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Introduction

@ The problem of handwritten digit recognition (HWDR) has broad
applications, where both accuracy and speed of digit recognition are
critical indicators of system performance.

o Problem itself: given a training data set {D;,j =0,1,...,9} develop
an approach to train a multi-class classifier to recogrnize the digit
outsde the training data.

@ The primary challenge of the HWDR problem: variation in the
hadwriting styles.
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PCA for Multi-Category Classification

e Given a data set {x;,i = 1,2,...,n},x; € R™ its average vector
and covariance matrix are defined as

_ . _ 1 - X)) x: —x)T
x—;Zx,, C—n_lg(x, x)(xi — x)

@ Since C > 0 its singular value decomposition (SVD) is identical to its
eigen-decomposition

C=uUsu’

where U = [uy uy ... uy] is orthogonal, S = diag{o1,02...0m} with
012022 ...20m.
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PCA for Multi-Category Classification

@ An Ly-optimal rank-K approximation of covariance matrix C can be
obtained as
C~ UKSKUZ;

@ The usefulness of approximation may be understood from two
perspectives:

@ Dimention reduction from R™ to RK

@ Supervised multi-category classification
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PCA for Multi-Category Classification

Example of the supervised multi-category classification

Class Blue
Class Red
Mean of Class Blue
Mean of Class Red
Test Point

y -20 -20

(a) Plot in the Original Space R* (b) Projection of Training Dataset to the
2-dimentional Subspace

Figure: Example “double semi-circle” data set for supervised classification of
1000 random samples.
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PCA for Multi-Category Classification

Example of the supervised multi-category classification

Class Blue
Class Red
Mean of Class Blue
Mean of Class Red
Test Point

y -20 -20

x

(a) Plot in the Original Space R* (b) Projection of Training Dataset to the
1-dimentional Subspace

Figure: Example Data Set for Supervised Classification of 1000 Random Samples
in Double Semi-Circle
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2-D DCT

@ Given a digital image of size N by N represented by its light intensity
{x(i,j),i,j=1,2,..., N}, the 2-D DCT of the image is a 2-D array
of the same size, denoted by {D(k, /), k,/ =1,2,..., N} where

D(k,/)— k)a Nzllvle(i,j)'COS<(2i42r,\l,)m>c°s<(2j;r/\/l)m>

i=0 j=0
with
L for k=0
a(k) =< V2
1 for k #0
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2-D DCT

Important property of DCT is energy compaction.

*0 2 40 o0
(a) ) {c}

Figure: (a) An example digit from MNIST database, (b) the 2-D DCT of the
image of size 28 by 28 in (a), and (iii) the 784 DCT coefficients as a 1-D
sequence.
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2-D DCT-Based Sparse PCA

@ The main point is to use 2-D DCT at the pre-processing stage is to
reduce the dimension m of the input data space.

e Given training data {x;,i = 1,2,...,n} with x; € R™, first
re-shape vector x; to its original image size and apply 2-D DCT.

o Convert the 2-D DCT coefficients to a 1-D sequence by zig-zag
scanning the coefficients.

@ Retain the first r DCT coefficients to construct d; € R" thus
constructing a reduced data set {d;,i =1,2,...,n}.
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2-D DCT-Based Sparse PCA

@ The equation for PCA holds for reduced data set as:

C~ UKSKUZ;

n

f_l . - 1 g T
d=— 3 di, C=— ;(d, d)(d; —d)
SK = diag{al,ag,...,aK}, UK = [U1 u2...uK]

@ The L data classes {x,(-j),i: 1,2,...,nj} for j=0,1,...,L—1are
well represented by L reduced “data” sets {FJ € R, U%)}.
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2-D DCT-Based Sparse PCA

@ To classify a test point x € R™:

(i) Apply 2-D DCT to the image constructed from x and keep the
first r DCT coefficients to construct vector d € R" ;

(i) Project point d — d; into the jth data class: z; = U%)T(d —d));
(iii) Approximate point d in the jth class as ZI; = U%)zj +d;;
(iv) Compute e = ||d — EH forj=0,1,...,L—1;

(v) Classify point x to class j* if ej« reaches the minimum among
{e,j=0,1,...,L -1}
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Application to Handwritten Digit Recognition

The MNIST Database
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(a) Training set (b) Testing set

Figure: Typical images from the MNIST database
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Application to Handwritten Digit Recognition

Generation of Input Data for HWDR

@ The MNIST database: 60,000 labeled handwritten digits in the
training set, 10,000 handwritten digits in the test set. Each data
sample is a vector of length 784 representing a 28 by 28 gray-scale
image of the digit.

° Input data for the algorithm: ten sets of training data
—{( ; ,yJ) i=1,2,...,n;} for j=0,1,...,9, where each D;
contalns a total of n; digits representing the same numeral j. In our
experiments, n; was set to 1200 for all sets and, for a fixed j,
{xgj), i=1,2,...,1200} were selected at random from those in the
training data that collects all the digits representing numeral ;.
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Application to Handwritten Digit Recognition

Performance Evaluation of 2-D DCT Based Sparse PCA

@ Appropriate ranges for r and K were found to be 180 < r < 400 and
22 < K < 31, respectively.

@ A smaller r yields a faster classifier, but using an r too small degrades
recognition accuracy.
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Application to Handwritten Digit Recognition

Performance Evaluation of 2-D DCT Based Sparse PCA

| | Sparse PCA | Conventional PCA |

Dim. of the classifier input 196 784
K 26 25
Accuracy 96.21% 96.26%
Normalized time 0.643 1
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Conclusions

@ A 2-D DCT-based sparse PCA classifier for handwritten digit
recognition has been proposed.

@ The ability of 2-D DCT to compress image-related signals allows a
significant dimensionality reduction of the input space.

@ The sparse PCA classifier is shown to perform HWDR considerably
faster than the conventional PCA classifier without sacrificing
recognition accuracy.
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2-D DCT-Based Sparse PCA. The Algorithm

Input: Training data D; = {( ; ,yJ) i=1,2,...,n;} for
j=0,1,...,L —1,; target dimension of reduced input space r; number K
of principal components to be retained; and testing data 7.

Step 1: Apply 2-D DCT to Dj,j =0,1,...,L —1 to obtain reduced data
set Rj = {( ; ,yj) i=1,2,...,n;} of dimension r.

Step 2: For j=0,1,...,L — 1 compute
1~ 0) L) gy T
dj=_% d) ;=23 (d) ~dj)(d —d))

i=1 J i=1

and the K eigenvectors U(,é = [u(J) (’). :

u(,{)] associated with the K
largest eigenvalues of Cj;.
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2-D DCT-Based Sparse PCA. The Algorithm

Step 3: For each vector x from test data 7T

(i) Compute vector d € R" by applying 2-D DCT to the image
constructed from x and retaining the r most significant DCT coefficients
(refer to Sec. 3.A);

(ii) Perform projections for j =0,1,...,L—1,

(iii) Compute approximating points :l; = U%)zj + dj for
j=0,1,...,L—-1;

(iv) Compute ¢; = ||d —ZI;H forj=0,1,...,L—1,

(v) Classify point x to class j* if ej« reaches the minimum among
{e,j=0,1,...,L—1}.
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