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Transactions Briefs

Order Reduction of 2-D FIR Filters With Applications

W.-S. Lu

Abstract—This brief develops two algorithms for the order reduction of
two-dimensional (2-D) FIR digital filters, which lead to two indirect design
methods. Specifically, we show how an optimalL2 design can be derived
as a matrix approximation problem in the Frobenius norm, and how a
suboptimalL1 design can be obtained by solving a matrix approximation
problem in the 2-norm using the Davis–Kahan–Weinberger theorem on
norm-preserving dilations. A case study is included to demonstrate the
usefulness of the proposed methods.

I. INTRODUCTION

Analytically, designing a digital filter amounts to finding a poly-
nomial (FIR) or a stable rational function (IIR) that approximates
a given (desired) frequency response. For the design of IIR filters,
one of the recent trends is the use of indirect methods that start by
designing a high order FIR filter and then approximating it by a
stable, low order, IIR transfer function, see for example [1]–[5] for
both one-dimensional (1-D) and two-dimensional (2-D) designs. An
attractive feature of the indirect methods is that the replacement of the
desired frequency response, which is often unrealizable, by a high-
order, but realizable transfer function allows the designer to employ
systems theory [6], [7] to accomplish the design task. As a matter of
fact, the most often utilized approximation methods in the indirect
design methods are the balanced approximation [8] and the Hankel-
norm optimal approximation [9], and these approximation methods
are well known to the control community.

In this brief, we propose two algorithms for the order reduction
of 2-D FIR transfer functions, which lead to two indirect design
methods. These methods start by designing a high order, linear-phase,
FIR 2-D filter and the design problem is then formulated as a matrix
approximation problem leading to an optimal solution inL2 sense
and a suboptimal solution inL1 sense, respectively. For theL2

design, we show that an optimal solution can be obtained by simply
truncating the central part of the original impulse response, and that
the filter obtained has a linear phase response if the original filter
does so. For theL1 design, the Davis–Kahan–Weinberger (DKW)
theorem on norm-preserving dilations [10] and the Parrott theorem
on quotient norm [11] are utilized as key tools in the derivation of
a suboptimal design. Again, we show that linear phase response is
preserved during the design. A case study is included to demonstrate
the usefulness of the proposed methods.

II. A N INDIRECT L2 DESIGN METHOD

A. Problem Statement

Given a desired frequency responseHd(e
j! ; ej! ), we seek to

determine the transfer function of a linear-phase FIR filter
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that approximatesHd(e
j! , ej! ) in a certain sense. The transfer

function H(z1; z2) can be expressed as
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andH is theN1�N2 impulse response matrix. If the filter is required
to have a linear phase response, then the entries ofH must satisfy

hij = h�i;�j : (2)

Throughout, a matrixH = fhijg satisfying (2) is said to be
symmetric with respect to center.

The method starts by designing a high order, linear phase “pro-
totype” filter that well approximatesHd(e

j! , ej! ). This can be
accomplished by using an established method such as the window
method [13], [12] or the SVD method [3]. Let the transfer function
of the prototype filter be given by
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where

pij = p�i;�j: (4)

Note that with (4) the constant group delays ofP (z1; z2) areN1�1
in !1 andN2 � 1 in !2, which are identical to that ofH(z1; z2).
Note also that in order to well approximateHd(e

j! ; ej! ), the order
of P (z1; z2) is usually high, henceM1 > N1 andM2 > N2 are
assumed throughout. These two facts imply that the prototype filter
is noncausal and we are now in a scenario that often occurs in system-
theoretic research: approximating an “ideal” but noncausal system by
a causal system of lower order.

We proceed by writing
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and formulating the design problem as to find impulse response matrix
H in (1) such that theL2 approximation error

J2 = kP (z1; z2)�H(z1; z2)k
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is minimized.
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B. Minimization ofJ2

Using (1), (5), and bearing in mind thatM1 > N1 andM2 > N2,
we have
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Partitioning the impulse response matrixP in (5) conformable to~H
as
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whereP1 = [P11 P12 P13], P2 = [P21 P23], P3 = [P31 P32 P33],
and k � kF denotes the Frobenius norm. Sincer2 is independent of
H, it follows from (9) thatJ2 is minimized if and only if

H = P22: (11)

Furthermore, from (11) we see that (4) implies (2). In other words,
if the prototype filter has a linear phase response, so does the designed
filter H(z1; z2).

The proposed design is simple and straightforward, and it can be
summarized as the following two steps: 1) Design a high order, linear
phase, FIR transfer functionP (z1; z2); 2) Represent the impulse
response matrix ofP (z1; z2) asP in (8), and truncate it to obtain
H = P22.

A study that compares the performance of anN1 �N2 FIR filter
obtained by this method with that of FIR filters of same order obtained
by some established direct design methods will be presented in
Section II-C.

C. A Case Study

As an illustrative example, a circularly symmetric, linear phase,
lowpass FIR filter of orderN � N = 41 � 41 with normalized
passband edge= 0.23 and stopband edge= 0.27 is designed using
the design method described in Section II-B. The prototype filter
P (z1; z2) of orderM �M is designed by the window method [13],
[12] and the SVD method [3], respectively, and the transfer function
H(z1; z2) of order 41� 41 is then obtained by truncating the central
part of the impulse response matrix ofP (z1; z2). The prototype filter
with order varying from 43� 43 to 99� 99 is used to achieve

TABLE I
COMPARISONS OF THEL2 DESIGN WITH THE WINDOW AND SVD METHODS

best designs that are evaluated based on the following performance
indicies:
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As is shown in Table I, good designs in terms ofL2 error are achieved
with M = 61 when the prototype filter is designed by the window
method, and withM = 69 when the prototype filter is designed by
the SVD method. In terms ofL1 error, good designs are obtained
with M = 63 from the window method and withM = 85 from the
SVD method. For comparison purposes, FIR filters of order 41�

41 are also directly designed by using the window method and SVD
method, respectively, and are then evaluated using the same criteria.
The numerical evaluations of these filters are given in Table I.

Table I shows that with a prototype filter of order 63� 63 designed
by the window method, a linear phase FIR filter of order 41� 41 can
be designed using the proposed method to achieve a less then 2.5%
maximum ripple in both passband and stopband which is evidently
superior to those designed directly using either the window method
or the SVD method.

III. A N INDIRECT L1 DESIGN METHOD

A. Problem Formulation

In anL1 design, we seek to find the impulse response matrixH

in (1) such that
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is minimized, whereP (z1; z2) is the prototype filter given by (3) and
(4). Using Cauchy–Schwarz inequality, we estimate forz1 = ej!
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which implies that

J1 �MkP � ~Hk2: (13)

By (13), it appears to be reasonable to call an FIR transfer function
H(z1; z2) L1-suboptimal if its impulse response matrix minimizes
kP � ~Hk2. That is to say, the suboptimal solution to be derived
below is the one that only minimizes the upper bound ofJ1.

B. Minimization ofkP � ~Hk2

By using permutations and noticing that the 2-norm is invariant
under permutations, we write

kP � ~Hk2 =
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P31 P32 P33 2
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T
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are independent ofH. Hence, designing anL1-suboptimal FIR filter
amounts to findingH that minimizes the 2-norm of

P22 �H F1

F2 F3
:

An analytic solution to this problem can be derived using a theorem
on quatient norm by Parrott [11] and a theorem on norm-preserving
dilations by Davis, Kahn, and Weinberger [10]. Define
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In a filter design context, the significance of these two theorems is
that using (15) the exact minimum error
0 can be calculated, and the
DKW theorem claims that this error is achievable by a solution class
characterized by (17)–(19) with
 = 
0. For the sake of solution
simplicity, one may chooseS = 0 in (17), which leads to

H = P22 +G0F
T
3 K0 (20a)
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An interesting special case is when the prototype filter is circularly
symmetric and has a linear phase response. In this case,P is

symmetric and consequentlyF2 = F T
1 , F T

3 = F3, K0 = GT
0 , and

(15) implies that


0 = k[F2 F3]k2

The impulse response matrix of the filter is then given by

H = P22 +G0F3G
T
0

whereG0 is given by (20).
In summary, a suboptimalL1 design can be obtained using the

following three steps: 1) Design a high order, linear phase, FIR filter
P (z1; z2); 2) Compute
0 using (15); and 3) ComputeH using (20).

We now conclude this section with two remarks.

1) Computation Complexity of the Design:In addition to designing
a prototype filter, the most intensive computation in the rest
of the design is to evaluateG0F

T
2 K0. Here, we present an

approach to computingG0F
T
3 K0 using the singular value

decomposition (SVD) ofF3. For simplicity, we assumeM1 =

M2 = M andN1 = N2 = N , and let the SVD ofF3 be
given byF3 = U�V T whereU; V are orthogonal matrices
and� = diagf�1; � � � ; �M�Ng. By (20b),G0 = F1V �V

T
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� = diag 
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From (15), it follows that
0 > kF3k2 = �1, hence, the
entries(
20 ��2

i )
�1=2 in � for i = 1; � � � ;M �N are positive

real numbers. Likewise,K0 in (20c) can be expressed as
K0 = U�UTF2. Therefore,G0F

T
3 K0 = F1F̂

TF2 where
F̂ = U �̂V T with

�̂ = diag
�1


20 � �2
1

; � � � ;
�M�N


20 � �2
M�N

: (21)

We see thatG0F
T
3 K0 can be evaluated by a) computing the

SVD of F3; b) obtaining �̂ by modifying � using (21); c)
computingF̂ = U �̂V T ; and d) calculatingF1F̂

TF2.
2) Linear Phase Property of the Filter Designed:If the prototype

filter has a linear phase response, then the same is true for the
filter characterized by the impulse response matrixH in (20a).
A proof of this property is given as follows.
DenoteH = fhijg; P22 = fpijg, andG0F

T
3 K0 = fvijg.

It follows from (8) and (4) thatpi;j = p�i;�j. Note that
vi;j can be expressed asvij = piF̂ qj where pi is the ith
row of [P21 P23], andqj is the jth column of [P T

12 P T
32]

T .
Using (4) and (8), one concludes that both matrices[P21 P23]

and [P T
12 P T

32]
T are symmetric w.r.t. center, meaning that

pi = p�iÎ where

Î =

0 1

...

1 0
(M�N)�(M�N)

andqj = Îq�j . Moreover, the fact that̂F is symmetric w.r.t.
center implies thatF̂ = ÎF̂ Î. It follows that vij = v�i;�j.
Sincehij = pij + vij we havehij = h�i;�j which completes
the proof.

C. A Case Study (Continued from Section II-C)

We now use the same design example as in Section II-C to illustrate
the proposedL1 design forN = 41. With the order of the prototype
filters varying from 43� 43 to 99� 99, the suboptimalL1 designs
are obtained using (20), and evaluated in terms ofep2, es2, ep1,
and es1. Good design results in terms ofL2 error andL1 error
are included in Table II. Again, for comparison purposes results from
direct design using the window and SVD methods are also included in
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TABLE II
COMPARISONS OF THEL1 DESIGN WITH THE WINDOW AND SVD METHODS

the Table. It is evident that the proposed method can be used to design
linear phase FIR filters with substantial performance improvement
over the commonly used direct design methods such as the window
and SVD methods.

IV. CONCLUDING REMARKS

We have presented two indirect methods for the design of linear
phase, 2-D FIR filters, and have demonstrated through a case study
that these methods may lead to substantially improved designs over
existing nonoptimal methods such as the SVD method.

Natural extensions of the methods are the weightedL2 and
weightedL1 designs. With the weighting function modeled as a
certain zero-phase frequency response, the design ideas presented in
this paper apply and the design in question can be reduced to a 2-D
deconvolution problem. The details of an algorithmic development
for these weighted designs will be reported in a separate paper.
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Studying the Effects of Mismatching and
Clock-Feedthrough in Switched-Current

Filters Using Behavioral Simulation

Alberto Yúfera and Adoración Rueda

Abstract—Mismatching and clock-feedthrough are sources of error
in Switched-Current (SI) circuits producing DC offset, gain errors, and
harmonic distortion, which cause deviations in SI filter responses in both
the passband and the stopband. This paper develops formulas including
these effects in the input–output description of filter building blocks
to make possible not only a faster prediction of the filter performance
levels but also to analyze tradeoffs at the early design stages. The block
input–output descriptions have been derived taking into account the real
physical realization of these blocks together with simple error models.
Using these behavioral input–output descriptions, we have studied the
extent of these effects in the performance of two different SI filter
realizations of passiveLC ladder structures: one using integrators to
simulate the signal flow graph (SFG) of the ladder [1], [2], and another
based on the use of wave active filter (WAF) structures [3]–[5]. Monte
Carlo simulations of a filter example are presented and analyzed.

Index Terms—Switched-current circuits.

I. INTRODUCTION

Switched-current (SI) circuits are considered an alternative to
switched-capacitor (SC) circuits for analog signal processing appli-
cations in standard low-voltage CMOS digital process technologies
[1]. The basic reason for this, is that time constants in SI circuits
relate to transistor dimensions (W=L), while in SC circuits they
depend on linear capacitor ratios and require more expensive CMOS
technologies. Moreover, the simplicity of SI circuits make them more
suitable than SC circuits for low supply voltages and for scaled
CMOS technologies. However, SI circuits suffer from fundamental
sources of errors, i.e., mismatch of transistors, clock-feedthrough in
the switches, finite input–output resistances of current sources and
signal-dependent settling time, which limit their level of performance.
Previous work has been done in order to model these errors and
analyze their effects on the operation of basic SI elements [2], [8],
[9], [12]. Understanding of the sources of nonideal behavior of SI
circuits has led to the appearance of new circuit ideas which resulted
in improved, though not yet error-free, basic element implementations
[6], [10], [11]. Although practical realizations of SI filters are based
on these circuit techniques, the study of the filter’s sensitivity to
the remaining errors in its elements is an important task, not only
to predict the expected performance levels, but also to enable the
designer to analyze trade-offs at early design stages.

The aim of the work presented in this paper is twofold: first,
to develop formulas for error modeling in filter building blocks
that enable a rapid simulation of the whole filter operation. Error
effects are included in the overall input–output relationship of each
block derived from its real physical realization. We shall concentrate
on matching and clock-feedthrough errors because they are almost
impossible to eliminate by circuit techniques in many applications and
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