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Design of Stable IIR Digital Filters With Equiripple
Passbands and Peak-Constrained
Least-Squares Stopbands

W.-S. Lu, Fellow, IEEE

Abstract—This paper describes an algorithmic development such that the weighted error
for the design of stable infinite impulse response (lIR) digital -
filters with equiripple passbands and peak-constrained least- J(x) :1 W(w)|ha(w) — h(w)|? dw 2)
squares stopbands. Central to the development is a re-formulation 2
of the design problem as an iterative quadratic programming . L . . .
problem where the stability and equiripple passbands and peak- 1S Minimized subject to the following constraints.
constrained requirements are met by imposing a system of linear 1) h(z) is stable, i.e.,
inequality constraints while the LSS property is satisfied by

-7

minimizing a weighted least-squares type objective function. 21: g £0, for|s>1 3)
4 5 zZ = 1.
i=0
. INTRODUCTION 2) h(z) is peak-constrained in the stopba#fg i.e.,
ECURSIVE digital filters offer improved selectivity, Ih(w)| < 6 forwes @)

computational efficiency, and reduced system delay com-
pared to what can be achieved by nonrecursive digital filters of 3) |h(z)| is equiripple over the passbad. It is known
comparable approximation accuracy [1]-[11]. A class of finite that [12] with properly chosen weight (w), h(w)
impulse response (FIR) filters with equiripple passband and becomes equiripple in the passbasid if
peak-constrained least-square stopband (EPPCLSS) has been
investigated in detail by Adams, et al. [12]-[15]. This brief IR =1 < &, w€Sp. (5)
describes an algorithmic development for the design of stableyote that the denominator polynomié(z) in (1) has the
infinite impulse response (IIR) digital filters with EPPCLSSform
using an iterative quadratic programming (QP) approach ini- R )
tiated in [16]. In the design, the stability and equiripple d(z) =z"""d(z), 0<r<n
passband and peak-constrained (EPPC) requirements are \\p&f
by imposing a system of linear inequality constraints while ,
the LSS property is satisfied by employing a weighted least- d(z) = Z diz" ™t dy = 1. (6)
squares type objective function. An early version of this work -

was reported in [17]. N
This form ofd(z) is convenient to reflect the fact that assigning

a certain number of zeros at the origin may be beneficial for

[I. PROBLEM FORMULATION the design of several types of digital filters [18]. Note that the
number of parameters containedd(x) is » which can vary
A. Problem Statement from zero ton, depending on how many poles &6fz) one

Let hy(w) be the desired frequency response of bandpavéllsShes to assign to the origin.

nature, and for simplicity, we assume thai(w) has one

passband and one stopband. We seek to find a causal IﬁRFormuIatmg the Design as an lterative QP Problem

transfer function of order, i.e., The vectorx in (2) collects the coefficient vectors dfz)
andb(z), denoted byd andb respectively, ax = [d? bT]?.
2 AN ) We write h(w) = b d(w) with
Bz = Q) o Zimohiz withdo=1 (1) (@) = bw)/diw)

T d(z) AT e diz T no " .

b(w) = Z bie™Ve, dw) = Z d;e”¢
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whereW (w) = W (w)/|d(w)|2. Based on (7), théth iteration where

of an iterative-QP-based EPPCLSS design minimizes the (s) (s)
. Q : 9 coswy’ --- cosnf)
quadratic error function ) )
A, =— . : 0
; 1" ‘ ‘ (s) (s)
TWG) =5 [ Wit (@) ha(@)d® (w) — b9 ()] dw coswn, coecosnflnl ] e
2/ T
e, =[1 1 ... 101

(8)

It should be stressed that the constraint in (10) sufiicient

subject to the constraints in (3)—~(5) witiw) replaced by condition to assure the stability. A nice feature of (10) is that
hM)(w), whereWy_ (w) = W (w)/|d*~(w)|?. It should be it is a linear constraint. However, design simulations have
pointed out that the weighting modification procedure givefdicated that stable candidate transfer functions with excellent
in (7) and (8) is closely connected to the Steiglitz-McBridgerformance may be excluded from the design procedure
approach which finds applications in system modeling, ide§imply because condition (10) is often too restrictive. The

tification, and adaptive filtering [19]. discrete version of the condition, namely (11), offers some

Letd, = [d - d™)T and by = B - BV flexibility in controlling filter's stability. On one hand, with a
be the coefficient vectors off*)(w) and v*)(w), respec- denses,, the constraint in (11) can be made arbitrarily close to
tively, and let 2, = [¢7 ... ¢ 7|7 and Qo = (10) so as to guarantee the stability. On the other hand, using
[1 e ... T Then d®(w) = 1 + Qfdi, (11) with a relatively sparsé, turns out to be an effective and

bM(w) = Qf by, and J*) (x;) in (8) can be expressed as  |ess restrictive way to control the filter's stability. As a matter

dy Hiip Hig P1k
= H; = and .=
Xk |:bk :| ’ k |:Hf2k H22k ’ P«

1 of fact, simulations have indicated that for a polynomiét)

J®) (%) = §XC£Hka + X1 'py -+ constant (9) of orderr, the constraint in (11) with an, < 2r is usually
sufficient to yield a stable design. We shall come back to this
point in Section V where two design examples are discussed
in detail.

} In a recent paper by Lang [18], Row&h theorem on the
number of zeros of two analytic functions was employed
to deduce a stability constraint, which appears to be less
conservative than (10).

Pak

Hy = Wk—l(w)|hd(w)|2(ﬂlﬂ{{) dw

- B. Weighting Functiori? (w)
His = - Wi_1(w) Re[ha(w) Q1 QY] dw In the sequel, we shall use a piecewise-constant weighting
o function
Hoop = Wk_l(w) (9096{) dw . 1, for |w| < wp
T W(w) = w, forw, <|w|<nw (12)
Puiv= [ Wii(w)|ha(w)]* Re(:) dw With a sufficiently largew and a set of amplitude constraints
- on [—wy,w,], the filter obtained becomes nearly equiripple in

por = — Wi—1(w) Re[ha(w)Qp)] dw. the passband region [12].

—_—T

C. Amplitude Constraints in Passbhand

Ill. DESIGN CONSTRAINTS .
Suppose the algorithm converges. Then for.ag [0, w,]

For the sake of notation simplicity, in the rest of the papeind sufficiently largé:, we haveh(w) ~ b*) (w)/d*1(w) ~

Only |OW-paSS filters with apprOXimately constant group delqy—jl‘f“"R‘(w)7 where X denotes the desired group de|ay of the
in the passband are considered. The normalized passbandfagd in the passband, anf(w) = [b%*)(w)|/|d* D (w)] ~

stopband edges are denoteddgy andw,, respectively. |h(w)]. If we write d*D(w) = ei-1() g1 ()| where
6x_1(w) is the phase response @~ (w), then we have
A. Stability e b ()
The stability ofd®)(z) is guaranteed if Rw)= e A0 (i)
Re[d(") (w)] Z 6 > 0, f0r w € [—71',71'] (10) — ej(I(W—ekfl(w))M
|d(k71)(w)|
where 6 > 0 is a lower bound to ensure a reasonable I (w)b
stability margin [20]. In practice, a discrete version of (10) = kIR (13)
@)

is implemented, i.e.Re[d®(w)] > 6 > 0, forw € S, =

{w55>,z =1,...,ns}. This leads to a set of linear constraintsvhere the last equality is becaus¥w) is real, and

on xj

cp(w) = [cos(Kw — O_1(w)) cos((K — Dw — 1 (w))
Axp < (1—b)ey,, (11) —cos((K —n)w — Or_1(w)]*.
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By (5) and the definition ofR(w), we see that (5) approxi-

mately holds if|[R(w) — 1| < §,. This, in conjunction with

TABLE |

1423

ZEROS AND POLES OF THE TRANSFER FUNCTION IN EXAMPLE 1

(13), leads to a discrete version of the amplitude constraints—

on [0,w,] as
ABx, < g
where
- CT(w](Lp))—
T ()
AR — Ck (w"P )
? 0 —cf(wgp))
[ el () ]
(048] D (w2
W |1+ 8)[d* D (WD)
Q@ = (6p_1)|d(k—1)(w£:ﬂ))|
(8, — )]0 ()|

Zeros

poles

—0.00046047527

(14)

18.63131093
1.49675301 = 0.482215245
0.89762684 + 1.22910309;

0.20628660
0.055677115 £ 0.55763187
—0.032471477 + 0.93555574;

—0.99895376 + 0.20015069; plus another 10
—0.20222995 £ 0.979981675 poles at the origin
—0.84535803 % 0.562436455
—0.35458606 £ 0.939261345

- | —0.59858640 + 0.813182615

IV. A DESIGN ALGORITHM

In summary, we propose an iterative QP problem where the
objective function in thekth iteration is given by
1
J® (%) = 5x}CHkxk +x¥Fpy 4+ constant  (17)
with x;, Hy, and pg, specified in (9). The stability and
EPPCLSS properties of the filter are assured by imposing the
linear constraints

Arxy < qp (18)

with S, = {wgp),i =1,...,n,} a set of grid points in the and using a sufficiently large weight, where A in (18)

passband. combinesA, in (11), A% in (14) andA% in (16) as
. s [ A,
D. Amplitude Constraints in the Stopband A, = A;}k) andqy, in (18) is given by
The peak constraints in the stopband can be expressed Aff‘)
approximately as|b™(w)|/|[d*D(w)| < &, for w € (1 - 8
S,. Let c(w) = [1 cosw cosnw]? and s(w) = _ ®
[0 sinw sinnw]?, it can easily be verified that the = o

above constraints are satisfied if
1 .
[ (@)bi| < 56a]d*D(w)]

1 —
s (w)by| < 55,,,|d<k D(w)].

Imposing the constraints in (15) on the set of grid points,
S, = {wg”’),i =1,...,n,} in the stopband, we obtain

APx; < q

(15b)

where
o 5. [b)|
Al = s@) | % =% Do)
—S(w) D(w) |
with
o (ul") ()]
Clw) = : o S(w) = :
| cT (w,(,i)) sT (w,(,i)) ]
=L
D(w) =
[ (i)

The problem of minimizing/*)(x;) in (17) subject to the
constraints in (18) is a convex quadratic programming (QP)
problem whose solution can be obtained using efficient op-
timization algorithms [21]. It is worthwhile to note that the
optimization toolboxassociated with MATLAB includes a
mmandqp that can be used as an efficient QP solver.

(15a)

Once a solutiornxk;, of the QP problem
(16) minimize J® (x;) (19a)
subject to Apxi < qx (19b)

is obtainedx;, is modified by combining it linearly witk; _1
obtained from the preceding iteration to yield a refined iterate
X = 7X + (1 — 7)xp—1 Where0 < 7 < 1 is a relaxation
parameter. Thisk;, is then used in the next iteration. The
iteration continues untilx; —xx—_1]|2 is less than a prescribed
tolerance.

A couple of comments on the algorithm’s convergence and
nature of the solution obtained: The convergence of the Stei-
glitz—McBride procedure as outlined in (7) and (8) is a fairly
involved issue, but there are sufficient evidence indicating that
the convergent point(s) of the Steiglitz—McBride procedure
can be very close to a global minimum of the least-squares
error function in (2) (see [19, ch. 8] for a detailed analysis
on this matter). In the present case, the Steiglitz—McBride
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Fig. 1. Frequency responses of the IIR filter (solid lines) and the FIR filter (dashed lines) in Example 1. (a) Amplitude responses. (b) Group dblaydn pas

procedure is reduced to solving a sequence of QP problems= 0.2, w, = 0.28, maximum passband amplitude deviation
in (19). Although a convergence proof of the algorithm i 0.1 dB, minimum stopband attenuatiom 43 dB, group
not yet available, our simulation studies have indicated thaglay in passband= 11 samples with maximum deviation
the algorithm converges whenever the QP problems involvesss than 0.35. Wit = 15, » = 5, §, = 0.01, 6, = 0.2,
are all solvable. When, for example, the minimum stopband = 1000, and convergence toleranee= 10—, it took the
amplitude attenuation and/or maximum passband deviatiproposed algorithm 21 iterations to converge to a solution
are too restrictive relative to the filter order, the QP solvgoint. The poles and zeros of the filter obtained are given
would complain of the constraints being overly stringent. lim Table |. The largest magnitude of the poles is 0.9361.
this case, a typical QP solver (e.g., the QP solver in thithe amplitude response and group delay (in the passband)
MATLAB Optimization Toolbox) still produces a “solution,” are depicted in Fig. 1(a) and (b) (solid lines), respectively. In
but the proposed algorithm may not converge in such a cagte designH; and p, in (9) were evaluated using a set of
On the other hand, if the QP problems in (19) is solvable f@00 grid points placed evenly in the passband and stopband.
eachk, then this consistent solvability can be viewed as Bhe discrete sef, consists of 30 equally spaced frequency
strong indication of the existence of a solution with respect amples in the normalized passbdfd.2] and setS, consists
the given design specifications, and in this case it is mog¢ 42 equally spaced frequency samples in the first quarter
than often that the proposed algorithm will converge to @ the normalized stopbanf.28,0.5]. The discreteS, in
satisfactory design. this design consists of six equally spaced frequency samples
It should be stressed that the convex QP problem in (18 the entire frequency rangé, 0.5] to ensure the filter's
is merely a discrete (hence approximate) version of the cofiability. From a number of numerical simulations that we
strained least-squares optimization problem characterized dphducted to test the proposed design method, it was observed
(2)—(5). Therefore, a convergent point of the sequeficg} that the stability of the denominator polynomi&lz) can be
obtained by iteratively solving the QP problem in (19) caBnsured by imposing. constrains in (11), where, need not

only be deemed as a suboptimal design. exceed2r, wherer is the order ofd(z). Note that thesen,
constrains do not in general guarantee shéficientcondition
V. DESIGN EXAMPLES in (10) but they are of critical importance in the design

We describe below two examples in which the proposgdiocess to yield a stable transfer function. The maximum
method was used to design stable IIR digital filters. In bogpassband amplitude deviation, minimum stopband attenuation,
designs, the initial point was simply a linear-phase FIR filtetnd maximum group-delay deviation in passband are given in
of ordern, wheren = 15 for the first example, and = 12 Table Il
for the second example, designed using a Hamming window.The design obtained was compared to a linear-phase EPP-
Hence, the initial point can be describedsas= [d} bl]¥ CLSS FIR filter with 31 taps. The FIR was designed using the
with dp = [0 0 ... 0]F € R" andb, the impulse response method described in [12]. The filter's performance is shown
of the FIR filter. in Fig. 1 (dashed lines) and Table II. It is observed that

Example 1: A stable low-pass IIR filter of order 15 with the performance of these two filters in terms of passband
EPPCLSS was designed to satisfy the following specificatioreanplitude deviation and stopband amplitude attenuation are
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Fig. 2. Frequency responses of the IIR filter (solid lines) and Deczky's filter (dashed lines) in Example 2. (a) Amplitude responses. (b) Groupskandh p
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TABLE 1 TABLE IV
PERFORMANCE COMPARISONS IN EXAMPLE 1 PERFORMANCE COMPARISONS IN EXAMPLE 2
Filter Proposed IIR | Linear Phase FIR Filter Proposed IR | Deczky [22]
Maximum passband Maximum passband
amplitude deviation (dB) 0.0992 0.0995 amplitude deviation (dB) 0.2709 0.4902
Minimurn stopband Minimum stopband
amplitude attenuation(dB) 43.0046 42.0087 amplitude attenuation(dB) 32.1543 31.5034
Maximum group delay Maximum group delay
deviation in passband 0.3109 0 deviation in passband 0.4621 0.7130
(Samples) (Samples)
ZEROS AND POLES OF THI;I—-?RBALI\IESF:EI}I?{ FUNCTION IN EXAMPLE 2 paSSba.md: 9 samples with the maximum deviation less than
0.5. Withn =12, » =11, 6, = 0.03, §, = 0.3, w = 30, and
bo zeros poles e =8 x 107%, it took the proposed algorithm 27 iterations to
0.015251858 |  1.40060806 £ 0.52562938; | —0.55252815 converge to a solution point. The poles and zeros of the filter
0.71218856 + 1.310386255 | —0.93489192 + 0.148819567 obtained are given in Table Ill. The largest magnitude of the
—0.34154833 £ 0.94477549] | —0.13041701 £ 0.92361074; poles is 0.9467. The performance of the filter is shown in Fig.
—0.72080392 £ 0.770841357 |  0.10577534 £ 0.704636435 2 (solid lines) and Table IV. In the design, the sktconsists
—1.07931648 + 0.26358750; |  0.38840193 £ 0.48449893; of 38 frequency samples in the normalized passhjane25]
—1.10339797 + 0120365805 | 0.56325419 + 0.17664608; and 8, consists of 40 frequency samples in the first third of

the normalized stopbanf.3,0.5]. The setS;, in this case,

i , , consists of 16 equally spaced frequency samples on the entire
comparable. The IIR filter achieves a linear phase responsgyuency rangé0, 0.5 to ensure the filter's stability.
in the passband only approximately. On the other hand, therhe gesign obtained was compared to a well-known design
group delay of the IIR filter can be made lower (11 samplgg; peczky as [22, Example 1]. The Deczky filter has the same
versus 15 samples for the _FIR filter). In agdition, due to ”I?rder,wp andw, as our filter, and its performance is shown
use of a low-order denominator polynomid{z) (r = 5), iy Fig. 2 (dashed lines) and Table IV. It can be observed that
the IIR filter can be implemented with comparable number of  ilter has slightly improved performance with a lower and
multiplications but considerably reduced number of additiong,iter group-delay profile in the passband.
(and delays) compared with the FIR filter.

Example 2: A stable low-pass IIR filter of order 12 with

EPPCLSS was designed to satisfy the following specifications: REFERENCES
wp = 0.25, wg = 0.3, maximum passband deviation 0.3 [1] A. Antoniou, Digital Filters: Analysis, Design, and Application@nd
dB, minimum stopband attenuation 32 dB, group delay in ed. New York: McGraw-Hill, 1993.
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