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Design of Stable IIR Digital Filters With Equiripple
Passbands and Peak-Constrained

Least-Squares Stopbands
W.-S. Lu, Fellow, IEEE

Abstract—This paper describes an algorithmic development
for the design of stable infinite impulse response (IIR) digital
filters with equiripple passbands and peak-constrained least-
squares stopbands. Central to the development is a re-formulation
of the design problem as an iterative quadratic programming
problem where the stability and equiripple passbands and peak-
constrained requirements are met by imposing a system of linear
inequality constraints while the LSS property is satisfied by
minimizing a weighted least-squares type objective function.

I. INTRODUCTION

RECURSIVE digital filters offer improved selectivity,
computational efficiency, and reduced system delay com-

pared to what can be achieved by nonrecursive digital filters of
comparable approximation accuracy [1]–[11]. A class of finite
impulse response (FIR) filters with equiripple passband and
peak-constrained least-square stopband (EPPCLSS) has been
investigated in detail by Adams, et al. [12]–[15]. This brief
describes an algorithmic development for the design of stable
infinite impulse response (IIR) digital filters with EPPCLSS,
using an iterative quadratic programming (QP) approach ini-
tiated in [16]. In the design, the stability and equiripple
passband and peak-constrained (EPPC) requirements are met
by imposing a system of linear inequality constraints while
the LSS property is satisfied by employing a weighted least-
squares type objective function. An early version of this work
was reported in [17].

II. PROBLEM FORMULATION

A. Problem Statement

Let be the desired frequency response of bandpass
nature, and for simplicity, we assume that has one
passband and one stopband. We seek to find a causal IIR
transfer function of order i.e.,

with (1)
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such that the weighted error

(2)

is minimized subject to the following constraints.

1) is stable, i.e.,

for (3)

2) is peak-constrained in the stopband i.e.,

for (4)

3) is equiripple over the passband. It is known
that [12] with properly chosen weight
becomes equiripple in the passband if

(5)

Note that the denominator polynomial in (1) has the
form

with

(6)

This form of is convenient to reflect the fact that assigning
a certain number of zeros at the origin may be beneficial for
the design of several types of digital filters [18]. Note that the
number of parameters contained in is which can vary
from zero to depending on how many poles of one
wishes to assign to the origin.

B. Formulating the Design as an Iterative QP Problem

The vector in (2) collects the coefficient vectors of
and denoted by and respectively, as .
We write with

and in (2) as

(7)
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where . Based on (7), theth iteration
of an iterative-QP-based EPPCLSS design minimizes the
quadratic error function

(8)

subject to the constraints in (3)–(5) with replaced by
where . It should be

pointed out that the weighting modification procedure given
in (7) and (8) is closely connected to the Steiglitz-McBride
approach which finds applications in system modeling, iden-
tification, and adaptive filtering [19].

Let and
be the coefficient vectors of and respec-
tively, and let and

. Then
and in (8) can be expressed as

(9)

where

and

with

III. D ESIGN CONSTRAINTS

For the sake of notation simplicity, in the rest of the paper
only low-pass filters with approximately constant group delay
in the passband are considered. The normalized passband and
stopband edges are denoted byand respectively.

A. Stability

The stability of is guaranteed if

for (10)

where is a lower bound to ensure a reasonable
stability margin [20]. In practice, a discrete version of (10)
is implemented, i.e., for

. This leads to a set of linear constraints
on

(11)

where

...
...

It should be stressed that the constraint in (10) is asufficient
condition to assure the stability. A nice feature of (10) is that
it is a linear constraint. However, design simulations have
indicated that stable candidate transfer functions with excellent
performance may be excluded from the design procedure
simply because condition (10) is often too restrictive. The
discrete version of the condition, namely (11), offers some
flexibility in controlling filter’s stability. On one hand, with a
dense the constraint in (11) can be made arbitrarily close to
(10) so as to guarantee the stability. On the other hand, using
(11) with a relatively sparse turns out to be an effective and
less restrictive way to control the filter’s stability. As a matter
of fact, simulations have indicated that for a polynomial
of order the constraint in (11) with an is usually
sufficient to yield a stable design. We shall come back to this
point in Section V where two design examples are discussed
in detail.

In a recent paper by Lang [18], Rouché’s theorem on the
number of zeros of two analytic functions was employed
to deduce a stability constraint, which appears to be less
conservative than (10).

B. Weighting Function

In the sequel, we shall use a piecewise-constant weighting
function

for
for

(12)

With a sufficiently large and a set of amplitude constraints
on the filter obtained becomes nearly equiripple in
the passband region [12].

C. Amplitude Constraints in Passband

Suppose the algorithm converges. Then for an
and sufficiently large we have

where denotes the desired group delay of the
filter in the passband, and

. If we write where
is the phase response of then we have

(13)

where the last equality is because is real, and
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By (5) and the definition of we see that (5) approxi-
mately holds if . This, in conjunction with
(13), leads to a discrete version of the amplitude constraints
on as

(14)

where

...

...

...

...

with a set of grid points in the
passband.

D. Amplitude Constraints in the Stopband

The peak constraints in the stopband can be expressed
approximately as for

. Let and
, it can easily be verified that the

above constraints are satisfied if

(15a)

(15b)

Imposing the constraints in (15) on the set of grid points
in the stopband, we obtain

(16)

where

with

...
...

...

TABLE I
ZEROS AND POLES OF THETRANSFER FUNCTION IN EXAMPLE 1

IV. A D ESIGN ALGORITHM

In summary, we propose an iterative QP problem where the
objective function in the th iteration is given by

constant (17)

with and specified in (9). The stability and
EPPCLSS properties of the filter are assured by imposing the
linear constraints

(18)

and using a sufficiently large weight where in (18)
combines in (11), in (14) and in (16) as

and in (18) is given by

The problem of minimizing in (17) subject to the
constraints in (18) is a convex quadratic programming (QP)
problem whose solution can be obtained using efficient op-
timization algorithms [21]. It is worthwhile to note that the
optimization toolboxassociated with MATLAB includes a
command that can be used as an efficient QP solver.

Once a solution of the QP problem

minimize (19a)

subject to (19b)

is obtained, is modified by combining it linearly with
obtained from the preceding iteration to yield a refined iterate

where is a relaxation
parameter. This is then used in the next iteration. The
iteration continues until is less than a prescribed
tolerance.

A couple of comments on the algorithm’s convergence and
nature of the solution obtained: The convergence of the Stei-
glitz–McBride procedure as outlined in (7) and (8) is a fairly
involved issue, but there are sufficient evidence indicating that
the convergent point(s) of the Steiglitz–McBride procedure
can be very close to a global minimum of the least-squares
error function in (2) (see [19, ch. 8] for a detailed analysis
on this matter). In the present case, the Steiglitz–McBride
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(a) (b)

Fig. 1. Frequency responses of the IIR filter (solid lines) and the FIR filter (dashed lines) in Example 1. (a) Amplitude responses. (b) Group delay in passband.

procedure is reduced to solving a sequence of QP problems
in (19). Although a convergence proof of the algorithm is
not yet available, our simulation studies have indicated that
the algorithm converges whenever the QP problems involved
are all solvable. When, for example, the minimum stopband
amplitude attenuation and/or maximum passband deviation
are too restrictive relative to the filter order, the QP solver
would complain of the constraints being overly stringent. In
this case, a typical QP solver (e.g., the QP solver in the
MATLAB Optimization Toolbox) still produces a “solution,”
but the proposed algorithm may not converge in such a case.
On the other hand, if the QP problems in (19) is solvable for
each then this consistent solvability can be viewed as a
strong indication of the existence of a solution with respect to
the given design specifications, and in this case it is more
than often that the proposed algorithm will converge to a
satisfactory design.

It should be stressed that the convex QP problem in (19)
is merely a discrete (hence approximate) version of the con-
strained least-squares optimization problem characterized by
(2)–(5). Therefore, a convergent point of the sequence
obtained by iteratively solving the QP problem in (19) can
only be deemed as a suboptimal design.

V. DESIGN EXAMPLES

We describe below two examples in which the proposed
method was used to design stable IIR digital filters. In both
designs, the initial point was simply a linear-phase FIR filter
of order where for the first example, and
for the second example, designed using a Hamming window.
Hence, the initial point can be described as
with and the impulse response
of the FIR filter.

Example 1: A stable low-pass IIR filter of order 15 with
EPPCLSS was designed to satisfy the following specifications:

maximum passband amplitude deviation
dB, minimum stopband attenuation dB, group

delay in passband samples with maximum deviation
less than 0.35. With

and convergence tolerance it took the
proposed algorithm 21 iterations to converge to a solution
point. The poles and zeros of the filter obtained are given
in Table I. The largest magnitude of the poles is 0.9361.
The amplitude response and group delay (in the passband)
are depicted in Fig. 1(a) and (b) (solid lines), respectively. In
the design, and in (9) were evaluated using a set of
300 grid points placed evenly in the passband and stopband.
The discrete set consists of 30 equally spaced frequency
samples in the normalized passband and set consists
of 42 equally spaced frequency samples in the first quarter
of the normalized stopband . The discrete in
this design consists of six equally spaced frequency samples
on the entire frequency range to ensure the filter’s
stability. From a number of numerical simulations that we
conducted to test the proposed design method, it was observed
that the stability of the denominator polynomial can be
ensured by imposing constrains in (11), where need not
exceed where is the order of . Note that these
constrains do not in general guarantee thesufficientcondition
in (10) but they are of critical importance in the design
process to yield a stable transfer function. The maximum
passband amplitude deviation, minimum stopband attenuation,
and maximum group-delay deviation in passband are given in
Table II.

The design obtained was compared to a linear-phase EPP-
CLSS FIR filter with 31 taps. The FIR was designed using the
method described in [12]. The filter’s performance is shown
in Fig. 1 (dashed lines) and Table II. It is observed that
the performance of these two filters in terms of passband
amplitude deviation and stopband amplitude attenuation are
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(a) (b)

Fig. 2. Frequency responses of the IIR filter (solid lines) and Deczky’s filter (dashed lines) in Example 2. (a) Amplitude responses. (b) Group delay in passband.

TABLE II
PERFORMANCE COMPARISONS IN EXAMPLE 1

TABLE III
ZEROS AND POLES OF THETRANSFER FUNCTION IN EXAMPLE 2

comparable. The IIR filter achieves a linear phase response
in the passband only approximately. On the other hand, the
group delay of the IIR filter can be made lower (11 samples
versus 15 samples for the FIR filter). In addition, due to the
use of a low-order denominator polynomial ,
the IIR filter can be implemented with comparable number of
multiplications but considerably reduced number of additions
(and delays) compared with the FIR filter.

Example 2: A stable low-pass IIR filter of order 12 with
EPPCLSS was designed to satisfy the following specifications:

maximum passband deviation
dB, minimum stopband attenuation dB, group delay in

TABLE IV
PERFORMANCE COMPARISONS IN EXAMPLE 2

passband samples with the maximum deviation less than
0.5. With and

it took the proposed algorithm 27 iterations to
converge to a solution point. The poles and zeros of the filter
obtained are given in Table III. The largest magnitude of the
poles is 0.9467. The performance of the filter is shown in Fig.
2 (solid lines) and Table IV. In the design, the setconsists
of 38 frequency samples in the normalized passband
and consists of 40 frequency samples in the first third of
the normalized stopband . The set in this case,
consists of 16 equally spaced frequency samples on the entire
frequency range to ensure the filter’s stability.

The design obtained was compared to a well-known design
by Deczky as [22, Example 1]. The Deczky filter has the same
order, and as our filter, and its performance is shown
in Fig. 2 (dashed lines) and Table IV. It can be observed that
our filter has slightly improved performance with a lower and
flatter group-delay profile in the passband.

REFERENCES

[1] A. Antoniou, Digital Filters: Analysis, Design, and Applications, 2nd
ed. New York: McGraw-Hill, 1993.



1426 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 46, NO. 11, NOVEMBER 1999

[2] T. W. Parks and J. H. McClellan, “Chebyshev approximation for
nonrecursive digital filters with linear phase,”IEEE Trans. Circuits
Theory, vol. CT-19, pp. 189–194, Mar. 1972.

[3] T. W. Parks and J. H. McClellan, “A program for the design of
linear phase finite impulse response digital filters,”IEEE Trans. Audio
Electroacoust., vol. AE-20, pp. 195–199, Aug. 1972.

[4] J. F. Kaiser, “Nonrecursive digital filter design using theI0-sinh window
function,” in Proc. IEEE Int. Symp. Circuit Theory, 1974, pp. 20–23.

[5] L. R. Rabiner and B. Gold,Theory and Application of Digital Signal
Processing. Englewood Cliffs, NJ: Prentice-Hall, 1975.

[6] A. V. Oppenheim and R. W. Schafer,Discrete-Time Signal Processing.
Englewood Cliffs, NJ: Prentice-Hall, 1989.

[7] D. C. Farden and L. L. Scharf, “Statistical design of nonrecursive digital
filters,” IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-22,
pp. 188–196, June 1974.

[8] V. R. Algazi and M. Suk, “On the frequency weighted least-squares
design of finite duration filter,”IEEE Trans. Circuits Syst., vol. CAS-22,
pp. 943–953, Dec. 1975.

[9] V. R. Algazi, M. Suk, and C. S. Rim, “Design of almost minimax FIR
filters in one and two dimensional by WLS technique,”IEEE Trans.
Circuits Syst., vol. CAS-33, pp. 590–596, June 1986.

[10] Y. C. Lim, J. H. Lee, C. K. Chen, and R. H. Yang, “A weighted least-
squares algorithm for quasiequiripple FIR and IIR digital filter design,”
IEEE Trans. Acoust, Speech, Signal Processing, vol. 40, pp. 551–558,
Mar. 1992.

[11] S. C. Pei and J. J. Shyu, “Design of arbitrary FIR log filters by weighted
least-squares technique,”IEEE Trans. Signal Processing, vol. 42, pp.
2495–2499, Sept. 1994.

[12] J. W. Adams, “FIR digital filters with least-squares stopbands subject to
peak-gain constraints,”IEEE Trans. Circuits Syst., vol. 38, pp. 376–388,
Apr. 1991.

[13] J. W. Adams, J. L. Sullivan, R. Hashemi, C. Ghadimi, J. Franklin, and B.
Tucker, “New approaches to constrained optimization of digital filters,”
in Proc. IEEE Int. Symp. Circuits and Systems, 1993, pp. 80–83.

[14] J. W. Adams, P. Kruethong, R. Hashimi, J. L. Sullivan, and D. Gleeson,
“New quadratic programming algorithms for designing FIR digital
filters,” in Proc. 27th Asilomar Conf., 1993, pp. 1206–1210.

[15] J. L. Sullivan and J. W. Adams, “A new nonlinear optimization
algorithm for asymmetric FIR digital filters,” inProc. IEEE Int. Symp.
Circuits and Systems, May 1994, pp. 541–544.

[16] W.-S. Lu, S.-C. Pei, and C.-C. Tseng, “A weighted least-squares method
for the design of stable 1-D and 2-D IIR digital filters,”IEEE Trans.

Signal Processing, vol. 46, pp. 1–10, Jan. 1998.
[17] W.-S. Lu, “Design of stable IIR digital fitters with equiripple passbands

and peak-constrained least-squares stopbands,” inProc. ISCAS’97, pp.
2192–2195.

[18] M. C. Lang, “Weighted least squares IIR filter design with arbitrary
magnitude and phase responses and specified stability margin,” inProc.
1998 IEEE Symp. Advances in Digital Filtering and Signal Processing,
Victoria, BC, pp. 82–86.

[19] P. A. Regalia,Adaptive IIR Filtering in Signal Processing and Control.
New York: Marcel Dekker, 1995.

[20] A. T. Chottera and G. A. Jullien, “A linear programming approach to
recursive digital filter design with linear phase,”IEEE Trans. Circuits
Syst., vol. CAS-29, pp. 139–149, Mar. 1982.

[21] R. Fletcher,Practical Methods of Optimization, 2nd ed. New York:
Wiley, 1987.

[22] A. G. Deczky, “Synthesis of recursive digital filters using the minimum
p-error criterion,” IEEE Trans. Audio Electroacoust., vol. AE-20, pp.
257–263, 1972.

W.-S. Lu (S’81–M’85–SM’90–F’99) received the
B.S. degree in mathematics from Fudan University,
China, the M.S. degree in electrical engineering
and the Ph.D. degree in control science, both from
the University of Minnesota, Minneapolis, in 1964,
1983, and 1984, respectively.

He was a post-doctoral Fellow at the University
of Victoria, Victoria, BC, Canada, in 1985 and a
Visiting Assistant Professor at the University of
Minnesota in 1986. Since 1987, he has been with
the University of Victoria, where he is currently a

Professor. His teaching and research interests are in the areas of digital signal
processing and numerical optimization. He is the co-author, with A. Antoniou,
of Two-Dimensional Digital Filters(New York: Marcel Dekker, 1992).

Dr. Lu served as an Associate Editor of theCanadian Journal of Electrical
and Computer Engineeringin 1989, and then as Editor from 1990 to 1992. He
was an Associate Editor of IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS

II from 1993 to 1995. Presently, he is an Associate Editor for both the IEEE
TRANSACTIONS ON CIRCUITS AND SYSTEMS I and theInternational Journal of
Multidimensional Systems and Signal Processing.


