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Correpondence

A Near-Optimal Multiuser Detector for DS-CDMA T, s, and each signal is assigned a normalized signature wavefoeym
Systems Using Semidefinite Programming Relaxation  given by

X. M. Wang, W.-S. Lu, and A. Antoniou N
s(t) =Y (=1)prft—(i—-1T.] forte[0,T,] (1)
i=1

Abstract—A multiuser detector for direct-sequence code-division mul-
tiple-access systems based on semidefinite programming (SDP) is proposed. . .
It is shown that maximum likelihood (ML) detection can be carried out Wherepr, (¢) is the chip waveform that takes a nonzero value between
by “relaxing” the associated integer programming problem to adual SDP 0 < t < T. and is zero elsewherg¢:, c2,....cx} is a binary se-
problem, which leads to a detector of polynomial complexity. Computer guence, and&v = Tb/Tc is the spreading gain. The received baseband
simulations that demonstrate that the proposed detector offers near-op- signal is given by
timal performance with considerably reduced computational complexity
compared with that of existing primal-SDP-relaxation based detectors are

presented. K
Index Terms—buality theory, maximum likelihood detection, multiuser y(t) = Z Arbrsik(t) +n(t) 2
detection, semidefinite programming. k=1

whereb,, is an information bit,4,, is the signal amplitude of thith
|. INTRODUCTION user’s signal, anek.(¢) is an additive white Gaussian noise (AWGN)
. .o
DEMODULATION in the presence of multiple access inter’"2¢€SS with zero-mean _and vanarnce . . .
P P The demodulation begins by filtering the received sigr{a) with a

ference (MAI) is of central importance in multiuser wireles , L
communications. The optimal maximum likelihood (ML) mulﬁ)ank of K matched filters. The output of théh matched filter is given

tiuser detector for direct-sequence code-division multiple-acce

(DS-CDMA) channels has been proposed by Verdu [1], [2]. Except for

some special circumstances where the crosscorrelation matrix of the Ty

user signatures is well structured [3], ML detection is carried out by Yk = /D y(t)si(t)dt

solving a combinatorial optimization problem involving a quadratic o L

objective function of a binary variable vector. Recently, several authors = Aebi + Zk Azbipjk + (3)

have proposed a new solution method where the integer programming #

problem involved in the ML detection is “relaxed” into a semidefinite oy T, )

programming (SDP) problem [4][6]. wheretph,k = {; I_sJ (tg)s;-,(t) ﬁt,anptliu = [," n(t)s(t) dt. In matrix
Although the SDP relaxation based detector is of polynomial cor%qrm’ e model in (3) can be written as

plexity, the associated SDP problem involves a matrix variable of di-

mension(K + 1) x (K + 1), where” denotes the number of users y =RAb+n )

in the system. Hence, it requires a large amount of computation even

for a moderate number of users. In this correspondence, it is shoyRere R = {,,,} is the synchronous crosscorrelation matrix,
that the detection can be carried out by solving a dual SDP problgm_ [by by --- b,;»]'l' is a vector whose elements are the information
that involves only a vector variable of siZé + 1, and therefore, the pits of the i users, anch = [n1 ns --- nx]? is a vector of

computational complexity can be significantly reduced compared Withr5_mean Gaussian random variables whose crosscorrelation matrix
that required by the existing SDP relaxation method. Computer sirqg-E[nnr] — +2R.

lations are presented to demonstrate the performance and efficiency 6fpe gbjective of multiuser detection is to identify the transmitted in-

the proposed detector. formation vectoib from y(t) in (2), which is the superposition of the
received user signals and ambient channel noise. Among various mul-
Il. SIGNAL MODEL AND PROBLEM FORMULATION tiuser detectors, the ML detector has been shown to have optimal de-

modulation performance and is often used as a baseline for comparison
81(‘:9ther detectors in DS-CDMA systems. In the ML detector, the de-
}gction is carried out by solving a combinatorial optimization problem

given by

We consider a synchronous DS-CDMA system in whichusers
transmit antipodal signals through a single-path, frequency-nonsel
tive, slowly Rayleigh fading channel. The bit interval of each user

minimizex’ Hx + x' p (5a)
subjecttor; € {1,-1} fori=1,2,..., K (5b)
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[ll. M ULTIUSER DETECTOR USING SEMIDEFINITE
PROGRAMMING RELAXATION

A. Semidefinite Programming

Semidefinite programming (SDP) is a class of mathematical
methods for the solution of optimization problems where the objective

2447

wherei;; denotes théth diagonal element X. By removing the rank
constraint in (12b), we obtain an SDP relaxation of (5) as

minimize t{ CX) (13a)
subjectto X = 0 (13b)
;=1 fori=1,2,..., K +1. (13c)

functions are linear, and the constraints are linear matrix inequalities.

A typical SDP problem formulation is given by

minimizec? x (6a)

subjecttoF(x) = Fo + ZEF =0
=1

(6b)

wherex = [#1 x2 - -- .rn]T denotes the variable vectere R™*',

If we collect the variables involved K into a vector, then the objec-

tive function in (13a) can be expressed:x for some constant vector

c. In addition, as argued at the end of Section IlI-B, the constraints in

(13b) and (13c) can be expressed as the LMl in (9). Thus, the problem
in (13) can be expressed in the form of (6), and therefore, it is an SDP
problem.

andF; € R"*™ for 0 < ¢ < n are symmetric matrices. The notationD. Binary Solution

F(x) > 0 denotes that matri¥ (x) is positive semidefinite. Efficient

The variables in the original problem in (5) assume values of only 1

interior-point optimization algorithms and software for SDP have be} _{ \yhereas the variablK in the SDP minimization problem (13)

developed in the past several years [7]-[10].

B. SDP Relaxation of MAX-CUT Problem

has nonbinary values. In what follows, we describe two approaches that
can be used to generate a binary solution for (5) based on the solution
X of the SDP problem in (13).

The MAX-CUT problem is a well-known integer programming Let the solution of (13) be denoted X< . It follows from (10) that

problem in graph theory. It can be formulated as [11]

minimize ttWX) (7a)
subjecttoX > 0 (7b)
ri=1 forl <i<n (7c)
rankKX) =1 (7d)

where the elements 8V are the weights associated with a graph with

w;; = 0 andz;; denotes théth diagonal element dX.

In[11], Geomans and Williamson proposed a relaxation of the abo\X/%ereX*

problem by removing the rank constraint in (7d), which leads to

minimize t{tWX) (8a)
subjectto X > 0 (8b)
ri=1 forl <i<mn. (8C)

Note that the objective function in (8a) is a linear functionXof and

the constraints in (8b) and (8c) can be combined into a linear mat

inequality (LMI) as
2.2 0, Fi+1x0 ©)

where, for eachi, j) with i > j, F,; is a symmetric matrix with

its (¢, j)th and(j, ¢ )th entries being ones and all the remaining entries
being zeros. Therefore, the problem in (8) is of the type given in (6),
and it, therefore, is an SDP problem. For this reason, the problem in (8)

is known as arsDP relaxatiorof the problem in (7).

C. SDP-Relaxation-Based Multiuser Detector
Let

(10)

. |:XXT x

<! 1} and C:{H p/Q}

p'/2 1

By noting that ttAB) = tr(BA), the objective function in (5a) can

be expressed as

x'Hx +x"p = tr(CX). (11)

X*isa(K + 1) x (K + 1) symmetric matrix of the form

- xX*  x*
X" =
el (1)
with (z");; = 1fori =1,2,..., K. Inview of the structure of (14),

the first approach is simply to apply operator 6ghto x* in (14),
namely,

b =sgiX"(1: K,K +1)] (15)
(1: K, K + 1) denotes the vector formed by using the first
K entries in the last column &f*.

A better binary solution, at the cost of increased computation, can be
obtained by using the eigen-decomposition of makix, i.e., X* =
USUT, whereU is an orthogonal matrix, anl is a diagonal matrix
with the eigenvalues oK* on its diagonal in decreasing order [13].

It is well known that an optimal rank-one approximationfbf in the
2-norm sense is given by u; u? , where), is the largest eigenvalue of
52(*, andu; is the eigenvector associated with[13]. If we denote the
vector formed by using the firdt” entries ofu, asu and the last entry

of u; asugy, i.e.,u; = [@? wxi1]7, then the optimal rank-one
approximation ofX* can be expressed as
~ T ~
N uu UK u
X*Zklulufzkl T \2+]
UK+11 UK 41

(16)

. [xix] %
wherex; = u/ug+1. SinceX; > 0, upon comparing (16) with (14),
we see that vectat; is a reasonable approximationxf. Therefore,
a binary solution of (5) can be generated as

r sgr[m (1 : IX’)L if 4 (I{ + 1) >0
b= { —sgriu (1: K], if wi (K +1) < 0 a7

IV. EFFICIENT SDP SLUTION VIA DUALITY

Although interior-point algorithms [8]-[10] can be applied to the
SDP problem at hand and their computational complexity increases in

Using an argument similar to that in Section 11I-B, the constraints ia nonexponential manner, numerical difficulties may arise in solving

(5b) can be converted to

X>=0, #;=1 fori<i<K
rankX) = 1

(12a)
(12b)

(13) because of the large number of variables involved, even for the
detection of a moderate number of users. In this section, we present a
new algorithm that can be used to obtain a solution of the SDP problem
at hand more efficiently. The proposed method entails two steps, as
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follows: First, the so-called dual of the SDP problem is solved, arid (24), = is a sufficiently small constant such that> 0 and S*
second, the solution obtained for the dual problem is converted to thegiven by (21). In order for matriX in (24) to satisfy the equality
solution of the primal SDP problem. constraints in (18c)X needs to be slightly modified by using a scaling

The SDP problem in (13) can be expressed as matrix IT, i.e.,
minimize t{ CX) (18a) X — (st 25)
subjectto X > 0 (18b) ‘
t(A;X)=1 fori=1,...,K+1  (18c) wherell = diag{¢,”” --- ¢}/7,}, and; is theith diagonal entry
of (S*)~*. In (25), we have pre- and post-multipli¢§i*) ~* by IT to

where A; is a diagonal matrix whose diagonal entries are all ZerQs sure

that matriX ™ remainssymmetricand positive definitelt is
except theith entry, which is one. It follows from [10] and [14] that 4 P

worth noting that by imposing the equality constraints (18cKgrthe

the dual of the problem in (18) is given by
minimize—b’y
K41
subjecttoS = C - > yiA;

=1

(19b)

S>0 (19c)

wherey = [y1 -+ yxi1],andb = [1 ... 1]¥ e ¢EHDxL

Note that the dual problem in (19) involves orly+ 1 variables, and

it can be solved efficiently by using interior-point algorithms such as

the projective method proposed by Nemirovskii and Gahinet [15].

In order to obtain the solution of the primal SDP problem in (18), th
Karush-Kuhn-Tucker (KKT) conditions for the solutions of the prob
lems in (18) and (19) need to be examined. The KKT conditions stale
that{X*,y*} solves the problems in (18) and (19) if and only if the){)

satisfy the conditions
K+1

> yiA+8 =C (20a)
=1
tr(A,X*)=1 fori=1,...,K +1 (20b)
$*X* =0 (20c)
X*»>0 and S*>o0. (20d)
From (20a), we have
K+1
(21)

S*=C-— Z yrA;.
=1

Since the solutioy™ is typically obtained from aiterativealgorithm,
y* can at best be a good approximate solution of (20), which me

parameter in (24) is incorporated in the scaling matiix. The steps

(19a) to compute an approximate solutidh of the SDP problem (18) can

be summarized as follows.

i) Form matrixC using (10).
ii) Solve the dual SDP problem in (19), and denote its solution as

*

y .
iii) ComputeS™ using (21).

iv) ComputeX* using (25).

v) Computeb using (15) or (17).

Two remarks can be made pertaining to the computational com-
%Iexity of the proposed algorithm and the accuracy of the solution ob-
tained. To a large extent, the computational complexity of our algo-
rithm is determined by steps ii) and iv), wheréld + 1)-variable SDP
roblem is solved, and @< + 1) x (K + 1) positive definite ma-

rix is inverted, respectively. Compared with the computations required
to directly solve thel (K + 1)/2-variable SDP problem in (18), the
new method reduces the computational complexity by a considerable
amount. Concerning the accuracy of the solution, we note that it is the
binary solution that determines the performance of the multiuser de-
tector. Since the binary solution is the result of the sign operation [see
(15) and (17)], the approximation introduced in (25) is expected to have
a negligible effect on the accuracy of the solution.

The use of semidefinite programming was also explored recently in
[5] and [6]. The method in [5] also uses relaxation, but a randomiza-
tion method is used to convert the solution of the SDP problem into the
binary detection output as opposed to our eigen-decomposition-based
method. In the method reported in [6], which is also based on the
eigen-decomposition, a cutting plane method is used the improve the

etection performance of the SDPR detector for a system with a large

thfty is: in the.i.nterior.of the feasible region. Cions;equsntly, matri)ﬁwumber of users, and satisfactory results have been reported. However,
S™ remainspositive definite Therefore, the sefy”, 5™, X"} can be \o1h44s for reducing the computational complexity involved in solving
regarded as a point in the feasible region that is sufficiently Cloggs spp problem, which is of key concern as will be demonstrated in

to the limiting point of the central path for the problems in (18}he next section, have not been explored in these papers.
and (19). Recall that the central path is defined as a parameterized

set{y(7),S(r),X(7) for = > 0} that satisfies the modified KKT
conditions [10]
K41

V. SIMULATION RESULTS

Computer simulations were carried out to evaluate the performance

; vi(T)Ai+8(r) = C (222) of the SDP-relaxation (SDPR)-based multiuser detector in terms of
o . . bit-error rate (BER) and computational complexity and to compare
tr(Ai?{(T)) =1 fori=1,...K+1 (22b) the proposed detectors with the ML detector, the conventional
S(m)X(r) =71 (22¢) matched-filter detector, the linear decorrelating detector [16], and the
5((7-) =0 and S(r)> 0. (22d) linear MMSE detector [17].

. . . . Two types of SDPR detectors were implemented using the MATLAB
The relation betvveer_1 the equations In (20) and those in (22) becorﬂwﬁ control toolbox [9]: one based on the primal and the other based on
apparent as one realizes that the entire central path defined by (22){igS ;a1 SDP formulation. In what follows, these detectors will be re-
in the interior of the feasible region, andas- 0, the path CONVerges feyre to as the SDPR-P and SDPR-D detectors. Since the ultimate goal
to the solution sefy ™, S*, X" } that satisfies (20). of the detector is to estimate thiary-valuednformation vectob, a
From (22c), it follows that fairly large convergence tolerance= 10~ was used in order to keep

X(T) =7rS"1(7) (23) the number of iterations, and, hence, the computational complexity,
. . . low. In addition, an upper bounll,, = 5 was imposed on the number
which suggests an approximate solution of (18) as of iterations. In our simulationd,0° runs were performed to evaluate
X= r(S*)™". (24) the average performance for each of the ML, linear MMSE (LMMSE),
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Fig. 1. BER versus SNR for six-user synchronous DS-CDMA system irig. 3. Near—far performance of six-user synchronous DS-CDMA system in
AWGN channel. AWGN channel.

e ' ' " T The SNR of the five interference user signals were identical, and the
T~ * e SNR varied from 0 to 14 dB during the transmission. The average BER
‘\\‘ e '\":o.,m versus SNR for the ML, LMMSE, DD, MF (conventional matched
\\ *s \"\'o.,_l filter), SDPR-P, and SDPR-D detectors obtained is plotted in Fig. 3.
e . o From these simulations, it is observed that the demodulation perfor-
‘\‘ s NC mance of the SDPR-P and SDPR-D detectors is consistently very close
@ N *llo to that of the ML detector and is superior relative to that of the decor-
& \\ NS relating and MMSE detectors. It is also observed that the bit error rate
3 e o, of the SDPR-D detector is slightly smaller than that of the SDPR-P
ot “‘x\ R detector, in particular, when the SNR is high. We believe that this per-
N I ML DN \*I‘;..,o formance improvement can be attributed to the fact that the size and,
-x- SDPR-P \\ R therefore, the complexity of the SDP problem involved in the SDPR-D
107} o ESEEED ""\k ~¥ formulation is considerably smaller than its primal counterpart, and
.0+ Decorrelating '\\.‘ therefore, the SDPR-D detector is more robust with respect to numer-
X ical errors. This is particularly so when the SNR is high because the
. data used in the simulation are less random, and the numerical errors
s . . ' . become a more dominant source of performance degradation.

6 7 g. M 10 " 12 The computational complexity of the various detectors was evalu-
ignal to Noise Ratio, dB . . . R .
) ) __ated in terms of the CPU time and the floating-point operations (flops)
Eglli'i higgr‘]’ercsﬁasnsn'::?fore'ght'usersymhro”o“s DS-CDMA systeminflgl 5o e by the MATLAB LMI Control toolbox. The logarithm of the

yie g ’ averaged CPU time and computation flops for the ML, SDPR-P, and
SDPR-D detectors are plotted versus the number of active users in

matched-filter (MF), decorrelating (DD), SDPR-P, and SDPR-D deteEid- 4- The number of users for the ML detector was restricted to the

tors. range 10 to 17 to avoid the extremely high computational effort in-
In the first set of simulations, a six-user synchronous system usikgfved, but for the sake of comparison, the curve was extrapolated as

15-chip Gold sequences for signatures was considered. The recea@Wn in Fig. 4, assuming that the trend established for the range 10 to
signal powers of the six users were set to 5, 3, 1.8, 0.6, 0.3, and 0L3.Users continues for a larger numbers of users. .
The last user with power 0.2 was designated as the desired user. THS c@n be observed in Fig. 4, the SDPR detectors are considerably
average BER versus SNR for the various detectors is plotted in FigMore efficient than the ML detector when the number of users is large,
The second set of simulations concerned an eight-user synchrongld the SDPR-D detector is much more efficient than the SDPR-P de-
system in a frequency-flat Rayleigh fading channel. The user signatufg&ior- The SDPR-P detector requires 8.6% and 0.05% the computa-
used were the same as in the first simulation and the received sigifial effort required by the ML detector for 15 and 25 users, respec-
power ofthe eight users were setto 5, 3, 1.8, 1,0.6, 0.3, 0.2, and 0.1. Tlgly- On the other hand, the SDPR-D detector requires 10.43% and
fourth user (the one with unity power) was designated as the desireo%0 Of the computational effort required by the SDPR-P detector,

user, and the coherent time of the fading channel was set to ten tirfi@&in for 15 and 25 users, respectively. _
the bit duration. The signal-to-noise ratio (SNR) was assumed to bé>2Sed on the simulation results obtained, the computational com-

known to the MMSE detector. The average BER versus SNR for tRiEXity of the three detectors can be quantified in terms of the approx-
various detectors is plotted in Fig. 2. imate CPU time, which is given by
The third set of simulations were carried out to examine the near—far —4 oK
. . = 4. 1 -2
resistance of the SDPR-P and SDPR-D detectors for a six-user syn- ; G 5 % 0_5 50 (262)
chronous system using the same user signatures as before. The SNR Csppr—p R 4.2 X 107K (26b)
of the desired user signal was fixed to 8 dB higher than channel noise. Csppr-p ~ 2.6 x 107" K> (26¢)
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OFDM Transmitters: Analog Representation and

where K is the number of users. In effect, the computational com- DFT-Based Implementation

plexity for the ML detector increases exponentially with the number

of users, whereas that of the SDPR detectors is of polynomial order. Yuan-Pei Lin and See-May Phoong
It should be mentioned here that the computational effort pertaining

to the SDPR-D detector can be further reduced by taking the special

structure of matriXA; into consideration, but this possibility has yetto = Abstract—The implementation of OFDM transmitters typically consists
be explored. of a discrete DFT matrix and a digital-to-analog (DAC) converter. Many
existing results on the analysis of OFDM systems, e.g., spectral roll-off, are
based on a convenient analog representation. In this paper, we show that the
VI. CONCLUSION analog representation and the DFT-based OFDM transmitters are equiva-
lent only in special cases. Using the analog system to analyze the DFT-based

A multiuser detector for DS-CDMA systems based on SDP h&CDM system may not be valid if there is no equivalent analog represen-
been proposed. It has been shown that the ML detection can 63&0”
carried out by “relaxing” the associated integer programming problemindex Terms—Analog representation, DFT-based implementation,
to a dual SDP problem, which leads to a detector of polynomiQFDM, pulse shaping, window.
complexity. Computer simulations that demonstrate that the proposed
detector offers near-optimal performance with considerably reduced |
computational complexity, compared with that of existing primal SDP

relaxation-based detectors, have been presented. The orthogonal frequency division multiplexing (OFDM) systems
[1]-[3] are well known for applications in wireless local area networks

(LANs) and broadcast of digital audio and digital video. Fig. 1 shows
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