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Abstract
In this paper, we focus on the least-squares (LS) formulation for the lo-

calization problem, where the l2-norm of the residual errors is minimized in a
setting known as difference-of-convex-functions programming. The problem
at hand is then solved by applying a penalty convex-concave procedure (PCCP)
in a successive manner. Algorithmic details that are tailored to the localization
problem, such as imposing additional constraints to enforce iteration path to-
wards the LS solution and strategies to secure a good initial point, are also
provided. Simulation results demonstrate promising localization performance
when compared with some best known results from the literature.

Introduction
• Least squares (LS) algorithms for range-based localization:

- geometrically meaningful
- provide low complexity solutions with competitive accuracy
•However the error measure is non-convex which excludes many lo-

cal methods, that are iterative
• Solutions obtained using global localization techniques such as

semidefinite programming (SDP) are not optimal in LS sense.
•Methods by A.Beck, P.Stoica, J.Li [BSL2008] for squared range LS

- obtain exact global solutions
- remain suboptimal in the maximum likelihood (ML) sense
• Proposed formulation:

- based on a penalty convex-concave procedure (PCCP)
- accepts infeasible initial points
- additional constraints that enforce the algorithms iteration path to-
wards the LS solution
- strategies to secure good initial points

Problem Statement
Measurement Model

Throughout it is assumed that range measurements obey the model

ri = ‖x− ai‖ + εi, i = 1, . . . ,m.

{a1, . . . ,am} - given array of m sensors;
ai ∈ Rn - n coordinates of the ith sensor in space Rn, n = 2 or 3;
ri - received noisy distance reading from sensor i;
εi - unknown noise associated with measurement from the ith sensor.
Problem statement: estimate the exact source location x ∈ Rn from
noisy range measurements r = [r1 r2 . . . rm]T .

LS Formulation

The range-based least squares (R-LS) estimate refers to the solution of
the problem

minimize
x

F (x) =

m∑
i=1

(ri − ‖x− ai‖)2 (R)

If ε ∼ N(0,Σ) and Σ ∝ I , then the R-LS solution of problem (R)
is identical to the ML location estimator. Unfortunately, the objec-
tive in (R) is highly non-convex with many local minimizers even for
small-scale systems.

CCP Framework for Localization
Basic Convex-Concave Procedure (CCP)

It is a descent algorithm that requires a feasible initial point x0, i.e.

fi(x) − gi(x) ≤ 0 for i = 1, 2 . . . ,m. The CCP finds local optima of
nonconvex problems of the form

minimize
x

f (x)− g(x)

subject to: fi(x) ≤ gi(x) for: i = 1, 2, . . . ,m

where f (x), g(x), fi(x), gi(x) for i = 1, 2 . . . ,m are convex.

The basic CCP algorithm is an iterative procedure including two key
steps (in the k-th iteration):
1. Convexify: form ĝ(x,xk) = g(xk) +5g(xk)T (x− xk)

and ĝi(x,xk) = gi(xk) +5gi(xk)T (x− xk) for i = 1, 2 . . . ,m

2. Solve the convex problem:

minimize
x

f (x)− ĝ(x,xk)

subject to: fi(x)− ĝi(x,xk) ≤ 0

for: i = 1, 2, . . . ,m

Problem Reformulation

We begin by re-writing the objective F (x) up to a constant as:
m∑
i=1

(ri − ‖x− ai‖)2 = mxTx− 2xT
m∑
i=1

ai − 2

m∑
i=1

ri‖x− ai‖

which allows to formulate it in a basic CCP form F (x) = f (x)− g(x)
with

f (x) = mxTx− 2xT
m∑
i=1

ai - convex

g(x) = 2

m∑
i=1

ri‖x− ai‖ - convex.

Since g(x) is not differentiable at the point where x = ai for some
1 ≤ i ≤ m, we replace5g(xk) by a subgradient of g(x) at xk as

∂g(xk) = 2

m∑
i=1

ri∂‖xk − ai‖

where

∂‖xk − ai‖ =


xk − ai
‖xk − ai‖

, if xk 6= ai

0, otherwise
Up to a multiplicative factor 1/m and an additive constant term the
objective in (R) can be written as

minimize
x

F̂ (x) = xTx− 2xTvk

where

vk = ā +
1

m

m∑
i=1

ri∂‖xk − ai‖, ā =
1

m

m∑
i=1

ai

Given xk (in the k-th iteration) the solution of the quadratic problem
can be obtained as

xk+1 = ā +
1

m

m∑
i=1

ri∂‖xk − ai‖

Imposing Error Bounds

The algorithm can be enhanced by imposing a bound on each squared
measurement error

(‖x− ai‖ − ri)2 ≤ δ2
i

which leads to
‖x− ai‖ − ri − δi ≤ 0 (C1)

ri − δi ≤ ‖x− ai‖, for 1 ≤ i ≤ m. (C2)

Both sets of constraints can be written in a form fi(x) ≤ gi(x).

Constraints in (C1) are convex, with fi(x) = ‖x − ai‖ − ri − δi, and
gi(x) = 0. In case of (C2): define fi(x) = ri−δi and gi(x) = ‖x−ai‖.
Then replace gi(x) with its approximation

ĝi(x,xk) = ‖xk − ai‖ + ∂‖xk − ai‖T (x− xk)

This allows to convexify constraints ri − δi ≤ ‖x− ai‖ as

−‖xk − ai‖ − ∂‖xk − ai‖T (x− xk) + ri − δi ≤ 0

Summarizing, the problem in the k-th iteration can be stated as

minimize
x

xTx− 2xTvk

subject to: ‖x− ai‖ − ri − δi ≤ 0

−‖xk − ai‖ − ∂‖xk − ai‖T (x− xk) + ri − δi ≤ 0

Penalty CCP (PCCP)
Technical problem: the formulation requires a feasible initial point.
Solution approach: allow infeasible initial points by introducing slack
variables si ≥ 0, ŝi ≥ 0, 1 ≤ i ≤ m into constraints (C1) and (C2) and
penalizing the sum of violations.
This leads to a penalty CCP based formulation:

minimize
x,s,ŝ

xTx− 2xTvk + τk

m∑
i=1

(si + ŝi)

subject to: ‖x− ai‖ − ri − δi ≤ si

−‖xk − ai‖ −
(xk − ai)

T

‖xk − ai‖
(x− xk) + ri − δi ≤ ŝi

si ≥ 0, ŝi ≥ 0, for: i = 1, 2, . . . ,m
where 0 ≤ τk ≤ τmax.

Input Parameters

Bound δi on the measurement error:
• Lower δi leads to a “tighter” solution;
• Larger δi makes the algorithm less sensitive to outliers;
• If ε obeys a Gaussian distribution with zero mean and covariance

Σ = diag(σ2
1, . . . , σ

2
m), then δi = γσi, where γ determines the width

of confidence interval. For example, for γ = 3 we have the proba-
bility Pr{|εi| ≤ 3σi} ≈ 0.99.

Techniques to select good initial point x0:
•Uniformly randomly over the same region as the unknown source;
• Set the initial point to the origin;
• Run the algorithm from a set of candidate initial points and identify

the solution as the one with lowest LS error;
•Apply a global localization algorithm to generate an approximate

LS solution, then take it as the initial point.

Numerical Results
System Setup
• Sensors: {ai, i = 1, 2, . . . , 5} randomly placed in the planar region

in [−15; 15]× [−15; 15]

• Source: xs, located randomly in {x = [x1;x2],−10 ≤ x1, x2 ≤ 10}
•Noise: {εi, i = 1, . . . ,m} was modelled as i.i.d random variables

with zero mean and variance σ2, σ ∈ {10−3, 10−2, 10−1, 1}
• γ = 3, Kmax = 20.

Averaged MSE for SR-LS and PCCP methods

σ MLE SR - LS PCCP R elative.I.

1e-03 6.0159e-01 1.3394e-06 9.5243e-07 29%
1e-02 3.5077e-01 1.4516e-04 9.5831e-05 34%
1e-01 3.7866e-01 1.2058e-02 8.7107e-03 28%
1e+00 1.4470e+00 1.3662e+00 1.2346e+00 10%

Conclusions
•New iterative method for locating a radiating source based on noisy

range measurements that transforms original least-squares problem
to a DC programming problem
• This in turn is relaxed to a sequential convex minimization based on

PCCP that can be efficiently solved with an infeasible initial point
• CCP allows a natural embedding of the LS formulation for localiza-

tion into a sequential convex formulation

References
[1] M. A. Sprito, “On the accuracy of cellular mobile station location

estimation,” IEEE Trans. Veh. Technol., vol. 50, pp. 674–685, May
2001.

[2] Y. Huang, J. Benesty, G. W. Elko, and R. M. Mersereau, “Real-
time passive source localization: A practical linear correction least-
squares approach,” IEEE Trans. Speech Audio Process., vol. 9, no.
8, pp. 943–956, Nov. 2002.

[3] D. Li and H. Hu, “Least square solutions of energy based acoustic
source localization problems,” in Proc. ICPPW, 2004.

[4] A. H. Sayed, A. Tarighat, and N. Khajehnouri, “Network-based
wireless location,” IEEE Signal Process. Mag., vol. 22, no. 4, pp.
24–40, July 2005.

[5] Y. T. Chan, H. Y. C. Hang, and P. C. Ching, “Exact and approx-
imate maximum likelihood localization algorithms,” IEEE Trans.
Veh. Technol., vol. 55, no. 1, pp. 10–16, Jan. 2006.

[6] P. Stoica and J. Li, “Source localization from range-difference mea-
surements,” IEEE Signal Process. Mag., vol. 23, pp. 63–65,69,
Nov. 2006.

[7] A. Beck, P. Stoica and J. Li, “Exact and approximate solutions of
source localization problems,” IEEE Trans. Signal Processing, vol.
56, no. 5, pp. 1770–1777, May 2008.

[8] A. L. Yuille and A. Rangarajan, “The concave-convex procedure,”
Neural Computation, vol. 15, no. 4, pp. 915–936, 2003.

[9] T. Lipp and S. Boyd, “Variations and extensions of the convex-
concave procedure,” Research Report, Stanford University, Aug.
2014.

[10] L. Vandenberghe and S. Boyd, “Semidefinite programming,”
SIAM Rev., vol. 38, no. 1, pp. 40–95, Mar. 1996.

[11] A. Antoniou and W.-S. Lu, Practical Optimization: Algorithms
and Engineering Applications, Springer, 2007.

[12] G. R. Lanckreit and B. K. Sriperumbudur, “On the convergence of
the concave-convex procedure,” in Advances in Neural Information
Processing Systems, pp. 1759–1767, 2009.

[13] Y. Nesterov, Introductory Lectures on Convex Optimization,
Kluwer, 2004.

[14] CVX Research, http://cvx.com/cvx, August 2012.
[15] The Mathworks Inc., http://mathworks.com, 2015.


