Improved Least-Squares Methods for Source Localization: An Iterative Re-Weighting Approach

Darya Ismailova and Wu-Sheng Lu

Department of Electrical and Computer Engineering University of Victoria, Victoria, BC, Canada

DSP 2015, Singapore

Outline

- Introduction
- 2 Source Localization From Range Measurements
 - Measurement Model
 - Least Squares Formulations
 - An Iterative Re-Weighting Strategy
- Source Localization From Range-Difference Measurements
 - Problem Statement
 - SRD-LS and WSRD-LS formulations
 - Improved Solution Using Iterative Re-weighting
- Performance evaluation
- Conclusions

Introduction

- Locating a radiating source from noisy range or range-difference measurements in a passive sensor network has a wide range of applications in teleconferencing, wireless communications, surveillance, navigation, and geophysics.
- Least squares (LS) based algorithms are an important class of solution techniques for localization problems. Under a certain probabilistic model of the noise an LS solution is identical to the maximum likelihood (ML) estimator.
- The error measure in an LS formulation is highly non-convex, possessing multiple local solutions with degraded performance.

Introduction

- Methods developed by A. Beck, P. Stoica, J. Li [BSL2008] for squared range LS (SR-LS) and squared range difference LS (SDR-LS) problems allow to obtain exact and global solutions.
- The results produced are merely approximations of the original LS problems because SR-LS and SRD-LS are no longer an ML solutions.
- Proposed iterative procedure where the SR-LS (or SRD-LS) algorithm is applied to a weighted sum of squared terms and special weights construction allow to obtain a solution which is conciderably closer to the original range-based (or range-difference-based) LS solution.

Measurement Model

• Throughout it is assumed that range measurements obey the model

$$r_i = \|\mathbf{x} - \mathbf{a}_i\| + \varepsilon_i, \quad i = 1, \ldots, m.$$

where $\{a_1, \ldots, a_m\}$ - given array of m sensors;

 $a_i \in \mathbb{R}^n$ contains n coordinates of the ith sensor in space \mathbb{R}^n ;

 r_i - received noisy distance reading from the *i*th sensor;

 ε_i - unknown noise associated with measurement from the *i*th sensor.

• The problem can be stated as to estimate the exact source location $\mathbf{x} \in R^n$ from noisy range measurements $\mathbf{r} = [r_1 \ r_2 \dots r_m]^T$.

LS Formulations

 The range-based least squares (R-LS) estimate refers to the solution of the problem

$$\underset{\boldsymbol{x}}{\text{minimize }} f(\boldsymbol{x}) = \sum_{i=1}^{m} (r_i - \|\boldsymbol{x} - \boldsymbol{a}_i\|)^2 \tag{R}$$

- If $\varepsilon \sim N(0, \Sigma)$ and $\Sigma \propto I$, then the R-LS solution of problem (R) is identical to the ML location estimator.
- Unfortunately, the objective in (R) is highly non-convex, posessing many local minimizers even for small-scale systems.

LS Formulations

 Alternatively, location estimate can be obtained by solving the squared range based LS (SR-LS) problem [BSL2008]

minimize
$$\sum_{i=1}^{m} (\|\mathbf{x} - \mathbf{a}_i\|^2 - r_i^2)^2$$
 (SR)

- The SR-LS estimate is no longer an ML solution, hence, only an approximation of the original R-LS problem.
- To reduce the gap between the two solutions we propose a weighted SR-LS (WSR-LS) problem:

$$\underset{\boldsymbol{x}}{\text{minimize}} \sum_{i=1}^{m} w_i \left(\|\boldsymbol{x} - \boldsymbol{a}_i\|^2 - r_i^2 \right)^2$$
 (WSR)

An Iterative Re-Weighting Strategy

- WSR-LS with properly chosen weights facilitates an excellent approximation of the R-LS estime.
- The main idea is to use the weigths w_i , $i=1,\ldots,m$ to tune the objective in (WSR) toward the objective in (R). We compare the ith term of the objective in (WSR) with its counterpart in (R) as:

$$\underbrace{w_i \left(\|\mathbf{x} - \mathbf{a}_i\|^2 - r_i^2\right)^2}_{\text{in (WSR)}} \leftrightarrow \underbrace{\left(\|\mathbf{x} - \mathbf{a}_i\| - r_i\right)^2}_{\text{in (R)}}$$

An Iterative Re-Weighting Strategy

• By writing the *i*th term in (WSR) as

$$w_i (\|\mathbf{x} - \mathbf{a}_i\|^2 - r_i^2)^2 = w_i (\|\mathbf{x} - \mathbf{a}_i\| + r_i)^2 \underbrace{(\|\mathbf{x} - \mathbf{a}_i\| - r_i)^2}_{\text{same as in (R)}}$$

we note that the objective in (WSR) would be the same as in (R) if the weight w_i was assigned to $1/(\|\mathbf{x}-\mathbf{a}_i\|+r_i)^2$.

Evidently, such weight assignments cannot be realized.

An Iterative Re-Weighting Strategy

• In the proposed iterative procedure we solve a weighted SR-LS sub-problem, where at each iteration the weights are fixed:

$$\underset{x}{\operatorname{minimize}} \sum_{i=1}^{m} w_i^{(k)} \left(\| \boldsymbol{x} - \boldsymbol{a}_i \|^2 - r_i^2 \right)^2$$
 (IRWSR)

- for k=1 all weights $\{w_i^{(1)}, i=1,\ldots,m\}$ are set to unity;
- for $k \ge 2$ the weights $\{w_i^{(k)}, i = 1, \dots, m\}$ are assigned using the previous iterate \mathbf{x}_{k-1} as

$$w_i^{(k)} = \frac{1}{(\|\mathbf{x}_{k-1} - \mathbf{a}_i\| + r_i)^2}.$$

- 4 ロ ト 4 個 ト 4 差 ト 4 差 ト - 差 - 夕 Q (C)

SRD-LS and WSRD-LS formulations

- An approximation of the RD-LS solution can be obtained by solving the *squared range difference based LS* (SRD-LS) problem.
- By re-writing the measurements model as $d_i + ||\mathbf{x}|| = ||\mathbf{x} \mathbf{a}_i||$ and squaring both sides, we obtain

$$-2d_i \|\mathbf{x}\| - 2\mathbf{a}_i^T \mathbf{x} = g_i, \quad i = 1, \dots, m$$

where $g_i = d_i^2 - \|\mathbf{a}_i\|^2$. The SRD-LS solution can be obtained by minimizing following criterion:

$$\underset{\boldsymbol{x} \in R^n}{\text{minimize}} \sum_{i=1}^m \left(-2\boldsymbol{a}_i^T \boldsymbol{x} - 2d_i \|\boldsymbol{x}\| - g_i \right)^2$$

Improved Solution Using Iterative Re-weighting

- We now present a method for improved solutions over SRD-LS solutions.
- We consider the weighted SRD-LS problem

$$\underset{\mathbf{X} \in R^n}{\text{minimize}} \sum_{i=1}^m w_i \left(-2\mathbf{a}_i^T \mathbf{x} - 2d_i || \mathbf{x} || - g_i \right)^2$$
 (WSRD)

where weights w_i for i = 1, ..., m are *fixed* nonnegative constants.

Improved Solution Using Iterative Re-weighting

• The ith term of the objective function in (WSRD) can be written as:

$$w_i \left(-2d_i \|\mathbf{x}\| - 2\mathbf{a}_i^\mathsf{T} \mathbf{x} - g_i\right)^2$$

$$= w_i \left(d_i + \|\mathbf{x}\| + \|\mathbf{x} - \mathbf{a}_i\|\right) \underbrace{\left(d_i + \|\mathbf{x}\| - \|\mathbf{x} - \mathbf{a}_i\|\right)}_{\text{same as in RD}}$$

• If weights w_i were set to $1/(d_i + ||\mathbf{x}|| + ||\mathbf{x} - \mathbf{a}_i||)^2$ the objective in (WSRD) would be the same as in (RD).

Improved Solution Using Iterative Re-weighting

• We employ an iterative procedure where the weights in the *k*th iteration are assigned to

$$w_i^{(k)} = \frac{1}{(d_i + ||\mathbf{x}_{k-1}|| + ||\mathbf{x}_{k-1} - \mathbf{a}_i||)^2}, i = 1, \dots, m$$

with
$$\{w_i^{(1)} = 1, i = 1, \dots, m\}.$$

 We will refer to the derived problem as the iterative re-weighted SRD-LS (WSRD-LS) problem and the solution obtained as IRWSRD-LS solution.

Performance Evaluation for SR-LS and IRWSR-LS

 We can see that IRWSR-LS solutions offer considerable improvement over SR-LS solutions.

Table: Averaged MSE for SR-LS and IRWSR-LS methods by noise level

σ	SR - LS	IRWSR-LS	Improvement (%)
1e-03	1.897294e-06	1.123411e-06	40.8
1e-02	1.779870e-04	1.081470e-04	39.2
1e-01	1.831870e-02	1.128165e-02	38.4
1e+0	2.415438e+00	1.877930e+00	22.3

Performance Evaluation for SRD-LS and IRWSRD-LS

Table: Averaged MSE for SRD-LS and IRWSRD-LS methods by noise level

σ	SRD - LS	IRWSRD-LS	Improvement (%)
1e-04	8.4918e-09	4.1050e-09	51.7
1e-03	5.8553e-06	3.5105e-06	40.0
1e-02	6.3508e-05	5.0378e-05	20.7
1e-01	1.6057e-02	1.0055e-02	37.3
1e+0	1.2773e+00	6.2221e-01	51.2

Conclusions

- New global methods for locating a radiating source based on noisy range or range difference measurements have been proposed.
- These methods are developed by transforming the SR-LS and SRD-LS algorithms [BSL2008] into an iterative procedure so that a weighted SR-LS (SRD-LS) objective assymptotically approaches the original R-LS objective.
- Proposed algorithms are found to outperform the best known results from the literature.