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Abstract
In this paper, we focus on the least-squares (LS) formulation for the lo-

calization problem, where the /s-norm of the residual errors is minimized in a
setting known as difference-of-convex-functions programming. The problem
at hand 1s then solved by applying a penalty convex-concave procedure (PCCP)
in a successive manner. Algorithmic details that are tailored to the localization
problem, such as imposing additional constraints to enforce iteration path to-
wards the LS solution and strategies to secure a good initial point, are also
provided. Simulation results demonstrate promising localization performance
when compared with some best known results from the literature.

Introduction

e [_east squares (LS) algorithms for range-based localization:
- geometrically meaningful
- provide low complexity solutions with competitive accuracy

e However the error measure 1s non-convex which excludes many /o-
cal methods, that are iterative

e Solutions obtained using global localization techniques such as
semidefinite programming (SDP) are not optimal in LS sense.

e Methods by A.Beck, P.Stoica, J.LL.1 [ BSL2008] for squared range LS
- obtain exact global solutions
- remain suboptimal in the maximum likelihood (ML) sense

e Proposed formulation:
- based on a penalty convex-concave procedure (PCCP)
- accepts infeasible initial points
- additional constraints that enforce the algorithms iteration path to-
wards the LS solution
- strategies to secure good initial points

Problem Statement

Measurement Model

Throughout it is assumed that range measurements obey the model
7“2':H$—CLZ'H—I—8Z', 1=1,...,m.

{ai,...,an} - given array of m sensors;

a; € R" - n coordinates of the ith sensor in space R", n=2 or 3;

r; - received noisy distance reading from sensor 7;

g; - unknown noise associated with measurement from the :th sensor.
Problem statement: estimate the exact source location x € R" from
noisy range measurements r = [ ry ... 7m|L.

LS Formulation

The range-based least squares (R-LS) estimate refers to the solution of
the problem

m

minimize F(x) = ;(m |z — a;l|) (R)
1=

If e ~ N(0,X) and ¥ I, then the R-LS solution of problem (R)
is identical to the ML location estimator. Unfortunately, the objec-
tive in (R) 1s highly non-convex with many local minimizers even for
small-scale systems.

CCP Framework for Localization

Basic Convex-Concave Procedure (CCP)

It 1s a descent algorithm that requires a feasible initial point @, 1.e.

file) — g;(x) < O0fors=1,2...,m. The CCP finds local optima of
nonconvex problems of the form

mingnize f(x) — g(x)

subject to:  f;(x) < g;(x) for:i=1,2,...,m

where f(x), g(x), fi(x), g;(x) fori =1,2...,m are convex.

The basic CCP algorithm 1s an iterative procedure including two key
steps (in the k-th iteration):
1. Convexify: form §(x, x;) = g(x) + v g(xp)! (& — x;)
and g;(x, z1,) = gi(zp) + Vi@p) (@ —2p) fori =1,2...,m
2. Solve the convex problem:
miniwmize f(x) — g(x, ;)
subject to:  f;(x) — g;j(x,x) <0

for:2=1,2,....m

Problem Reformulation

We begin by re-writing the objective F'(x) up to a constant as:

m m m
Y (ri—lz—ai)’ =ma'z—22" Y a;—2> rije—a
i1 i—1 i—1

which allows to formulate it in a basic CCP form F'(x) = f(x) — g(x)
with

m
flx)=malz — 227 Z a; - convex
1=1
m
g(x) =2 Zfrsz — a;| - convex.
1=1

Since g(x) is not differentiable at the point where @ = a; for some
1 <1 < m, we replace \yg(x;.) by a subgradient of g(x) at ;. as

m
Og(my) =2 10|z — a

1=1
where - a
kE— g .
if x;. # a;
Ol — agl| = { llzr — aqf| :
0, otherwise

Up to a multiplicative factor 1/m and an additive constant term the
objective 1n (R) can be written as

N

minimize F(z) =z’ z — 2z’ v,

Xr
where
1 & 1 &
Uk=a+az;7“z3”$k—ail|a GZE;G@
(B 1=

Given x;. (in the k-th iteration) the solution of the quadratic problem
can be obtained as

1w
Tpy] =+ EZ%’@”@C — ajf
i=1

Imposing Error Bounds

The algorithm can be enhanced by imposing a bound on each squared
measurement error

(| — a;|| — r;)? < 67

which leads to
|z —af| —ri—06; <0 (C1)
Ti_éig HCE—G,Z'H, fOI‘lSZ'Sm. (CQ)
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Both sets of constraints can be written in a form f;(x) < g;(x).

Constraints in (C1) are convex, with f;(x) = || — a;|| — r; — J;, and
g;(x) = 0. In case of (C2): define f;(x) = r;—9; and g;(x) = || —a;]].
Then replace g;(x) with its approximation

A T
gile,xp) = ||z, — a;l| + Ollz), — a;l|” (& — )
This allows to convexify constraints r; — ; < || — a;|| as
—[lz), — al| — Oy, — ail|" (z — @) +r; — 5; <0

Summarizing, the problem in the £-th iteration can be stated as

mingnize 'z — 22T v I
subjectto: || —a;|| —7; —9; <0

—|lz) — aill — Oz — aill " (x — ) + 71— 6; <O

Penalty CCP (PCCP)

Technical problem: the formulation requires a feasible initial point.
Solution approach: allow infeasible initial points by introducing slack
variables s; > 0,s; > 0, 1 < ¢ < m into constraints (C1) and (C2) and
penalizing the sum of violations.

This leads to a penalty CCP based formulation:

m
minimize ! — Q:BTvk + TL Z(Sz + 5;)

T.S.8 P

subjectto: ||@ — a;|| —r; — 9; < s
(), — a;)! .
_”mk_a”i”_ Hwk_aZ/ZH (m—mk)—|—7“i—5i§8i

s; >0,8, >0, for: 2 =1,2,...,m

Input Parameters

Bound ); on the measurement error:
e Lower 9, leads to a “tighter” solution;

e Larger 0; makes the algorithm less sensitive to outliers;

e If € obeys a Gaussian distribution with zero mean and covariance
Y = diag(a%, ...,02)), then §; = vo;, where ~ determines the width
of confidence interval. For example, for v = 3 we have the proba-
bility Pr{|e;| < 30;} ~ 0.99.

Techniques to select good initial point x:
e Uniformly randomly over the same region as the unknown source;

e Set the initial point to the origin;

e Run the algorithm from a set of candidate initial points and identify
the solution as the one with lowest LS error;

e Apply a global localization algorithm to generate an approximate
LS solution, then take it as the initial point.

Numerical Results

System Setup

e Sensors: {a;,i = 1,2,...,5} randomly placed in the planar region
in [—15; 15] x |[—15; 15]

e Source: x;, located randomly in {x = [x{; x9], —10 < x1, 29 < 10}

e Noise: {¢;,7 = 1,...,m} was modelled as i.i.d random variables
with zero mean and variance 02, o € {10_3, 102,10~ L 1}

.fy — 3, Kmax — 20.

Averaged MSE for SR-LS and PCCP methods

o MLE SR - LS PCCP R elative.l.

le-03 6.0159e-01 1.3394e-06 9.5243e-07 29%
le-02 3.5077e-01 1.4516e-04 9.5831e-05 34%
le-01 3.7866e-01 1.2058e-02 8.7107e-03 28%
1e+00 1.4470e+00 1.3662e+00 1.2346e+00 10%

Conclusions

e New iterative method for locating a radiating source based on noisy
range measurements that transforms original least-squares problem
to a DC programming problem

e This 1n turn 1s relaxed to a sequential convex minimization based on
PCCP that can be efficiently solved with an infeasible initial point

e CCP allows a natural embedding of the LS formulation for localiza-
tion into a sequential convex formulation
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