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A Near-Optimal Multiuser Detector for DS-CDMA
Systems Using Semidefinite Programming Relaxation

X. M. Wang, W.-S. Lu, and A. Antoniou

Abstract—A multiuser detector for direct-sequence code-division mul-
tiple-access systems based on semidefinite programming (SDP) is proposed.
It is shown that maximum likelihood (ML) detection can be carried out
by “relaxing” the associated integer programming problem to a dual SDP
problem, which leads to a detector of polynomial complexity. Computer
simulations that demonstrate that the proposed detector offers near-op-
timal performance with considerably reduced computational complexity
compared with that of existing primal-SDP-relaxation based detectors are
presented.

Index Terms—Duality theory, maximum likelihood detection, multiuser
detection, semidefinite programming.

I. INTRODUCTION

DDEMODULATION in the presence of multiple access inter-
ference (MAI) is of central importance in multiuser wireless

communications. The optimal maximum likelihood (ML) mul-
tiuser detector for direct-sequence code-division multiple-access
(DS-CDMA) channels has been proposed by Verdù [1], [2]. Except for
some special circumstances where the crosscorrelation matrix of the
user signatures is well structured [3], ML detection is carried out by
solving a combinatorial optimization problem involving a quadratic
objective function of a binary variable vector. Recently, several authors
have proposed a new solution method where the integer programming
problem involved in the ML detection is “relaxed” into a semidefinite
programming (SDP) problem [4]–[6].

Although the SDP relaxation based detector is of polynomial com-
plexity, the associated SDP problem involves a matrix variable of di-
mension(K + 1) � (K + 1), whereK denotes the number of users
in the system. Hence, it requires a large amount of computation even
for a moderate number of users. In this correspondence, it is shown
that the detection can be carried out by solving a dual SDP problem
that involves only a vector variable of sizeK + 1, and therefore, the
computational complexity can be significantly reduced compared with
that required by the existing SDP relaxation method. Computer simu-
lations are presented to demonstrate the performance and efficiency of
the proposed detector.

II. SIGNAL MODEL AND PROBLEM FORMULATION

We consider a synchronous DS-CDMA system in whichK users
transmit antipodal signals through a single-path, frequency-nonselec-
tive, slowly Rayleigh fading channel. The bit interval of each user is
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Tb s, and each signal is assigned a normalized signature waveforms(t)
given by

s(t) =

N

i=1

(�1)c pT [t� (i� 1)Tc] for t 2 [0; Tb] (1)

wherepT (t) is the chip waveform that takes a nonzero value between
0 � t � Tc and is zero elsewhere,fc1; c2; . . . ; cNg is a binary se-
quence, andN = Tb=Tc is the spreading gain. The received baseband
signal is given by

y(t) =

K

k=1

Akbksk(t) + n(t) (2)

wherebk is an information bit,Ak is the signal amplitude of thekth
user’s signal, andn(t) is an additive white Gaussian noise (AWGN)
process with zero-mean and variance�2.

The demodulation begins by filtering the received signaly(t) with a
bank ofK matched filters. The output of thekth matched filter is given
by

yk =
T

0

y(t)sk(t)dt

= Akbk +
j 6=k

Ajbj�jk + nk (3)

where�jk =
T

0
sj(t)sk(t)dt, andnk =

T

0
n(t)sk(t)dt. In matrix

form, the model in (3) can be written as

y = RAb+ n (4)

where R = f�jkg is the synchronous crosscorrelation matrix,
b = [b1 b2 � � � bK ]T is a vector whose elements are the information
bits of theK users, andn = [n1 n2 � � � nK ]T is a vector of
zero-mean Gaussian random variables whose crosscorrelation matrix
is E[nnT ] = �2R.

The objective of multiuser detection is to identify the transmitted in-
formation vectorb from y(t) in (2), which is the superposition of the
received user signals and ambient channel noise. Among various mul-
tiuser detectors, the ML detector has been shown to have optimal de-
modulation performance and is often used as a baseline for comparison
of other detectors in DS-CDMA systems. In the ML detector, the de-
tection is carried out by solving a combinatorial optimization problem
given by

minimizexTHx+ xTp (5a)

subject to: xi 2 f1;�1g for i = 1; 2; . . . ; K (5b)

wherexi denotes theith entry ofx;H = ARA, andp = �2Ay.
Because of the binary constraints in (5b), the computational complexity
involved in the ML detection increases exponentially with respect to
the number of users. Therefore, the implementation of the ML detector
becomes prohibitive even for a moderate number of users.
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III. M ULTIUSER DETECTOR USING SEMIDEFINITE

PROGRAMMING RELAXATION

A. Semidefinite Programming

Semidefinite programming (SDP) is a class of mathematical
methods for the solution of optimization problems where the objective
functions are linear, and the constraints are linear matrix inequalities.
A typical SDP problem formulation is given by

minimizecTx (6a)

subject to: F(x) = F0 +

n

i=1

xiFi � 0 (6b)

wherex = [x1 x2 � � � xn]
T denotes the variable vector,c 2 Rn�1,

andFi 2 Rm�m for 0 � i � n are symmetric matrices. The notation
F(x) � 0 denotes that matrixF(x) is positive semidefinite. Efficient
interior-point optimization algorithms and software for SDP have been
developed in the past several years [7]–[10].

B. SDP Relaxation of MAX-CUT Problem

The MAX-CUT problem is a well-known integer programming
problem in graph theory. It can be formulated as [11]

minimize tr(WX) (7a)

subject to:X � 0 (7b)

xii = 1 for 1 � i � n (7c)

rank(X) = 1 (7d)

where the elements ofW are the weights associated with a graph with
wii = 0 andxii denotes theith diagonal element ofX.

In [11], Geomans and Williamson proposed a relaxation of the above
problem by removing the rank constraint in (7d), which leads to

minimize tr(WX) (8a)

subject to:X � 0 (8b)

xii = 1 for 1 � i � n: (8c)

Note that the objective function in (8a) is a linear function ofX, and
the constraints in (8b) and (8c) can be combined into a linear matrix
inequality (LMI) as

xijFij + I � 0 (9)

where, for each(i; j) with i > j; Fij is a symmetric matrix with
its (i; j)th and(j; i)th entries being ones and all the remaining entries
being zeros. Therefore, the problem in (8) is of the type given in (6),
and it, therefore, is an SDP problem. For this reason, the problem in (8)
is known as anSDP relaxationof the problem in (7).

C. SDP-Relaxation-Based Multiuser Detector

Let

X̂ =
xxT x

xT 1
and C =

H p=2

pT =2 1
(10)

By noting that tr(AB) = tr(BA), the objective function in (5a) can
be expressed as

x
T
Hx+ xTp = tr(CX̂): (11)

Using an argument similar to that in Section III-B, the constraints in
(5b) can be converted to

X̂ � 0; x̂ii = 1 for 1 � i � K (12a)

rank(X̂) = 1 (12b)

wherex̂ii denotes theith diagonal element of̂X. By removing the rank
constraint in (12b), we obtain an SDP relaxation of (5) as

minimize tr(CX̂) (13a)

subject to: X̂ � 0 (13b)

x̂ii = 1 for i = 1; 2; . . . ; K + 1: (13c)

If we collect the variables involved in̂X into a vectorx, then the objec-
tive function in (13a) can be expressed ascTx for some constant vector
c. In addition, as argued at the end of Section III-B, the constraints in
(13b) and (13c) can be expressed as the LMI in (9). Thus, the problem
in (13) can be expressed in the form of (6), and therefore, it is an SDP
problem.

D. Binary Solution

The variables in the original problem in (5) assume values of only 1
or�1, whereas the variableX in the SDP minimization problem (13)
has nonbinary values. In what follows, we describe two approaches that
can be used to generate a binary solution for (5) based on the solution
X̂ of the SDP problem in (13).

Let the solution of (13) be denoted asX̂�. It follows from (10) that
X̂� is a(K + 1)� (K + 1) symmetric matrix of the form

X̂
� =

X� x�

x�
T 1

(14)

with (x̂�)ii = 1 for i = 1; 2; . . . ; K. In view of the structure of (14),
the first approach is simply to apply operator sgn( � ) to x� in (14),
namely,

b̂ = sgn[X̂�(1 : K;K + 1)] (15)

whereX̂�(1 : K;K + 1) denotes the vector formed by using the first
K entries in the last column of̂X�.

A better binary solution, at the cost of increased computation, can be
obtained by using the eigen-decomposition of matrixX̂�, i.e.,X̂� =
USUT , whereU is an orthogonal matrix, andS is a diagonal matrix
with the eigenvalues of̂X� on its diagonal in decreasing order [13].
It is well known that an optimal rank-one approximation ofX̂� in the
2-norm sense is given by�1u1uT1 , where�1 is the largest eigenvalue of
X̂�, andu1 is the eigenvector associated with�1 [13]. If we denote the
vector formed by using the firstK entries ofu1 as~u and the last entry
of u1 asuK+1, i.e.,u1 = [~uT uK+1]

T , then the optimal rank-one
approximation ofX̂� can be expressed as

X̂
�

� �1u1u
T
1 = �1

~u~uT uK+1~u

uK+1~u
T u2K+1

= �1u
2

k+1

~x1~x
T
1 ~x1

~xT1 1
(16)

where~x1 = ~u=uk+1. Since�1 > 0, upon comparing (16) with (14),
we see that vector~x1 is a reasonable approximation ofx�. Therefore,
a binary solution of (5) can be generated as

b̂ =
sgn[u1(1 : K)]; if u1(K + 1) > 0

�sgn[u1(1 : K)]; if u1(K + 1) < 0
(17)

IV. EFFICIENT SDP SOLUTION VIA DUALITY

Although interior-point algorithms [8]–[10] can be applied to the
SDP problem at hand and their computational complexity increases in
a nonexponential manner, numerical difficulties may arise in solving
(13) because of the large number of variables involved, even for the
detection of a moderate number of users. In this section, we present a
new algorithm that can be used to obtain a solution of the SDP problem
at hand more efficiently. The proposed method entails two steps, as
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follows: First, the so-called dual of the SDP problem is solved, and
second, the solution obtained for the dual problem is converted to the
solution of the primal SDP problem.

The SDP problem in (13) can be expressed as

minimize tr(CX̂) (18a)

subject to: X̂ � 0 (18b)

tr(AiX) = 1 for i = 1; . . . ; K + 1 (18c)

whereAi is a diagonal matrix whose diagonal entries are all zeros
except theith entry, which is one. It follows from [10] and [14] that
the dual of the problem in (18) is given by

minimize�bTy (19a)

subject to: S = C�

K+1

i=1

yiAi (19b)

S � 0 (19c)

wherey = [y1 � � � yK+1]
T , andb = [1 � � � 1]T 2 C(K+1)�1.

Note that the dual problem in (19) involves onlyK + 1 variables, and
it can be solved efficiently by using interior-point algorithms such as
the projective method proposed by Nemirovskii and Gahinet [15].

In order to obtain the solution of the primal SDP problem in (18), the
Karush-Kuhn-Tucker (KKT) conditions for the solutions of the prob-
lems in (18) and (19) need to be examined. The KKT conditions state
thatfX̂�; y�g solves the problems in (18) and (19) if and only if they
satisfy the conditions

K+1

i=1

y�iAi + S
� = C (20a)

tr(AiX̂
�) = 1 for i = 1; . . . ; K + 1 (20b)

S
�

X̂
� = 0 (20c)

X̂
� � 0 and S

� � 0: (20d)

From (20a), we have

S
� = C�

K+1

i=1

y�iAi: (21)

Since the solutiony� is typically obtained from aniterativealgorithm,
y� can at best be a good approximate solution of (20), which means
thaty� is in the interior of the feasible region. Consequently, matrix
S� remainspositive definite. Therefore, the setfy�;S�; X̂�g can be
regarded as a point in the feasible region that is sufficiently close
to the limiting point of the central path for the problems in (18)
and (19). Recall that the central path is defined as a parameterized
setfy(� );S(�); X̂(�) for � > 0g that satisfies the modified KKT
conditions [10]

K+1

i=1

yi(�)Ai + S(�) = C (22a)

tr(AiX̂(�)) = 1 for i = 1; . . .K + 1 (22b)

S(�)X̂(�) = �I (22c)

X̂(�) � 0 and S(�) � 0: (22d)

The relation between the equations in (20) and those in (22) becomes
apparent as one realizes that the entire central path defined by (22) lies
in the interior of the feasible region, and as� ! 0, the path converges
to the solution setfy�;S�; X̂�g that satisfies (20).

From (22c), it follows that

X̂(�) = �S�1(�) (23)

which suggests an approximate solution of (18) as

X̂ = � (S�)�1: (24)

In (24), � is a sufficiently small constant such that� > 0 andS�

is given by (21). In order for matrix̂X in (24) to satisfy the equality
constraints in (18c),̂X needs to be slightly modified by using a scaling
matrix�, i.e.,

X̂
� = �(S�)�1� (25)

where� = diagf�1=21 � � � �
1=2
K+1g, and�i is the ith diagonal entry

of (S�)�1. In (25), we have pre- and post-multiplied(S�)�1 by� to
ensure that matrix̂X� remainssymmetricandpositive definite. It is
worth noting that by imposing the equality constraints (18c) onX̂, the
parameter� in (24) is incorporated in the scaling matrix�. The steps
to compute an approximate solution̂X of the SDP problem (18) can
be summarized as follows.

i) Form matrixC using (10).
ii) Solve the dual SDP problem in (19), and denote its solution as
y�.

iii) ComputeS� using (21).
iv) ComputeX̂� using (25).
v) Computeb̂ using (15) or (17).

Two remarks can be made pertaining to the computational com-
plexity of the proposed algorithm and the accuracy of the solution ob-
tained. To a large extent, the computational complexity of our algo-
rithm is determined by steps ii) and iv), where a(K+1)-variable SDP
problem is solved, and a(K + 1) � (K + 1) positive definite ma-
trix is inverted, respectively. Compared with the computations required
to directly solve theK(K + 1)=2-variable SDP problem in (18), the
new method reduces the computational complexity by a considerable
amount. Concerning the accuracy of the solution, we note that it is the
binary solution that determines the performance of the multiuser de-
tector. Since the binary solution is the result of the sign operation [see
(15) and (17)], the approximation introduced in (25) is expected to have
a negligible effect on the accuracy of the solution.

The use of semidefinite programming was also explored recently in
[5] and [6]. The method in [5] also uses relaxation, but a randomiza-
tion method is used to convert the solution of the SDP problem into the
binary detection output as opposed to our eigen-decomposition-based
method. In the method reported in [6], which is also based on the
eigen-decomposition, a cutting plane method is used the improve the
detection performance of the SDPR detector for a system with a large
number of users, and satisfactory results have been reported. However,
methods for reducing the computational complexity involved in solving
the SDP problem, which is of key concern as will be demonstrated in
the next section, have not been explored in these papers.

V. SIMULATION RESULTS

Computer simulations were carried out to evaluate the performance
of the SDP-relaxation (SDPR)-based multiuser detector in terms of
bit-error rate (BER) and computational complexity and to compare
the proposed detectors with the ML detector, the conventional
matched-filter detector, the linear decorrelating detector [16], and the
linear MMSE detector [17].

Two types of SDPR detectors were implemented using the MATLAB
LMI control toolbox [9]: one based on the primal and the other based on
the dual SDP formulation. In what follows, these detectors will be re-
ferred to as the SDPR-P and SDPR-D detectors. Since the ultimate goal
of the detector is to estimate thebinary-valuedinformation vectorb, a
fairly large convergence tolerance" = 10�2 was used in order to keep
the number of iterations, and, hence, the computational complexity,
low. In addition, an upper boundKu = 5 was imposed on the number
of iterations. In our simulations,105 runs were performed to evaluate
the average performance for each of the ML, linear MMSE (LMMSE),
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Fig. 1. BER versus SNR for six-user synchronous DS-CDMA system in
AWGN channel.

Fig. 2. BER versus SNR for eight-user synchronous DS-CDMA system in flat
Rayleigh fading channel.

matched-filter (MF), decorrelating (DD), SDPR-P, and SDPR-D detec-
tors.

In the first set of simulations, a six-user synchronous system using
15-chip Gold sequences for signatures was considered. The received
signal powers of the six users were set to 5, 3, 1.8, 0.6, 0.3, and 0.2.
The last user with power 0.2 was designated as the desired user. The
average BER versus SNR for the various detectors is plotted in Fig. 1.

The second set of simulations concerned an eight-user synchronous
system in a frequency-flat Rayleigh fading channel. The user signatures
used were the same as in the first simulation and the received signal
power of the eight users were set to 5, 3, 1.8, 1, 0.6, 0.3, 0.2, and 0.1. The
fourth user (the one with unity power) was designated as the desired
user, and the coherent time of the fading channel was set to ten times
the bit duration. The signal-to-noise ratio (SNR) was assumed to be
known to the MMSE detector. The average BER versus SNR for the
various detectors is plotted in Fig. 2.

The third set of simulations were carried out to examine the near–far
resistance of the SDPR-P and SDPR-D detectors for a six-user syn-
chronous system using the same user signatures as before. The SNR
of the desired user signal was fixed to 8 dB higher than channel noise.

Fig. 3. Near–far performance of six-user synchronous DS-CDMA system in
AWGN channel.

The SNR of the five interference user signals were identical, and the
SNR varied from 0 to 14 dB during the transmission. The average BER
versus SNR for the ML, LMMSE, DD, MF (conventional matched
filter), SDPR-P, and SDPR-D detectors obtained is plotted in Fig. 3.

From these simulations, it is observed that the demodulation perfor-
mance of the SDPR-P and SDPR-D detectors is consistently very close
to that of the ML detector and is superior relative to that of the decor-
relating and MMSE detectors. It is also observed that the bit error rate
of the SDPR-D detector is slightly smaller than that of the SDPR-P
detector, in particular, when the SNR is high. We believe that this per-
formance improvement can be attributed to the fact that the size and,
therefore, the complexity of the SDP problem involved in the SDPR-D
formulation is considerably smaller than its primal counterpart, and
therefore, the SDPR-D detector is more robust with respect to numer-
ical errors. This is particularly so when the SNR is high because the
data used in the simulation are less random, and the numerical errors
become a more dominant source of performance degradation.

The computational complexity of the various detectors was evalu-
ated in terms of the CPU time and the floating-point operations (flops)
reported by the MATLAB LMI Control toolbox. The logarithm of the
averaged CPU time and computation flops for the ML, SDPR-P, and
SDPR-D detectors are plotted versus the number of active users in
Fig. 4. The number of users for the ML detector was restricted to the
range 10 to 17 to avoid the extremely high computational effort in-
volved, but for the sake of comparison, the curve was extrapolated as
shown in Fig. 4, assuming that the trend established for the range 10 to
17 users continues for a larger numbers of users.

As can be observed in Fig. 4, the SDPR detectors are considerably
more efficient than the ML detector when the number of users is large,
and the SDPR-D detector is much more efficient than the SDPR-P de-
tector. The SDPR-P detector requires 8.6% and 0.05% the computa-
tional effort required by the ML detector for 15 and 25 users, respec-
tively. On the other hand, the SDPR-D detector requires 10.43% and
7.86% of the computational effort required by the SDPR-P detector,
again for 15 and 25 users, respectively.

Based on the simulation results obtained, the computational com-
plexity of the three detectors can be quantified in terms of the approx-
imate CPU time, which is given by

CML � 4:5� 10
�4

� 2
K (26a)

CSDPR�P � 4:2� 10
�5
K
3:9 (26b)

CSDPR�D � 2:6� 10
�5
K
3:3 (26c)
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Fig. 4. Computational complexity of the demodulation for the ML, SDPR-P,
and SDPR-D detectors.

whereK is the number of users. In effect, the computational com-
plexity for the ML detector increases exponentially with the number
of users, whereas that of the SDPR detectors is of polynomial order.

It should be mentioned here that the computational effort pertaining
to the SDPR-D detector can be further reduced by taking the special
structure of matrixAi into consideration, but this possibility has yet to
be explored.

VI. CONCLUSION

A multiuser detector for DS-CDMA systems based on SDP has
been proposed. It has been shown that the ML detection can be
carried out by “relaxing” the associated integer programming problem
to a dual SDP problem, which leads to a detector of polynomial
complexity. Computer simulations that demonstrate that the proposed
detector offers near-optimal performance with considerably reduced
computational complexity, compared with that of existing primal SDP
relaxation-based detectors, have been presented.
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OFDM Transmitters: Analog Representation and
DFT-Based Implementation

Yuan-Pei Lin and See-May Phoong

Abstract—The implementation of OFDM transmitters typically consists
of a discrete DFT matrix and a digital-to-analog (DAC) converter. Many
existing results on the analysis of OFDM systems, e.g., spectral roll-off, are
based on a convenient analog representation. In this paper, we show that the
analog representation and the DFT-based OFDM transmitters are equiva-
lent only in special cases. Using the analog system to analyze the DFT-based
OFDM system may not be valid if there is no equivalent analog represen-
tation.

Index Terms—Analog representation, DFT-based implementation,
OFDM, pulse shaping, window.

I. INTRODUCTION

The orthogonal frequency division multiplexing (OFDM) systems
[1]–[3] are well known for applications in wireless local area networks
(LANs) and broadcast of digital audio and digital video. Fig. 1 shows
the schematic of an analog OFDM transmitter withM subcarriers. Let-
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