalized
L1\W1, P1)fi2i%2, P , RMS errors are very small, and the maximum absolute errors
= Mi(wy,p1)e? P Ma(wg, pa)el® 222 4re about 0.002. In addition, we can also find that both the RMS
= M(wl,wg,pl,pg)eje(“l"“'“’hpz) (67) error and the maximum absolute error @i, p2) = (0.5,0.5)
are the largest among all the combinationgpfindp.. Fig. 1
shows the 2-D magnitude response fpr,p2) = (0.5,0.5).
M(wi,wa, p1,p2) = Mi(wi, p1)Ma(w2, p2) We can observe that the magnitude response in the passband
O(w1,wa,p1,p2) = 01 (w1,p1) + O2(wa,p2).  (68) is extremely flat € 1). Fig. 2 shows the absolute errors of the

where

1/2

0.97 0.97
[/ / |H (w1, w2, p1,p2) — Ha(wy, wa, p1, p2)|* dwy de}
—0.97 —0.97

0.97 0.97
{/ / |Hd w17w27p17p2)| du)l dCUQ:|

0.97 0.97

Eg(pl,pg) = X 100% (71)

1/2
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fq y sponse in the pas bdhh re fairly sm andard filters such as a low-pass filter to perform fre

additi e we p h e weighti g functiobg, (wy1) = quency selectlng operatlons as mentioned in [27].
WQ(wQ) h “don e"ba dwh wo € (0. 97r,7r], Fig. 3 illustrates the FD responsa (wi,wsz,p1,pz2) |
the magni d p h d b dd ot hake passband, which is the function of onlyy and pq,
to be flat, whi h b b df Fig. h b semhd F g shows the corresponding absolute deviati
on the assumptio h the signal I be p d h S frgw, ,pg) from the desired FD response. The
guency componen Iy h the pas b nd. However, if thealiz d ofry (w1, ws, p1,p2) is 0.5063%, and the
2-D signal includes a high-frequency c p uch X|mum absolute error is 0.0135. Moreover, Figs. 5 and 6

noise, the FD filte d g ed here has to wo k d withust the passband FD responseéw;,ws,p1,p2) and
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the corresponding absolute errors. The normalized RMS errate. In order to avoid numerical ill-conditioning problems
and the maximum absolute deviation are the same as thosevbfch arise in computing the inverses of the matrifas P,
71 (w1,w2, p1,p2). From the above results, we observe that th€,, and P, in (57) and (58), they are first decomposed by
variable FD responses in the passband are quite flat. using Cholesky decomposition as

MATLAB version 5.2 was used in the computer simulations. T T
The integral (42) is evaluated by using MATLAB command =R R, P=55
{\tt{quad8}/tt} which employs adaptive Newton-Cotes panel 2, =RjRy, P>=2538, (73)
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whereR;, S1, R>, andS, are upper triangular matrices. Then 1) The decompositions (73) imply that the inverses of the
matricesf2

=TT a—1\a—T T, Pyt =87157" (76)
Ay =R [Ry; T (U3 S57)557 . (75) .
where the condition numbers &, S1, R, andS, are

The groupings in (74) and (75) assure the numerically stable much smaller than those &2;, Py, £25, and P, thus
solutions because of the following reasons. more accurate inversions can be obtained.
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2) The entries ol/; andU, are very small in magnitude,
thus the grouping®? with $7* andU? with S, make
it possible for the small entries #I{ andU3 to cancel
out the large entries i§7! andS; ', respectively. This
in turn results in the desired numerical stability. It was [2]
found that other matrix decomposition methods such as
LU, SVD, and QR methods can also be utilized to decom- (3
posef?,, Py, £25, and P to assure the similar numerical
stability, but Cholesky decomposition requires slightly re-
duced computational complexity compared to the other
methods.

Finally, we would like to summarize the whole design process [5]
stated in the preceding sections and comment on the implemers]
tation of the resulting 2-D variable filter as follows. First, the
design can be performed by the following.

Design-Step-1:Compute matrice®’;, £2;, andU; by using

(1]

(4]

formulae (30), (33), and (40). The matricBs, £2,, andU, can 8l
be computed in the same way.

Design-Step-2:Determine the scaling factorin (65). [9]
Design-Step-3:Perform Cholesky decompositions on ma-
tricesf2,, P;, and{2,, P, as (73). [10]
Design-Step-4.Compute the optimal coefficient matrices

(11]

A; and A as (74) and (75).

The above four steps complete the off-line design of the varim]
able 2-D FIR filter.

Second, once the optimal coefficient matrieksand A, are
found, the resulting variable filter can be applied to real—time[13]
tuning for any given values of the fractional delaysandp.
This can be seen from (5) and (9), which only need matrix
multiplications A;p, and Asp, to obtain the new 2-D filter
coefficients for some given values pf andp,. Another effi-
cient method for the real-time implementation of the resulting{lS]
2-D variable FIR filter (2) is to implement{;(z1,p;) and
Hy(z2,p2), respectively, by using the Farrow structure [16],
then Hi(z1,p1) and Ha(z2,p2) are connected in cascade to [16]
ObtainH(zl, Zg,pl,pg).

[17]
V. CONCLUSION

We have proposed a weighted least-squares method for désl
signing variable 2-D FIR digital filters with continuously vari-
able FD responses. The design is formulated as a weighted least-
squares minimization problem without sampling the 2-D fre-[1°]
quenciesv , w2, and variable 2-D fractional delays, p», thus
the final design accuracy is not affected by the sampling grid
densities. Furthermore, since no discretizations of the paraniOl
eters are required in computing the closed-form optimal coef-
ficient matrices, the computational complexity is significantly [21]
reduced.

A design example has been given to illustrate the propose@z]
method. This method may also be generalized to deal with
higher dimensional> 3) cases, however the derivations may
become far more involved, and further studies need to &

carried out for developing tractable design algorithms. [24]
[25]
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