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Summary

Striking developments in optimization theory have taken place
since early 1980’s. These include Karmarkar’s interior-point
methodology for linear programming in the 1980’s, its
generalization to convex programming in the 1990’s, and recent
advances in global optimization over polynomials. This body of
knowledge has in turn led to widespread application of
optimization techniques in information technology fields as well
as new solution methods that were considered intractable not
too long ago. In this talk we illustrate basic elements of convex
programming and survey some current research activities in
polynomial optimization. Software tools for convex and
polynomial programming will also be discussed.
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1. Optimization Problems

• Unconstrained Optimization

minimize
x∈En

f (x)

• Constrained Optimization

minimize f (x)
subject to: ai(x) = 0, i = 1, 2, . . . , p

cj(x) ≥ 0, j = 1, 2, . . . , q

• As long as the objective function and constraints are
quantified , they do not need to be in closed and analytic
form.
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2. Unconstrained Optimization: An Example

• Inverse kinematics of a robotic manipulator: Given tip
position {px , py , pz}, find joint rotations {θ1, θ2, θ3}.
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• A solution via forward kinematics

c1 (a2c2 + a3c23 − d4s23)− d3s1 = px
s1 (a2c2 + a3c23 − d4s23) + d3c1 = py
d1 − a2s2 − a3s23 − d4c23 = pz

m
f1 (Θ)

∆
= c1 (a2c2 + a3c23 − d4s23)− d3s1 − px = 0

f2 (Θ)
∆
= s1 (a2c2 + a3c23 − d4s23) + d3c1 − py = 0

f3 (Θ)
∆
= d1 − a2s2 − a3s23 − d4c23 − pz = 0

Θ =
[

θ1 θ2 θ3
]T
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• An optimization-based approach




f1(Θ) = 0
f2(Θ) = 0
f3(Θ) = 0



 ⇔





f 2
1 (Θ) = 0
f 2
2 (Θ) = 0
f 2
3 (Θ) = 0



 ⇔

3∑

i=1

f 2
i (Θ) = 0

⇒ minimize
Θ

F (Θ) =
3∑

i=1

f 2
i (Θ)

• Advantages of the approach:
I it works regardless of the relation of the number of

equations versus the number of unknowns.
I it offers a “best” approximate solution if no exact solutions

exist.
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3. Unconstrained Optimization: Basic Strategies

minimize
x∈En

f (x)

(1) Start with an initial x0, set k = 0 and a tolerance ε.
(2) Compute a search direction dk

(3) Carry out a line search αk= arg minimize
α

f (xk + αdk )

(4) Construct next iterate xk+1 = xk + αkdk

(5) Check the progress made, ‖αkdk‖, and decide to
terminate or to repeat from step (2) with k := k + 1.
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4. Unconstrained Optimization: Basic Algorithms

1. Steepest descent method: dk = −∇f (x)|x=xk

2. Newton’s method: dk = − [∇2f (x)
]−1∇f (x)

∣∣∣
x=xk

3. Quasi-Newton methods: dk = −Sk∇f (x)|x=xk

E.g. the BFGS updating formula:

S0 = I, δk = xk+1 − xk , γk = gk+1 − gk

Sk+1 = Sk +
(

1 +
γT

k Sk γk

γT
k δk

)
δk δT

k
γT

k δk
− δk γT

k Sk+Sk γk δT
k

γT
k δk
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5. Constrained Optimization: An Example

• Global resolution of kinematic redundancy:
Use the tip of a 3 DOF planar robot to follow a straight path
in an environment with an obstacle.
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• A typical pseudo-inverse type solution
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• A constrained-optimization based path planning for
obstacle avoidance

minimize F =
∫ t1

t0
g(θ, t) dt

subject to: X (t) = f (θ(t)) (kinematics)
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6. Constrained Optimization: KKT Conditions

(P)
minimize f (x)
subject to: ai(x) = 0, i = 1, 2, . . . , p

cj(x) ≥ 0, j = 1, 2, . . . , q

• The Karush-Kuhn-Tucker (KKT) necessary conditions for x
being a solution of (P):

ai(x) = 0, 1 ≤ i ≤ p

cj(x) ≥ 0, 1 ≤ j ≤ q

∇f (x) =
p∑

i=1
λi∇ai(x) +

q∑
j=1

µj∇cj(x)

µj ≥ 0, µjcj(x) = 0, 1 ≤ j ≤ q
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7. Convex Programming: Basic Concepts and Duality

(P)
minimize f (x)
subject to: ai(x) = 0, i = 1, 2, . . . , p

cj(x) ≥ 0, j = 1, 2, . . . , q

• (P) is called a convex programming (CP) problem if f (x) is
a convex function and the feasible region

R =
{

x : ai(x) = 0 for 1 ≤ i ≤ p; cj(x) ≥ 0 for 1 ≤ j ≤ p
}

is convex.
• For CP problems, the KKT conditions are both necessary

and sufficient for x being a solution of (P).
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• Wolfe’s duality theory for CP

(P)
minimize f (x)

subject to: ai(x) = aT
i x − bi = 0, i = 1, 2, . . . , p

cj(x) ≥ 0, j = 1, 2, . . . , q

m

(D)

maximize
x ,λ,µ

L(x , λ, µ)

subject to: ∇L(x , λ, µ) = 0
µ ≥ 0

where L(x , λ, µ) = f (x)−∑p
i=1 λiai(x)−∑q

j=1 µjcj(x).
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Problem (P)

Problem (D)

minimizing  f(x)

maximizing  L(x, λ, µ)

f(x*) =  L(x*, λ*, µ*)
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8. LP, Convex QP, SDP, and SOCP

• There are four classes of CP problems that admit efficient
algorithms and software for global solutions:

I Linear Programming (LP)

minimize cT x

subject to: Ax ≥ b

I Convex Quadratic programming (QP)

minimize xT Hx + xT p

subject to: Ax ≥ b
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I Semidefinite Programming (SDP)

minimize cT x

subject to: F0 + x1F1 + · · ·+ xnFn º 0

I Second-Order Cone Programming (SOCP)

minimize cT x

subject to:
∥∥AT

i x + bi
∥∥ ≤ cT

i x + di , 1 ≤ i ≤ q
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• Relation between the four classes of CP problem:

LPCP SDP SOCP
Convex
QP

• Solution methods for these CP problems find widespread
applications in business, science, and engineering. Below
is an example which plays a key role in compressive
sensing (CS).
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• Find a solution x of an underdetermined linear system

Ax = b that has fewest nonzero components. Such a

solution is called a sparsest solution.

I The problem can be described as

(L 0)
minimize ‖x‖0

subject to: Ax = b

where ‖x‖0 =
∑n

i=1 |xi |0 = total number of nonzero

components in x . Unfortunately, (L0) is an NP-hard

problem with combinatorial complexity.
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• Under mild conditions (Donoho, 2004), (L0) is shown to be

equivalent to the minimum L1-norm problem:

(L1)
minimize ‖x‖1

subject to: Ax = b

where ‖x‖1 =
∑n

i=1 |xi |.

• Note (L1) is an LP problem of polynomial complexity.

This is because
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(L1)
minimize ‖x‖1
subject to: Ax = b

m

minimize
n∑

i=1
δi

subject to: |xi | ≤ δi , 1 ≤ i ≤ n
Ax = b

m ← x̃ =
[

δ1 · · · δn x1 · · · xn
]T

minimize cT x̃

subject to:
[

In −In
In In

]
x̃ ≥ 0

Ax = b
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• Example:

(L1)
minimize ‖x‖1
subject to: Ax = b

where A is constructed by randomly selecting 52 rows from the
512 × 512 discrete cosine transform (DCT) matrix, and b is
formed with 52 pixel values at corresponding positions in a row
of text image boat512.
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• Minimum L1-norm solution versus minimum L2-norm
(least-squares) solution:
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9. Polynomial Optimization Problems (POP)

• Unconstrained POP

minimize
x∈Rn

p(x)

• Constrained POP

minimize
x∈K

p(x)

K = {x ∈ Rn : h1(x) ≥ 0, . . . , hm(x) ≥ 0}

• LP ⊆ QP ⊆ SOCP ⊆ SDP ⊆ POP
• POP also includes a great many nonconvex problems!
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• POP – Example 1: A nonconvex POP

minimize p(x) = x1 − 2x2
subject to: x1 ≥ 0, x2 ≥ 0
(x1 − 1)2 + x2

2 ≤ 1
(x1 − 1)2 + (x2 − 1)2 ≥ 1
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• POP – Example 2: A discrete POP

minimize xT Qx + xT b
subject to: xi ∈ {0, 1}, 1 ≤ i ≤ n

m
minimize xT Qx + xT b
subject to: x2

i − xi = 0, 1 ≤ i ≤ n

m
minimize xT Qx + xT b
subject to: x2

i − xi ≥ 0, 1 ≤ i ≤ n
− x2

i + xi ≥ 0, 1 ≤ i ≤ n
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• Solving POP by SDP relaxation: An example

minimize p(x) = x1 − 2x2
subject to: x1 ≥ 0, x2 ≥ 0, (x1 − 1)2 + x2

2 ≤ 1
(x1 − 1)2 + (x2 − 1)2 ≥ 1

– a noncovex POP with 2 variables and 4 constraints.

• Let y10 = x1, y01 = x2, y20 = x2
1 , y02 = x2

2 , y11 = x1x2
and notice the relation between the new variables:




1
x1
x2


 [

1 x1 x2
]

=




1 x1 x2
x1 x2

1 x1x2
x2 x1x2 x2

2


 =




1 y10 y01
y10 y20 y11
y01 y11 y02


º0
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• Now examine the POP problem in extended space:

minimize y10 − 2y01

subject to: y10 ≥ 0, y01 ≥ 0, y20 ≥ 0, y11 ≥ 0, y02 ≥ 0
−y20 + 2y10 − y02 ≥ 0
y20 − 2y10 + y02 − 2y01 + 1 ≥ 0



1 y10 y01
y10 y20 y11
y01 y11 y02


Â0

– an SDP problem with 5 variables
y =

[
y10 y01 y20 y11 y02

]T and 8 constraints.
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Its solution: y∗ =
[

0.1340 0.5 0.0179 0.0670 0.25
]T

which gives
x∗ =

[
x1 x2

]T
=

[
y10 y01

]T
=

[
0.1340 0.5

]T

– the global solution of the nonconvex POP:
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• Theoretical foundation of this SDP relaxation for global

POP solutions can be found in

I J. B. Lasserre, “Global optimization with polynomials and

the problem of moments,” SIAM J. Optim., vol. 11, no. 3,

pp. 796-817, 2001.

I J. B. Lasserre, “An explicit equivalent positive semidefinite

program for nonlinear 0-1 programs,” SIAM J. Optim., vol.

12, no. 3, pp. 756-769, 2002.
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10. Software

• Commercial

I Optimization Toolbox (MathWorks) – LP, QP

I Robust Control Toolbox (MathWorks) – SDP

• Public-domain

I SDPT3 (Cornell, NUS, CMU) – LP, QP, SOCP, SDP

I SDPA (Tokyo Inst. Tech.) – LP, QP, SOCP, SDP

I SeDuMi (J.F. Sturm, McMaster) – LP, QP, SOCP, SDP

http://sedumi.mcmaster.ca

I GloptiPoly, version 3, (Herion and Lasserre) – POP

I SparsePOP (Tokyo Inst. Tech.) – POP
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• A recent book on optimization :
A. Antoniou and W.-S. Lu, Practical Optimization:
Algorithm and Engineering Applications, Springer, New
York, 2007.

MATLAB functions for a variety of unconstrained and
constrained optimization algorithms are available in the
book’s website for download:

http://www.ece.uvic.ca/˜optimization/

END
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