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Transactions Briefs

Order Reduction of 2-D FIR Filters With Applications H(z1, ) =y (M7 D/2,-(Ne=1)/2
(Ni-1)/2 (Na=1)/2
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Abstract—This brief develops two algorithms for the order reduction of ~ that approximatesi,(e’~t, ¢’*?) in a certain sense. The transfer
two-dimensional (2-D) FIR digital filters, which lead to two indirect design  function H(z, z2) can be expressed as
methods. Specifically, we show how an optimal. design can be derived : ) _ o
as a matrix approximation problem in the Frobenius norm, and how a H(z1,22) = szl*l)/Zz;(‘wrl)/zZﬂHZQS @)
suboptimal L. design can be obtained by solving a matrix approximation
problem in the 2-norm using the Davis—Kahan—Weinberger theorem on where
norm-preserving dilations. A case study is included to demonstrate the

N{—1)/2 — —(Ny=1)/2171
usefulness of the proposed methods. Zys = [35 R z1 12z RS 1 M=/ ]

No—2)/2 —(Ng—1)/21T
Zog = [T L 2y a2

—1
zo 1l zg ™ -o-

I. INTRODUCTION andH is the N1 x N impulse response matrix. If the filter is required

Analytically, designing a digital filter amounts to finding a poly-t0 have a linear phase response, then the entridé ofust satisfy
nomial (FIR) or a stable rational function (lIR) that approximates hij = h_i_;. ©)
a given (desired) frequency response. For the design of IIR filters, ' '
one of the recent trends is the use of indirect methods that start Byroughout, a matrixd = {h;;} satisfying (2) is said to be
designing a high order FIR filter and then approximating it by &ymmetric with respect to center
stable, low order, IIR transfer function, see for example [1]-[5] for The method starts by designing a high order, linear phase “pro-
both one-dimensional (1-D) and two-dimensional (2-D) designs. Aatype” filter that well approximated,(e’<*, ¢/“2). This can be
attractive feature of the indirect methods is that the replacement of gigcomplished by using an established method such as the window
desired frequency response, which is often unrealizable, by a highethod [13], [12] or the SVD method [3]. Let the transfer function
order, but realizable transfer function allows the designer to empley the prototype filter be given by
systems theory [6], [7] to accomplish the design task. As a matter of _ _=(Ny=1)/2 _—(Ngy—=1)/2
fact, the most often utilized approximation methods in the indirect - 2
design methods are the balanced approximation [8] and the Hankel- i
norm optimal approximation [9], and these approximation methods % v Z v Z Pig=i =2 (3)
are well known to the control community. A

In this brief, we propose two algorithms for the order reductiowhere
of 2-D FIR transfer functions, which lead to two indirect design Pis = pi. @)
methods. These methods start by designing a high order, linear-phase, Y v
FIR 2-D filter and the design problem is then formulated as a matri¥ote that with (4) the constant group delaysifz, z2) are Ny — 1
approximation problem leading to an optimal solutionZia sense in w; and N> — 1 in w2, which are identical to that off (z, z2).
and a suboptimal solution i, sense, respectively. For the; Note also that in order to well approximakg; (e’=1, ¢/“2), the order
design, we show that an optimal solution can be obtained by sim@j P(z1, z2) is usually high, hencé{; > N; and M, > N, are
truncating the central part of the original impulse response, and tlessumed throughout. These two facts imply that the prototype filter
the filter obtained has a linear phase response if the original filisrnoncausal and we are now in a scenario that often occurs in system-
does so. For thd.., design, the Davis—Kahan-Weinberger (DKW)heoretic research: approximating an “ideal” but noncausal system by
theorem on norm-preserving dilations [10] and the Parrott theoreancausal system of lower order.
on quotient norm [11] are utilized as key tools in the derivation of We proceed by writing
a suboptimal design. Again, we show that linear phase response is P(er.20) = 27 Ni=D/2 =(Na=1)/2 5T by 5
preserved during the design. A case study is included to demonstrate a.m) = 2 “2 1haz ®)

P(Zla 32)
(M1—1)/2 (Mg—1)/2

the usefulness of the proposed methods. with
7, = [ZEMl—l)/z | 21—1 ___Zl—(xwl—l)/z]'T
Il. AN INDIRECT Ly DESIGN METHOD Z, = [Zgixfz—l)/z a1 _._ZQ—(MZ—U/Q]J.
A. Problem Statement and formulating the design problem as to find impulse response matrix
Given a desired frequency respona(e’“1, e72), we seek to H in (1) such that thel., approximation error
determine the transfer function of a linear-phase FIR filter Ty = || P21, 22) — H(z1, 2)||?
1 " " odzy dze
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B. Minimization of.J; TABLE |
Using (1) (5) and bearing in mind thaf; > N, and M, > N, COMPARISONS OF THEL> DESIGN wWiTH THE WINDOW AND SVD METHODS
we have Method [M] e | e | e | e
P(~1 ﬁz) _ H("l 20) = ﬁlf(lel)/2 W;(NZ*U/zZlT(P _ H)Zz The L; design with a prototype filter || 61 | 0.2640 | 0.2605 | 0.0216 | 0.0285
“ls ~ Z1.22) = % Ze

obtained by the window method 63 | 0.2877 | 0.2692 | 0.0235 | 0.0235

where The L, design with a prototype filter || 69 | 0.2596 | 0.3488 | 0.0580 | 0.0602
) 0 0 0 obtained by the SVD method 85 | 0.3753 | 0.3895 | 0.0399 | 0.0344

H=10 H 0. (7) Direct design by the window method 0.4963 | 0.7529 | 0.0977 | 0.1087

0 0 0 Direct design by the SVD method || — | 0.8667 | 0.9056 | 0.1404 | 0.1570

Partitioning the impulse response matixin (5) conformable ta

as . .
best designs that are evaluated based on the following performance

Py P Dis indicies:
P= P Py Py (8) i
» L, error in the passband
Py Py Pi 2 P /
r 11/2
where P>, € RY1*MN2 | we compute " o o
: ) ) ) P ep2 = // |[Ha(e’t e?*2) — H(e’™t, e’*? )|2dw1 dwo
= Z{(P-H)Z
& (2mj)? f:1|:1 fj:ﬂﬂ 1 % L N
o _dzy dz » L, error in the stopband
x ZaH(P — H)TZd 1 4z y
Z1 22 o q1/2
= ! . ZlT(P - E[) €s2 = / |Hd(8]vu;17 ejwz) - H(ejwl‘/ ejw2)|2dw1 dws
275 1=
« <2L jé Z, 71 dl?)(p A dz « maximum ripple in the passband
T zZ2 1 . L L
== €poc = max  |Hg(e?™t,e’*?) — H(e!*1, e!2))|
- f 1 i = _rdz N (w1, w2)€lp
=tr|(P—-H) 5 f 0Zy — |(P—H) i i i
J Jiz =1 z1 e maximum ripple in the stopband
= ||Pa2 — H||% + 72 9 eseo = max _ |Hy(e e Pj”z)—H(cjwl,cj”z)L

(w1, w2)€ERS

with As is shown in Table I, good designs in termsloeferror are achieved

ro = |PLF + |1 227 + || P57 (10) with M = 61 when the prototype filter is designed by the window
method, and withM = 69 when the prototype filter is designed by
where Py = [Pi1 Pia Pis], P» = [Po1 Pas], Ps = [Ps1 Ps2 Pss],  the SVD method. In terms ok error, good designs are obtained
and|| - ||~ denotes the Frobenius norm. Singgeis independent of with 17 = 63 from the window method and with/ = 85 from the
H, it follows from (9) that.J> is minimized if and only if SVD method. For comparison purposes, FIR filters of orderx4l
H =D, (11) 41 are also directly designed by using the window method and SVD
method, respectively, and are then evaluated using the same criteria.
Furthermore, from (11) we see that (4) implies (2). In other word$he numerical evaluations of these filters are given in Table I.
if the prototype filter has a linear phase response, so does the designéiéble | shows that with a prototype filter of order €363 designed
filter H(z1,z2). by the window method, a linear phase FIR filter of ordend441 can
The proposed design is simple and straightforward, and it can be designed using the proposed method to achieve a less then 2.5%
summarized as the following two steps: 1) Design a high order, lineaaximum ripple in both passband and stopband which is evidently
phase, FIR transfer functio®(z,z2); 2) Represent the impulse superior to those designed directly using either the window method
response matrix of’(z1,22) as P in (8), and truncate it to obtain or the SVD method.
H = Ps.
A study that compares the performance offédn x N» FIR filter . AN INDIRECT L.. DESIGN METHOD
obtained by this method with that of FIR filters of same order obtained
by some established direct design methods will be presented ,in

rmulation
Section 1I-C. A. Problem Formulati

In an L. design, we seek to find the impulse response mdirix

C. A Case Study in (1) such that

As an illustrative example, a circularly symmetric, linear phase, Joo = L max [P(21,22) — H(z1,22)] (12)
lowpass FIR filter of orderN x N = 41 x 41 with normalized
passband edge 0.23 and stopband edge 0.27 is designed using is minimized, whereP(z, z2) is the prototype filter given by (3) and
the design method described in Section II-B. The prototype filté#). Using Cauchy-Schwarz inequality, we estimate for= ¢/~
P(z1., ) of order M x M is designed by the window method [13],and z2 = ¢/*?
[12] and the SVD method [3], respectively, and the transfer function \P(21,22) — H(z1, )|
H(z,z2) of order 41x 41 is then obtained by truncating the central Lo T .
part of the impulse response matrix Bf z1, z2 ). The prototype filter = |Z1 (P - H)ZZ| <N Zullz | Z2]l2 12 = Hl2
with order varying from 43x 43 to 99 x 99 is used to achieve = M|P - H|:
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which implies that

Jeo < M||P = H|Js. (13)

By (13), it appears to be reasonable to call an FIR transfer function

1057

symmetric and consequentfy = F, F] = Fy, K, = GJ, and

(15) implies that
Bl

H(z1,22) Loo-suboptimal if its impulse response matrix minimizesthe impulse response matrix of the filter is then given by
|P — H|l». That is to say, the suboptimal solution to be derived

below is the one that only minimizes the upper bound/of.

B. Minimization of(|P — H]||»

By using permutations and noticing that the 2-norm is invariaf@llowing three steps: 1) Design a high order, linear phase, FIR filter

under permutations, we write

- Py Pio Pis
||P_H||2: P21 P22_H ng
_P31 Pso P53 )
-PZZ -H P21 P23
= Py P Pis
L Py Ps1 Pss 9
— _P22 - H F1
=" FJ 2 (14)
where matrices
= — [pL 1T _ | P11 Pis
Fi= [PZI P23]’ = [P‘Z P3'2] » B= |:P:31 P33:|

are independent off . Hence, designing ah
amounts to findingd that minimizes the 2-norm of
Py —-H F
F, Fs |

An analytic solution to this problem can be derived using a theorem
on quatient norm by Parrott [11] and a theorem on norm-preserving

dilations by Davis, Kahn, and Weinberger [10]. Define
|:P22 - H F1:|

Yo = min
H

P F;

2
then we have Theorem 1.
Theorem 1) [11]:

1o = max (H =] e Rl ) (15)
Theorem 2) [10]: Let v > ~o0. All solutions H such that
|P— Hll» < (16)
are given by
H =P+ GFfK — (I -GGH)Y*s(1 - KTK)Y*  (@17)

whereS is an arbitrary contraction (i.e|},5||- < 1) andG, K solve
the linear equations

G(°I - FJF)‘/Q:Fl
(+*I - BF)°K = F.

(18)
(19)

In a filter design context, the significance of these two theorems is
that using (15) the exact minimum errgr can be calculated, and the

~-Suboptimal FIR filter

H =P+ G0F3Go

where Gy is given by (20).

In summary, a suboptimal.. design can be obtained using the

P(z1,22); 2) Computey, using (15); and 3) Computd using (20).
We now conclude this section with two remarks.
1) Computation Complexity of the Design:addition to designing

a prototype filter, the most intensive computation in the rest

of the design is to evaluaté, FZ K,. Here, we present an
approach to computing?, Fy Ko using the singular value
decomposition (SVD) of5. For simplicity, we assuméf, =
My, = M and Ny = N» = N, and let the SVD ofF; be
given by F; = USVT whereU, V are orthogonal matrices
andX = diag{oy,---, om_n}. By (200),Go = FLVTV?!
where

r= d1ag{( o - 1)—1/2’...’ (15 _ U%’/[_‘\’_)—uz}.

From (15), it follows thaty, > ||F3llz = o1, hence, the
entries(v¢ —o2)™/2inT fori = 1,.--, M — N are positive
real numbers. Likewisek, in (20c) can be expressed as
Ky = UTUTF,. Therefore,GoFy Ky = FLFTF, where
F =USv? with

o . ! OM—N
3 = diae
b dlag{ TR 5 }

Yo 1 Yo T OMm—N

(1)

We see thatGo F¥ K, can be evaluated by a) computing the
SVD of Fs; b) obtaining® by modifying T using (21); c)
computingF = USV?; and d) calculating’, F'*' F,.

2) Linear Phase Property of the Filter Designeli:the prototype

filter has a linear phase response, then the same is true for the

filter characterized by the impulse response maffixn (20a).
A proof of this property is given as follows.

Denote H = {hi;}, Paa = {pi;}, andGoFy Ko = {v;;}.

It follows from (8) and (4) thatp;, ; = p—i—;. Note that
v, ; can be expressed as; = p;F'q; wherep; is the ith

row of [Py;  Ps3], andg; is thejth column of [P, PL]".

Using (4) and (8), one concludes that both matrides 3]

and [PL PL]T are symmetric w.r.t. center, meaning that
p; = p—;I where
0 1
I=
1 0

(M=N)x(M—N)

andq; = fq_j. Moreover, the fact thaf’ is symmetric w.r.t.
center implies that® = TF1. It follows thatv;; = v_; ;.
Sincelh;; = pi; +vi; we haveh;; = h_; _; which completes
the proof.

DKW theorem claims that this error is achievable by a solution class

characterized by (17)—(19) with = ~. For the sake of solution

simplicity, one may choos& = 0 in (17), which leads to

H = P + G0F3TI(0 (20a)
Go=F (31 -F F)™"? (20b)
Ko=(RI-FRF) '’k (20c)

An interesting special case is when the prototype filter is circularbre included in Table Il. Again, for comparison purposes results from
direct design using the window and SVD methods are also included in

symmetric and has a linear phase response. In this ddsés

C. A Case Study (Continued from Section II-C)

We now use the same design example as in Section II-C to illustrate

the proposed... design forNV = 41. With the order of the prototype
filters varying from 43x 43 to 99x 99, the suboptimal .. designs
are obtained using (20), and evaluated in terms,0f e.2, €poo,
and es... Good design results in terms d@f, error andL.. error
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TABLE I Studying the Effects of Mismatching and

COMPARISONS OF THEL », DESIGN wiTH THE WINDOW AND SVD METHODS Clock-Feedthrough in Switched-Current

Method " M | ez ] o2 " epoo | o Filters Using Behavioral Simulation
The L., design with a prototype filter || 59 | 0.2347 | 0.2491 || 0.0215 | 0.0365
obtained by the window method || 63 | 0.2209 | 0.3105 | 0.0230 | 0.0262 Alberto Yufera and Adoraéin Rueda
The Lo design with a prototype filter | 69 | 0.2302 | 0.3486 || 0.0553 | 0.0566
obtained by the SVD method 83 | 0.3152 | 0.3906 || 0.0374 | 0.0344 . .
Direct design by the window method | — | 0.4963 | 0.7529 | 0.0977 | 0.1087 Abstract—Mismatching and clock-feedthrough are sources of error

in Switched-Current (SI) circuits producing DC offset, gain errors, and
Direct design by the SVD method - | 0.8667 | 0.9056 || 0.1404 | 0.1570 harmonic distortion, which cause deviations in Sl filter responses in both
the passband and the stopband. This paper develops formulas including
these effects in the input—output description of filter building blocks

. . ake possible not only a faster prediction of the filter performance
the Table. Itis evident that the proposed method can be used to de%@g@s but also to analyze tradeoffs at the early design stages. The block

linear phase FIR filters with substantial performance improvemegbut—output descriptions have been derived taking into account the real
over the commonly used direct design methods such as the windphysical realization of these blocks together with simple error models.
and SVD methods. Using these behavioral input—output descriptions, we have studied the
extent of these effects in the performance of two different SI filter
realizations of passiveLC ladder structures: one using integrators to
IV. CONCLUDING REMARKS simulate the signal flow graph (SFG) of the ladder [1], [2], and another
We have presented two indirect methods for the design of ling¥fSed on the use of wave active filter (WAF) structures [3]-{5]. Monte
g rlo simulations of a filter example are presented and analyzed.
phase, 2-D FIR filters, and have demonstrated through a case stugy
that these methods may lead to substantially improved designs oveépdex Terms—Switched-current circuits.
existing nonoptimal methods such as the SVD method.

Natural extensions of the methods are the weighfed and
weighted L., designs. With the weighting function modeled as a . o ) .
certain zero-phase frequency response, the design ideas presentedJ¥/itched-current (SI) circuits are considered an alternative to
this paper apply and the design in question can be reduced to a S¥jtched-capacitor (SC) circuits for analog signal processing appli-
deconvolution problem. The details of an algorithmic developmefgtions in standard low-voltage CMOS digital process technologies
for these weighted designs will be reported in a separate paper. [1]- The basic reason for this, is that time constants in SI circuits

relate to transistor dimensiond¥{/ L), while in SC circuits they
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