
114 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 47, NO. 2, FEBRUARY 2000

Weighted Least-Squares Method for Designing
Variable Fractional Delay 2-D FIR Digital Filters
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Abstract—This paper proposes a closed-form weighted
least-squares solution for designing variable two-dimensional
(2-D) finite-impulse response (FIR) digital filters with con-
tinuously variable 2-D fractional delay responses. First, the
coefficients of the variable 2-D transfer function are represented
by using the polynomials of a pair of fractional delays ( 1 2).
Then the weighted squared-error function of the variable 2-D
frequency response is derived without sampling the two frequen-
cies ( 1 2) and two fractional delays ( 1 2), which leads to
a significant reduction in computational complexity. With the
assumption that the overall weighting function is separable and
stepwise, the design problem is reduced to the minimization of the
weighted squared-error function. Based on the error function, the
closed-form optimal solutions for the coefficient matrices of the
variable 2-D transfer function can be determined through solving
a pair of matrix equations. In addition, Cholesky decomposition is
applied to the final closed-form expressions in order to avoid some
numerical instability problem. An example is given to illustrate
the effectiveness of the proposed design method.

Index Terms—Two-dimensional digital filters, variable digital
filters, variable fractional delay filters, weighted least-squares
design.

I. INTRODUCTION

I N MANY signal processing applications and telecommu-
nications, the frequency characteristics of digital filters

need to be variable (adjustable). Such digital filters are referred
to as “variable digital filters.” Since digital filters have many
advantages over the analog ones, especially in the variable case,
digital filters are more flexible to implement, and research on
the design and implementation of variable digital filters have
received considerable attention. For simplicity, this paper will
take the term “variable filter” to mean “variable digital filter.”
Generally speaking, variable filters can be classified basically
into two main categories. The first one includes variable filters
with only variable magnitude responses. For example, variable
finite-impulse response (FIR) filters are designed for tuning
magnitude responses in [1]–[4], and one-dimensional (1-D)
infinite-impulse response (IIR) filters are investigated in [5],
[6], where the coefficients of the recursive variable filters are
expressed as the multi-dimensional (M-D) polynomials of the
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spectral parameters that control the magnitude characteristics
of the variable filters. Since the stability of variable IIR filters
should be guaranteed during the tuning process, one method
for solving the stability problem has been proposed in [6]. The
approaches can also be extended to the two-dimensional (2-D)
case [7], [8]. To simplify the 2-D design problem, the decompo-
sition-based approach is very efficient [9]. In the recent paper
[10], most of the existing methods for designing variable filters
in this category are surveyed and compared. This paper will not
discuss the variable filters in this category, and the interested
reader is referred to [10] for details. The second category with
which we are concerned in this paper deals with the variable
filters with only variable phase or group delay responses. The
variable filters with variable fractional delay (FD) responses
are extremely useful in applications such as timing adjustment
in a digital modem [11], [12], music instrument modeling,
audio signal processing [13], [14], incommensurate-ratio
sampling rate conversion, and speech coding [15], since the
group and phase delay time of this kind of variable filters can
take values which are not necessarily multiples but fractions
of the sample interval. So far, many design methods for this
class of variable 1-D filters have been proposed. For example,
Farrow proposed a polynomial-based method [16], which is
very simple to design and implement. Paper [17] examines
some methods of FIR designs including the Lagrangian inter-
polation method. Recently, weighted least-squares methods
with and without discretizing parameters have been proposed
to improve the design accuracy with reduced computational
complexity [18], [19]. Paper [15] provides a comprehensive
review and comparison of the existing methods for designing
and implementing such 1-D variable filters. As mentioned in
[15], variable FD filters have many potential applications in
M-D digital signal processing fields. For example, variable
three-dimensional (3-D) FD filters can be used in continuous
frame interpolations of video data, and 2-D ones can be applied
to the continuous subpixel interpolations of still images for
image magnification and minification. In addition, 2-D FD
filters based on piecewise polynomial interpolations have
been investigated in the contex of image resampling; see, for
example, [20]–[24] and the references therein. No matter what
degrees of piecewise polynomials are used, these interpolation
methods are aimed to approximate the ideal low-pass filter with
cutoff frequency equal to Nyquist frequency in the frequency
domain as accurately as possible.

In this paper, we propose a method for designing variable 2-D
FIRFDfiltersinthefrequencydomaindirectlysothatthefractional
dealys of the variable filters in the passband are continuously ad-
justable. The basic idea is to represent the coefficients of the vari-
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able 2-D transfer function as the polynomials of the fractional de-
lays ( ), and then derive a weighted squared-error function
of variable 2-D frequency response without discretizing the 2-D
frequencies ( ) and 2-D fractional delays ( ). Finally,
closed-formexpressionsfortheoptimalcoefficientmatricesofthe
variable 2-D FIR filter are obtained by minimizing the error func-
tion.Asignificantadvantageof theproposedmethodis that itdoes
not need the discretizations of the parameters and
to derive the weighted squared-error function; thus, the final de-
sign accuracy is not affected by the grid densities of the sampling
points. Also, the discretization-free approach leads to a consider-
able reduction in computational complexity. An example is given
todemonstratethatthemethodcanachieveextremelyaccuratede-
signs efficiently.

II. PROBLEM FORMULATION AND OBJECTIVEFUNCTION

The desired variable 2-D FD response is

(1)

where are the normalized 2-D angular frequencies,
are the 2-D variable fractional delays,

and are the positive integers that represent
the integer parts of the total group delays. Obviously,and
are continuously variable in the above ranges. Here, we want to
use the variable FIR transfer function

(2)

to approximate the desired variable frequency response (1),
where

(3)

can be regarded as the 1-D transfer function with variable
coefficients which are the functions of The
reason why the transfer function in (2) as-
sumes a separable form is that the desired frequency response

in (1) is separable. Like in [16], for the sake
of generality and easy treatment, we also assume that
are the 1-D polynomials of i.e.,

(4)

Substituting (4) to (3) gives

(5)

where

(6)

...
...

...
...

(7)

(8)

Similarly, we can express as

(9)

where

(10)

...
...

...
...

(11)

(12)

The orders in (4) and in (9) are chosen by the designer to
produce an FD filter with satisfactory performance and manage-
able computational complexity. High orders yield im-
proved design with increased computation cost at the design as
well as implementation stages, while low orders lead
to inexpensive design and implementation but degraded perfor-
mance.

The integer parts of the total group delays in (1), namely
and are chosen as

for odd

for even
(13)

where This is because we want to use the transfer
function (2) to approximate the desired frequency response (1),
which is linear phase. Therefore, the variable 2-D transfer func-
tion (2) can be expressed as

(14)

whose frequency response is given by

(15)

where

Defining the complex-valued error

(16)

our objective here is to find the optimal coefficient matrices
and such that the total weighted squared-error

(17)



116 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 47, NO. 2, FEBRUARY 2000

is minimized, where is a nonnegative four-
dimensional weighting function. In this paper, we assume that
the weighting function is separable, i.e.,

(18)

and the 1-D functions are
piecewise constant. For example, for the frequenciesin the
range we first divide the interval into the union of
several small intervals (sub-intervals) as

(19)

where Then, the sub-weighting function
is chosen to be constant in each sub-interval, i.e.,

for (20)

where are constants for In addition,
we assume that the sub-weighting function for

is symmetric with respect to Likely, is
defined as

for (21)

where As for the sub-weighting function
the interval [0, 1] is divided into the union of sub-in-

tervals as

(22)

where For each sub-interval, the corresponding
sub-weighting function is constant, i.e.,

for (23)

where Similarly, can be defined as

for (24)

where Note that

(25)

with

(26)

where and means the complex-conju-
gate of Substituting (1), (15), and (26) into (25), we obtain

Re

Re

(27)

Substituting (18) and (27) into (17), we obtain

(28)

By using the matrix property tr tr [25], where tr()
denotes the trace of the matrix involved, in (28) can
be expressed as

tr

tr

tr

tr

tr tr (29)

where

(30)

...
...

...
...

(31)
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and is the th entry of the matrix , which
can be written as

(32)

In addition, the matrix in (29) is given by

(33)

where we have (34), shown at the bottom of the page, with

for

for

(35)

being the th entry of the matrix and
Obviously, are Toeplitz

matrices, hence is also a Toeplitz matrix. Matrices and
can be evaluated in a similar manner.

In the second term of (27)

(36)

thus

Re

(37)

where we have (38), shown at the bottom of the page.Therefore,
using the matrix property tr tr in (28)
can be evaluated as

tr

tr

tr

tr

tr tr tr tr (39)

where

(40)

and

(41)

In (41)

(42)

is the th entry of the matrix and

for

for

(43)

where The integral (42) can be calculated
by using fast and reliable numerical integration methods such

...
...

...
...

(34)

(38)
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as the adaptive Simpson’s rule or the adaptive Newton-Cotes
rule [26]. The matrix in (39) can be determined in a similar
fashion. Furthermore, matrices and in (39) are given by

It can be readily shown that

As a result, we obtain the second term in (28) as

tr tr (44)

The last term in (28) is a constant

constant (45)

Substituting (29), (44), and (45) into (28) leads the final
weighted squared-error function to

tr tr

tr tr constant (46)

III. CLOSED-FORM SOLUTIONS FOR AND

Our objective here is to find the optimal coefficient matrices
and in (46) such that the error function is

minimized. The closed-form optimal solutions can be obtained
as follows.

Differentiating the objective function in (46) with
respect to the coefficient matrices and respectively, we
obtain

tr tr

tr tr

(47)

Setting the above partial derivative matrices to zero results in
the matrix equations

tr tr (48)

tr tr (49)

From (48), we obtain

tr

tr
(50)

Since and are symmetric matrices, we have
tr

tr
(51)

Substituting (51) into (49) leads to

tr tr (52)

which yields

tr tr (53)

i.e.,

tr tr (54)

where

(55)

Hence, if tr( then

(56)

where is a nonzero scalar. Consequently, we have

tr

tr
(57)

(58)

If tr( i.e.,

tr (59)

we can find an infinite number of satisfying (59), but from
(50), this leads to

(60)

Hence, tr( ) cannot be zero and and in (57) and (58) are
the final optimal coefficient matrices.

Furthermore, although a nonzero scalarα in (57) and (58) can
be chosen arbitrarily, in considering the fact that the variable
2-D filter in (2) is the cascade of
and it seems reasonable to determine the value ofα
as follows.

The frequency response of in (5) at
is

(61)

where

(62)

and the frequency response of in (9) at
is

(63)

where

(64)

It should be noticed that the vectors and and
in (62) and (64) may have different dimensions.

The corresponding 1-D magnitude responses are
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If one requires to have then the value of
α can be determined using (61) and (63) as

(65)

This α balances the frequency responses of the cascaded
1-D variable transfer functions and at

and

IV. NUMERICAL EXAMPLE

In this section, we describe a design example to illustrate the
proposed method, where the desired variable 2-D FD response
(1) is approximated by a 2-D variable FIR filter with the fol-
lowing design parameters:

(66)

Obviously, the passband of the desired variable 2-D filter is the
rectangular range and the
remaining region outside the passband is the “don’t care” fre-
quency band. Here, the weighting functions

and are chosen such that the 2-D frequency re-
sponse of the designed variable filter is almost uniformly flat in
the passband. By looking at the values of and
we know that larger weighting coefficients are put near the pass-
band edges where the frequency response is difficult to approx-
imate.

From (2) we know that the actual variable 2-D frequency re-
sponse is given by

(67)

where

(68)

TABLE I
VARIABLE FREQUENCY-RESPONSEERRORS

Thus, the actual variable FD responses are given by

(in direction)

(69)

(in direction)

(70)

Therefore, the variable fractional delays in and direc-
tions are completely determined by the phase responses of

and respectively. That is, the function
only depends on the variables and and

the function only depends on the variables
and To evaluate the design performance, the normalized

root-mean-squared (RMS) error of the variable 2-D frequency
response in (71), found at the bottom of the page, and the
maximum absolute frequency-response error

(72)

are used, where and are the functions
of and Table I lists the normalized RMS errors
and the maximum absolute errors for some fixed

values. From Table I, we can find that the normalized
RMS errors are very small, and the maximum absolute errors
are about 0.002. In addition, we can also find that both the RMS
error and the maximum absolute error for
are the largest among all the combinations ofand Fig. 1
shows the 2-D magnitude response for
We can observe that the magnitude response in the passband
is extremely flat (≈ 1). Fig. 2 shows the absolute errors of the

(71)
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Fig. 1. 2-D magnitude response for(p ; p ) = (0:5; 0:5):.

Fig. 2. Absolute frequency response error in the passband for(p ; p ) = (0:5;0:5):

2-D frequency response in the passband, which are fairly small.
In addition, since we put the weighting functions

in the “don’t care” band where
the magnitude response in the “don’t care” band does not have
to be flat, which can be observed from Fig. 1. This is based
on the assumption that the 2-D signal to be processed has fre-
quency components only within the passband. However, if the
2-D signal includes extra high-frequency components such as
noise, the FD filter designed here has to work in cascade with

other standard filters such as a low-pass filter to perform fre-
quency selecting operations as mentioned in [27].

Fig. 3 illustrates the FD response in
the passband, which is the function of only and
and Fig. 4 shows the corresponding absolute deviation of

from the desired FD response. The nor-
malized RMS error of is 0.5063%, and the
maximum absolute error is 0.0135. Moreover, Figs. 5 and 6
illustrate the passband FD responses and
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Fig. 3. Variable fractional delay response� (! ; ! ; p ; p ):

Fig. 4. Absolute error of variable fractional delay� (! ; ! ; p ; p ):

the corresponding absolute errors. The normalized RMS error
and the maximum absolute deviation are the same as those of

From the above results, we observe that the
variable FD responses in the passband are quite flat.

MATLAB version 5.2 was used in the computer simulations.
The integral (42) is evaluated by using MATLAB command
{\tt{quad8}/tt} which employs adaptive Newton-Cotes panel

rule. In order to avoid numerical ill-conditioning problems
which arise in computing the inverses of the matrices

and in (57) and (58), they are first decomposed by
using Cholesky decomposition as

(73)
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Fig. 5. Variable fractional delay response� (! ; ! ; p ; p ):

Fig. 6. Absolute error of variable fractional delay� (! ; ! ; p ; p ):

where and are upper triangular matrices. Then
equations (57) and (58) are rearranged as

(74)

(75)

The groupings in (74) and (75) assure the numerically stable
solutions because of the following reasons.

1) The decompositions (73) imply that the inverses of the
matrices and can be indirectly calculated
as

(76)

where the condition numbers of and are
much smaller than those of and thus
more accurate inversions can be obtained.
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2) The entries of and are very small in magnitude,
thus the groupings with and with make
it possible for the small entries in and to cancel
out the large entries in and respectively. This
in turn results in the desired numerical stability. It was
found that other matrix decomposition methods such as
LU, SVD, and QR methods can also be utilized to decom-
pose and to assure the similar numerical
stability, but Cholesky decomposition requires slightly re-
duced computational complexity compared to the other
methods.

Finally, we would like to summarize the whole design process
stated in the preceding sections and comment on the implemen-
tation of the resulting 2-D variable filter as follows. First, the
design can be performed by the following.

Design-Step-1:Compute matrices and by using
formulae (30), (33), and (40). The matrices and can
be computed in the same way.

Design-Step-2:Determine the scaling factorα in (65).
Design-Step-3:Perform Cholesky decompositions on ma-

trices and as (73).
Design-Step-4:Compute the optimal coefficient matrices
and as (74) and (75).

The above four steps complete the off-line design of the vari-
able 2-D FIR filter.

Second, once the optimal coefficient matricesand are
found, the resulting variable filter can be applied to real-time
tuning for any given values of the fractional delaysand
This can be seen from (5) and (9), which only need matrix
multiplications and to obtain the new 2-D filter
coefficients for some given values of and Another effi-
cient method for the real-time implementation of the resulting
2-D variable FIR filter (2) is to implement and

, respectively, by using the Farrow structure [16],
then and are connected in cascade to
obtain

V. CONCLUSION

We have proposed a weighted least-squares method for de-
signing variable 2-D FIR digital filters with continuously vari-
able FD responses. The design is formulated as a weighted least-
squares minimization problem without sampling the 2-D fre-
quencies and variable 2-D fractional delays thus
the final design accuracy is not affected by the sampling grid
densities. Furthermore, since no discretizations of the param-
eters are required in computing the closed-form optimal coef-
ficient matrices, the computational complexity is significantly
reduced.

A design example has been given to illustrate the proposed
method. This method may also be generalized to deal with
higher dimensional cases, however the derivations may
become far more involved, and further studies need to be
carried out for developing tractable design algorithms.
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