Realization of 3-D Separable-Denominator Digital Filters with Very Low l_2 -Sensitivity

T. Hinamoto and O. Tanaka
Graduate School of Engineering
Hiroshima University
Hiroshima, Japan

W.-S. Lu

Dept. of ECE

University of Victoria

Victoria, BC, Canada

Outline

- Motivations and Approach
- Problem Statement
- *l*₂-Sensitivity Minimization
- A Numerical Example
- Conclusion

1. Motivations and Approach

- When a transfer function with infinite accuracy coefficients is designed and realized by a state-space model, the coefficients in the model must be truncated or rounded to fit the finiteword-length constraints.
- This coefficient quantization usually alters the characteristics of the filter. For instance, it may change a stable filter to an unstable one.
- This motivates the study of coefficient sensitivity minimization problem.
- Here we investigate the problem of reducing the l_2 -sensitivity for 3-D separable-denominator digital filters.

- First, a 3-D transfer function with separable denominator is represented with cascade connection of three 1-D transfer functions by applying a minimal realization technique.
- Next, the MIMO 1-D transfer function in the middle of the cascade connection is realized by a minimal state-space model.
- Third, a l_2 -norm coefficient sensitivity of the model is analyzed.
- A technique for the optimal synthesis of the minimal statespace model is developed so as to minimize the l_2 -sensitivity subject to l_2 -scaling constraints.

2. Problem Statement

A 3-D separable-denominator digital filter is given by

$$H(z_1, z_2, z_3) = \frac{N(z_1, z_2, z_3)}{D_1(z_1)D_2(z_2)D_3(z_3)}$$

$$N(z_{1}, z_{2}, z_{3}) = \sum_{i=0}^{N_{1}} \sum_{j=0}^{N_{2}} \sum_{k=0}^{N_{3}} a_{i,j,k} z_{1}^{-i} z_{2}^{-j} z_{3}^{-k}$$

$$D_{1}(z_{1}) = 1 + b_{11} z_{1}^{-1} + \dots + b_{1N_{1}} z_{1}^{-N_{1}}$$

$$D_{2}(z_{2}) = 1 + b_{21} z_{2}^{-1} + \dots + b_{2N_{2}} z_{2}^{-N_{2}}$$

$$D_{3}(z_{3}) = 1 + b_{31} z_{3}^{-1} + \dots + b_{3N_{2}} z_{3}^{-N_{3}}$$

The 3-D transfer function is decomposed as

$$H(z_1, z_2, z_3) = \frac{\mathbf{Z}_1^T}{D_1(z_1)} \mathbf{H}_2(z_2) \frac{\mathbf{Z}_3}{D_3(z_3)}$$

$$Z_{1} = \begin{bmatrix} 1 & z_{1}^{-1} & \cdots & z_{1}^{-N_{1}} \end{bmatrix}^{T}$$

$$Z_{3} = \begin{bmatrix} 1 & z_{3}^{-1} & \cdots & z_{3}^{-N_{3}} \end{bmatrix}^{T}$$

$$H_{2} = \frac{\Delta_{0} + \Delta_{1} z_{2}^{-1} + \cdots + \Delta_{N_{2}} z_{2}^{-N_{2}}}{D_{2}(z_{2})}$$

$$\Delta_{m} = \begin{bmatrix} a_{0m0} & a_{0m1} & \cdots & a_{0mN_{3}} \\ a_{1m0} & a_{1m1} & \cdots & a_{1mN_{3}} \\ \vdots & \vdots & \ddots & \vdots \\ a_{N_{1}m0} & a_{N_{1}m1} & \cdots & a_{N_{1}mN_{3}} \end{bmatrix} \text{ for } m = 0, 1, \dots, N_{2}$$

Let a minimal realization of $H_2(z_2)$ be given by

$$x(k+1) = A_2x(k) + B_2u(k)$$
$$y(k) = C_2x(k) + \Delta_0u(k)$$

with

x(k): a $p \times 1$ state-variable vector

u(k): an $(N_3 + 1) \times 1$ input vector

y(k): an $(N_1 + 1) \times 1$ output vector

The transfer function becomes

$$\boldsymbol{H}_{2}(z_{2}) = \boldsymbol{C}_{2}(z_{2}\boldsymbol{I}_{p} - \boldsymbol{A}_{2})^{-1}\boldsymbol{B}_{2} + \boldsymbol{\Delta}_{0}$$

The l_2 -sensitivity of $H(z_1, z_2, z_3)$ with respect to A_2, B_2 , and C_2 :

$$S = \left\| \frac{\partial H(z_1, z_2, z_3)}{\partial \mathbf{A}_2} \right\|_2^2 + \left\| \frac{\partial H(z_1, z_2, z_3)}{\partial \mathbf{B}_2} \right\|_2^2 + \left\| \frac{\partial H(z_1, z_2, z_3)}{\partial \mathbf{C}_2} \right\|_2^2$$

$$= \left\| \mathbf{g}(z_1, z_2)^T \mathbf{f}(z_2, z_3)^T \right\|_2^2$$

$$+ \left\| \mathbf{g}(z_1, z_2)^T \frac{\mathbf{Z}_3^T}{D_3(z_3)} \right\|_2^2 + \left\| \frac{\mathbf{Z}_1^T}{D_1(z_1)} \mathbf{f}(z_2, z_3)^T \right\|_2^2$$

$$f(z_{2}, z_{3}) = (z_{2} I_{p} - A_{2})^{-1} B_{2} \frac{Z_{3}}{D_{3}(z_{3})}$$

$$g(z_{1}, z_{2}) = \frac{Z_{1}^{T}}{D_{1}(z_{1})} C_{2} (z_{2} I_{p} - A_{2})^{-1}$$

$$\frac{Z_{1}^{T}}{D_{1}(z_{1})} = c_{1} (z_{1} I_{N_{1}} - A_{1})^{-1} B_{1} + d_{1}$$

$$\frac{Z_{3}}{D_{3}(z_{3})} = C_{3} (z_{3} I_{N_{3}} - A_{3})^{-1} b_{3} + d_{3}$$

It turns out that the sensitivity measure S can be expressed as

$$S = \operatorname{tr} \left[\boldsymbol{M}_{A} (\boldsymbol{I}_{p}) \right] + \operatorname{tr} \left[\boldsymbol{W}_{B} \right] + \operatorname{tr} \left[\boldsymbol{K}_{C} \right]$$

where $M_A(I_p)$, W_B , and K_C are obtained using

$$\boldsymbol{X} = \frac{1}{\left(2\pi j\right)^3} \oint_{|z_1|=1} \oint_{|z_2|=1} \int_{|z_3|=1} Y(z_1, z_2, z_3) \cdot Y^*(z_1, z_2, z_3) \frac{dz_1}{z_1} \frac{dz_2}{z_2} \frac{dz_3}{z_3}$$

$$Y(z_1, z_2, z_3) = \mathbf{g}(z_1, z_2)^T \mathbf{f}(z_2, z_3)^T \quad \text{for } \mathbf{X} = \mathbf{M}_A(\mathbf{I}_p)$$

$$Y(z_1, z_2, z_3) = \left[\frac{\mathbf{Z}_3}{D_3(z_3)} \mathbf{g}(z_1, z_2)\right]^* \quad \text{for } \mathbf{X} = \mathbf{W}_B$$

$$Y(z_1, z_2, z_3) = \mathbf{f}(z_2, z_3) \frac{\mathbf{Z}_1^T}{D_1(z_1)} \quad \text{for } \mathbf{X} = \mathbf{K}_C$$

Applying a coordinate transformation $\bar{x}(k) = T^{-1}x(k)$ to the 1-D system $(A_2, B_2, C_2, \Delta_0)_p$ yields an equivalent realization

$$(\overline{A}_2, \overline{B}_2, \overline{C}_2, \Delta_0)_p = (T^{-1}A_2T, T^{-1}B_2, C_2T, \Delta_0)_p$$

whose l_2 -sensitivity measure S is given by

$$S = \operatorname{tr}[\boldsymbol{M}_{A}(\boldsymbol{P})\boldsymbol{P}] + \operatorname{tr}[\boldsymbol{W}_{B}\boldsymbol{P}] + \operatorname{tr}[\boldsymbol{K}_{C}\boldsymbol{P}^{-1}]$$

with $P = TT^T$.

To impose a l_2 -scaling condition, define controllability Gramian

$$\mathbf{K} = \frac{1}{(2\pi j)^2} \oint_{|z_2|=1} \oint_{|z_3|=1} \mathbf{f}(z_2, z_3) \cdot \mathbf{f}^*(z_2, z_3) \frac{dz_2}{z_2} \frac{dz_3}{z_3}$$

the l_2 -scaling constraints are given by

$$(\overline{K})_{ii} = (T^{-1}KT^{-T})_{ii} = 1$$
 for $i = 1, 2, ..., p$

Now the coefficient sensitivity minimization problem can be formulated as

To obtain a coordinate transformation matrix T that minimizes sensitivity measure S(P) subject to the l_2 -scaling constraints.

3. *l*₂-Sensitivity Minimization

The l_2 -scaling constraints are relaxed as

$$\operatorname{tr}\left[\boldsymbol{T}^{-1}\boldsymbol{K}\boldsymbol{T}^{-T}\right] = \operatorname{tr}\left[\boldsymbol{K}\boldsymbol{P}^{-1}\right] = p$$

leading to a relaxed optimization problem

minimize $S(\mathbf{P})$

subject to:
$$\operatorname{tr} \lceil \mathbf{K} \mathbf{P}^{-1} \rceil = p$$

To solve it, we introduce the Lagranging of the problem

$$J(\boldsymbol{P},\lambda) = \operatorname{tr}[\boldsymbol{M}_{A}(\boldsymbol{P})\boldsymbol{P}] + \operatorname{tr}[\boldsymbol{W}_{B}\boldsymbol{P}] + \operatorname{tr}[\boldsymbol{K}_{C}\boldsymbol{P}^{-1}] + \lambda \left(\operatorname{tr}[\boldsymbol{K}\boldsymbol{P}^{-1}] - p\right)$$

Setting
$$\frac{\partial J(P,\lambda)}{\partial P} = \mathbf{0}$$
 yields

$$PF(P)P = G(P,\lambda)$$

where

$$F(P) = M_A(P) + W_B$$

 $G(P,\lambda) = N_A(P) + K_C + \lambda K$

$$\boldsymbol{N}_{A}(\boldsymbol{P}) = \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \begin{bmatrix} \boldsymbol{I}_{p} & 0 \end{bmatrix} \begin{bmatrix} \boldsymbol{A}_{2} & \boldsymbol{B}_{2} \boldsymbol{R}_{ij} \boldsymbol{C}_{2} \\ 0 & \boldsymbol{A}_{2} \end{bmatrix}^{k} \begin{bmatrix} \boldsymbol{0} & \boldsymbol{0} \\ 0 & \boldsymbol{P} \end{bmatrix} \begin{bmatrix} \boldsymbol{A}_{2}^{T} & \boldsymbol{0} \\ \boldsymbol{C}_{2}^{T} \boldsymbol{R}_{ij}^{T} \boldsymbol{B}_{2}^{T} & \boldsymbol{A}_{2}^{T} \end{bmatrix}^{k} \begin{bmatrix} \boldsymbol{I}_{p} \\ \boldsymbol{0} \end{bmatrix}$$

The above equation can be solved iteratively using the scheme

$$P^{(k+1)}F(P^{(k)})P^{(k+1)} = G(P^{(k)},\lambda^{(k+1)})$$

whose solution is given by

$$\boldsymbol{P}^{(k+1)} = \boldsymbol{F}^{-1/2}(\boldsymbol{P}^{(k)}) \cdot \left[\boldsymbol{F}^{1/2}(\boldsymbol{P}^{(k)}) \boldsymbol{G}(\boldsymbol{P}^{(k)}, \lambda^{(k+1)}) \boldsymbol{F}^{1/2}(\boldsymbol{P}^{(k)}) \right]^{1/2} \cdot \boldsymbol{F}^{-1/2}(\boldsymbol{P}^{(k)})$$

The Lagrange multiplier is updated by solving

$$\operatorname{tr}\left[\tilde{\boldsymbol{K}}^{(k)}\tilde{\boldsymbol{G}}^{(k)}(\lambda^{(k+1)})\right] = p$$

using a bisection method, where

$$\mathbf{K}^{(k)} = \mathbf{F}^{1/2}(\mathbf{P}^{(k)})\mathbf{K}\mathbf{F}^{1/2}(\mathbf{P}^{(k)})
\tilde{\mathbf{G}}^{(k)}(\lambda^{(k+1)}) = \left[\mathbf{F}^{1/2}(\mathbf{P}^{(k)})\mathbf{G}(\mathbf{P}^{(k)},\lambda^{(k+1)})\mathbf{F}^{1/2}(\mathbf{P}^{(k)})\right]^{-1/2}$$

4. A Numerical Example

Here we consider a stable 3-D state-space digital filter with

$$\Delta_0 = 10^{-2} \begin{bmatrix} 0.00730 & 0.34297 & -0.09594 & 0.20541 \\ 3.33408 & -5.73707 & 3.94939 & -1.61598 \\ -1.46081 & 2.66051 & -1.68094 & 0.68022 \\ 1.12651 & -1.62192 & 1.24735 & -0.55781 \end{bmatrix}$$

$$\Delta_1 = 10^{-2} \begin{bmatrix} 2.81318 & -5.00467 & 3.46926 & -0.84798 \\ -5.29980 & 9.24831 & -6.29206 & 2.80791 \\ 4.95232 & -8.39641 & 5.73329 & -1.62170 \\ 0.72029 & -1.34272 & 0.95941 & 0.54827 \end{bmatrix}$$

$$\Delta_2 = 10^{-2} \begin{bmatrix} -0.69409 & 1.54874 & -0.94779 & 0.39116 \\ 3.93785 & -6.79910 & 4.66564 & -1.96344 \\ -2.37995 & 4.20737 & -2.75482 & 0.95329 \\ 0.70545 & -0.90615 & 0.73168 & -0.55633 \end{bmatrix}$$

$$\Delta_3 = 10^{-2} \begin{bmatrix} 1.67681 & -2.69078 & 1.98218 & -0.33567 \\ -0.59937 & 1.11289 & -0.71981 & 0.43504 \\ 1.87472 & -2.93685 & 2.11591 & -0.43417 \\ 1.28875 & -2.01749 & 1.51782 & -0.09016 \end{bmatrix}$$

and

$$\begin{bmatrix} b_{11} & b_{12} & b_{13} \end{bmatrix} = \begin{bmatrix} b_{31} & b_{32} & b_{33} \end{bmatrix} = \begin{bmatrix} -1.81600 & 1.23756 & -0.31382 \end{bmatrix}$$
$$\begin{bmatrix} b_{21} & b_{22} & b_{23} \end{bmatrix} = \begin{bmatrix} -1.81611 & 1.23775 & -0.31391 \end{bmatrix}$$

The above filter admits a minimal state-space model with

$$\begin{split} \boldsymbol{A}_2 &= \begin{bmatrix} 0 & -0.19089 & 0.29060 \\ 0.74393 & -86.40470 & 133.71075 \\ -0.27211 & -57.01643 & 88.22081 \end{bmatrix} \\ \boldsymbol{B}_2 &= 10^3 \begin{bmatrix} 0.00602 & -0.00921 & 0.00699 & -0.00095 \\ -1.10247 & 1.68622 & -1.27902 & 0.17267 \\ -0.71455 & 1.09291 & -0.82977 & 0.11192 \end{bmatrix} \\ \boldsymbol{C}_2 &= \begin{bmatrix} 0.07236 & 0.06711 & -0.10298 \\ 0.01930 & 0.01789 & -0.02745 \\ 0.05887 & 0.05460 & -0.08378 \\ 0.07079 & 0.06565 & -0.10073 \end{bmatrix} \end{aligned}$$

After l_2 -scaling, the l_2 -sensitivity of the filter was found to be

$$S = 9.8732 \times 10^8$$

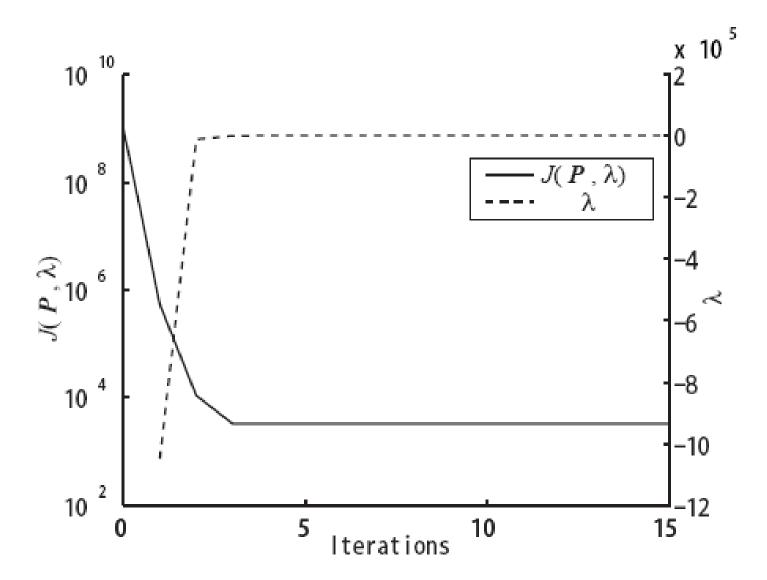
By applying the proposed algorithm with initial $\mathbf{P}^{(0)} = \mathbf{I}_3$ and $\varepsilon = 10^{-8}$, it took the algorithm 15 iterations to converge to a solution

$$\mathbf{P}^{(opt)} = \begin{bmatrix} 2.267890 & -2.297027 & 2.289396 \\ -2.297027 & 3.274871 & 3.268974 \\ 2.289396 & 3.268974 & 3.263110 \end{bmatrix}$$

$$\mathbf{T}^{(opt)} = \begin{bmatrix} 0.180276 & 1.360946 & -0.619043 \\ -1.018340 & -1.083999 & 1.030932 \\ -1.020420 & -1.079492 & 1.027884 \end{bmatrix}$$

and $\lambda^{(opt)} = 8.4292 \times 10^3$. The minimized l_2 -sensitivity was found to be

$$J(P^{(opt)}, \lambda^{(opt)}) = 3.2436 \times 10^3$$



4. Conclusion

- The problem of minimizing a l_2 -coefficient sensitivity measure for separable-denominator 3-D state-space digital filters has been investigated.
- To this end, the problem is formulated as a constrained optimization problem and is solved using an iterative technique.
- Our computer simulation has indicated that the algorithm proposed here works well with satisfactory efficiency.

ISCAS09

