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Outline 
 
•   Early and Recent Work on FRM Filters 

•  Coefficient Sensitivity (CS) Performance of an  

Second-Order Cone Programming (SOCP) Algorithm 

for FRM Filters 

•  An Enhanced SOCP Algorithm with a CS Constraint 

•  Experimental Results 
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Early and Recent Work on FRM Filters 
• Lim, 1986. 
• Rajan, Neuvo and Mitra, 1988. 
• Lim and Lian, 1993. 
• Lee and Chen, 1993. 
• Lim and Lian, 1994. 
• Bellanger, 1996. 
• Barcellos, Netto, and Diniz, 2003. 
• Saramaki and Lim, 2003. 
• Lu and Hinamoto, 2003. (SDP and SOCP techniques) 
• Lian and Yang, 2003. 
• Lian, 2003. 
• Saramaki, Yli-Kaakinen, and Johansson, 2003. 
• Lee, Rehbock, and Teo, 2003. 
• Gustafsson, Johansson, and Wanhammar, 2003. 
• Yu, Teo, Lim, and Zhao, 2005. 
• Rodrigues and Pai, 2005. 
• Cen and Lian, 2005. 
• Lim, Yu, Teo, and Saramaki, 2007. (Coefficient Sensitivity) 
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CS Performance of an SOCP Algorithm for FRM Filters 
 
• Reference: W.-S. Lu and T. Hinamoto, “Optimal design of frequency-
response masking filters using second-order cone programming,” ISCAS’ 
2003, vol. 3, pp. 878-881, May 2003. 
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1 with "small"k k k kx x δ δ+ = +  

1( , ) ( , ) ( ) with ( ) ( , )T
k k k k k kH x H x g g H xω ω ω δ ω ω+ ≈ + = ∇  

• SOCP Formulation for an optimal kδ : 

minimize η  

subject to: ( ) ( , ) ( ) ( )T
k k dW H x g Hω ω ω δ ω η+ − ≤  

δ β≤  

• The coefficient vector of the optimal FRM filter is given 
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and                      
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Typically K is in the range of 8 to 15 (regardless of filter 

length). 

⇒  ♦  x∗  remains small as long as 0x  is small. 

 ♦  Because a small x∗  implies a low CS, the CS of an 

SOCP-based solution is low as long as the CS of 
the initial FRM filter is low. 

 ♦  Using SOCP, one can always find an optimal FRM 

filter in a small vicinity of a reasonable initial 

design (obtained e.g. using the method of Lim 1986).  
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• Example N = 45, Na = 27, Nc = 19, M = 9, 0.3, and 0.305p aω ω= =  

 ♦  CS of the initial FRM filter (Lim 1986): 2
1S  = 24.4532 

 ♦  β  was set to 0.1533 (problem size: 44) 

 ♦  the SOCP algorithm converges in 8 iterations 

♦  step size for coefficient quantization was set to 142−  

 ♦  CS of the optimal FRM filter: 2
1S  = 38.9035 

 ♦  peak ripple magnitude in passband: 0.009586 

 ♦  minimum stopband attenuation: 40.4179 dB 

 ♦  coefficient differences in 2-norm:  
(0) (0) (0)0.5394, 0.0816, 0.1052a a c ch h h h h h∗ ∗ ∗− = − = − =  
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♦  peak ripple magnitude in passband: 0.009586 

♦  minimum stopband attenuation: 40.4179 dB  

♦  CS of the FRM filter: 2
1S  = 38.9035 
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An Enhanced SOCP Algorithm with a CS Constraint 

•  The CS measure defined in Lim et al 2007 is given by 
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If dFWL is the desired upper bound for S1, then the 

constraint that S1 be bound above by dFWL can be cast as 

ˆT
FWLA x e d− ≤  

In the kth iteration, kx x δ= + , the CS constraint becomes 

ˆwithT
k FWL k kA b d b Ax eδ + ≤ = −  

• Incorporating above constraint on CS into our early 
SOCP formulation leads an enhanced SOCP problem: 
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Experimental Results 

• Design of an FRM filter with N = 45, Na = 27, Nc = 19, M = 9, 

0.3, and 0.305p aω ω= =  (same as that in Lim et al, 2007). 

• Other design parameters: 2
10.2168, 5.4 29.16FWLd Sβ = = ⇔ ≤  

• quantization step-size: 142−  

• number of freq. grids in passband and stopband: 2000 

• Results: ♦ 8 iterations to converge 

♦  peak ripple magnitude in passband: 0.009874 

♦  minimum stopband attenuation: 40.6479 dB  

♦  CS of the FRM filter: 2
1S  = 28.2468 

♦ CPU time (3.4 GHz, Pentium 4): 26.91 seconds 
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FRM Filter Peak passband Minimum stopband S2
1

ripple attenuation (dB)

Filter in Table I of 0.009949 40.0674 6.7797

Lim et al, 2007 ×109

Filter in Table II of 0.010041 39.9628 26.4288

Lim et al, 2007

SOCP-based design 0.009586 40.4187 38.9035

without CS constraint

SOCP-based design 0.009874 40.6479 28.2468

with CS constraint


