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1. Motivations and Approach

When a transfer function with infinite accuracy coefficients is
designed and realized by a state-space model, the coefficients
In the model must be truncated or rounded to fit the finite-
word-length constraints.

This coefficient quantization usually alters the characteristics of
the filter. For instance, it may change a stable filter to an
unstable one.

This motivates the study of coefficient sensitivity minimization
problem.

Here we investigate the problem of reducing the l,-sensitivity

for 3-D separable-denominator digital filters.



First, a 3-D transfer function with separable denominator is
represented with cascade connection of three 1-D transfer
functions by applying a minimal realization technique.
Next, the MIMO 1-D transfer function in the middle of the
cascade connection is realized by a minimal state-space model.
Third, a l,-norm coefficient sensitivity of the model is analyzed.
A technique for the optimal synthesis of the minimal state-
space model is developed so as to minimize the l,-sensitivity

subject to l,-scaling constraints.



2. Problem Statement

A 3-D separable-denominator digital filter is given by

H(Zl,22,23>: N(21’22’23>
D,(2,)D,(2,)D;(2,)
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The 3-D transfer function is decomposed as
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Let a minimal realization of H,(z,) be given by

x(k +1) = A x(K) + B,u(k)
y(k) =C,x(k)+ Azu(k)

with

X(K): a px1 state-variable vector
u(k): an (N, +D x1 input vector
y(k): an (N, +1) x1 output vector

The transfer function becomes

Hz(zz) — Cz(zz I P Az)_l Bz +Ao



The l,-sensitivity of H(zy, z,, z3) with respect to A,, B,, and C,:

_H@H(zl,zz,z3) 2+ oH(z,,z,,2,) 2+H8H(zl,zz,23) i
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It turns out that the sensitivity measure S can be expressed as
S=tr| M,(I,) |+ tr[W, ] +tr[K.]

where M,(I,), W, and K. are obtained using

¢ 45 CﬁY(ZpZz,Z;g) YT (21,22’ B)dz dZ dZ

(277 J) [221=1[2, =1 |25]=1 Z, 1,

with

Y(2,.2,,2;) = g(zl,ZZ)T f(Zz,Zs)T for X = M,(l p)

Y(2,,2,,2;) = |: 9(21122)} for X =W,

D,(z,)

ZT
Y(Zmzz’Z )= f(22,23)

for X =K,

1Zl
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Applying a coordinate transformation X(k) =T *x(k) to the 1-D

system (A,,B,,C,,4,), yields an equivalent realization
(AZ,E‘az,CZ,AO)p :(T‘lAzT,T‘lBZ,CZT,AO)p
whose |,-sensitivity measure S is given by

S =tr[M,(P)P]+tr[W,P]+tr| K.P™|

with P=TT".
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To impose a l,-scaling condition, define controllability Gramian

" § § ) P

-\ 2
(277§)" i Z, I
the |,-scaling constraints are given by

(K) =(T*KTT™) =1 fori=12..,p

Now the coefficient sensitivity minimization problem can be
formulated as

To obtain a coordinate transformation matrix T that minimizes

sensitivity measure S(P) subject to the l,-scaling constraints.
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3. I,-Sensitivity Minimization

The l,-scaling constraints are relaxed as
tr| TKT ™ |=tr| KP™ |=p

leading to a relaxed optimization problem

minimize S(P)
subject to: tr| KP™ | =p

To solve it, we introduce the Lagranging of the problem

J(P,2) =tr[MA(P)P]+tr[WBP]+tr[KCP—l]M(tr[KP-l]— p)
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Setting =0 yields

oJ (P, 1)
oP

PF(P)P =G(P,4)
where

F(P)=M,(P)+W,
G(P,1)=N,(P)+K_. + 4K

with

NA(P)=§§§['p O]{Az BZRUCZHO 0}{ :

i=0 j=0 k=0 0 % o P C;RUTBZT
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The above equation can be solved iteratively using the scheme
P(k+1)F(P(k))P(k+l) _ G(P(k) ﬂ(kﬂ))
whose solution is given by
P(k+l) _ F-l/Z(P(k)) |:F1/2(P(k))G(P(k) ﬂ/(k+1))Fl/2(P(k)):|1/2 . F_l/Z(P(k))
The Lagrange multiplier is updated by solving
tr[K(k)é"‘) (;L(km)] _

using a bisection method, where

K (K — Fl/Z(P(k))KFlIZ(P(k))
é(k)(i(k+1)) :[FI/Z(P(k))G(P(k),ﬁ(kﬂ))Fl/z(P(k))}_l/z
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4. A Numerical Example

A, =107

A, =107

A, =107

A, =107

[ 0.00730
3.33408
~1.46081

| 1.12651

[ 2.81318

—5.29980
4.95232

| 0.72029

[-0.69409
3.93785
~2.37995
| 0.70545

[ 1.67681
—~0.59937
1.87472
| 1.28875

0.34297
—5.73707
2.66051
—-1.62192

—5.00467
9.24831
—8.39641
—1.34272

1.54874
—6.79910
4.20737
—0.90615
—2.69078
1.11289
—2.93685
—2.01749
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—0.09594
3.94939
—1.68094
1.24735

3.46926
—6.29206
5.73329
0.95941

—0.94779
4.66564
—2.75482
0.73168

1.98218
—0.71981
2.11591
1.51782

Here we consider a stable 3-D state-space digital filter with

0.20541
~1.61598
0.68022
055781 |

-0.84798]
2.80791

~1.62170
0.54827 |

0.39116 |
~1.96344
0.95329

055633

~0.33567 |
0.43504
~0.43417
~0.09016




and

[b, b, b,]=[b, b, b,]=[-1.81600 1.23756 -0.31382]
[b, b, b,]=[-1.81611 1.23775 —0.31391]

The above filter admits a minimal state-space model with

0 -0.19089  0.29060 ]|
A, =| 074393 —86.40470 133.71075
| 027211 -57.01643 88.22081 |

[ 0.00602 -0.00921 0.00699 —0.00095
B, =10°| -1.10247 1.68622 -1.27902 0.17267
| —0.71455 1.09291 -0.82977 0.11192

"0.07236  0.06711 —0.10298"
0.01930 0.01789 —0.02745
0.05887 0.05460 —0.08378
0.07079 0.06565 —0.10073
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After l,-scaling, the l,-sensitivity of the filter was found to be

S =9.8732x10°
By applying the proposed algorithm with initial P® = I; and £=107%,
It took the algorithm 15 iterations to converge to a solution

[ 2267890 —2.297027 2.289396 |
plm —| 2297027 3.274871 3.268974
| 2.289396  3.268974  3.263110 |

[ 0.180276  1.360946 —0.619043
T =| -1.018340 -1.083999 1.030932
| —1.020420 -1.079492 1.027884 |

and A =8.4292 x10°. The minimized l,-sensitivity was found to be

J (P 2Py = 32436 x10°
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4. Conclusion

e The problem of minimizing a l,-coefficient sensitivity measure
for separable-denominator 3-D state-space digital filters has
been investigated.

e To this end, the problem is formulated as a constrained
optimization problem and is solved using an iterative technique.

e Our computer simulation has indicated that the algorithm

proposed here works well with satisfactory efficiency.
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