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1. Early Work

Interpolated FIR (IFIR) Filters
e Y. Neuvo, C. Y. Dong, and S. K. Mitra, 1984.

e T.Saramaki, Y. Neuvo, and S. K. Mitra, 1988.

Frequency-Response Masking (FRM) FIR Filters
e Y.C.Lim, 1986.
e Y.C.LimandY. Lian, 1993.

e Many variants since 1990s.



2. Filter Structures

Interpolated FIR (IFIR) Filters
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Frequency-Response Masking (FRM) FIR Filters
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3. Convex-Concave Procedure (CCP)

CCP refers to a heuristic method to solve a general class of nonconvex
problems of the form

minimize f(x)—-g(x)
subjectto: f.(x)<g.(x) for 1=12,...m

where f(x), g(x), f.(x),and g.(x) fori=1,2,..., mare convex. The
basic CCP algorithm is an iterative procedure including two steps:

(i) Convexify the objective function and constraints by replacing
g(x) and g,(x), respectively, with their affine approximations

@(X’Xk):g(xk)+vg(xk)T(X_Xk)
Qi(X’Xk) :gi(xk)—l_vgi(xk)T(X_Xk) for 1=1,2,..,m



(ii) Solve the convex problem

minimize f(x)—-4§(x,x,)
subjectto: f.(x)<g.(x,x.) for i=12,..,m

e Property 1
0 If X, is feasible for the original problem, X, is also a feasible point
for the convexified problem.
0 If X,., is produced by solving the convexified problem, then X, , is
also feasible for the original problem.

e Property 2
CCP is a descent algorithm, namely, {f (%, ), k =0,1,...} decreases
monotonically.

e Property 3
Iterates {X,,k =0,1,...} converge to a critical point of the original
problem.



4. Design of Interpolated FIR (IFIR) Filters

Frequency response of an IFIR filter:
H(e")=F(E" )M (e")
Its zero-phase frequency response:
H, (X, @) = [a:tf (La))][a;tm (a))]
where a; and a_ are coefficient vectors determined by the impulse
responses of F(z) and M(z) respectively, and t. (w) and t_(w) are vectors

with trigonometric components determined by the filter lengths and types
Let H,(w) be the desired zero-phase response of the IFIR filter, the
frequency-weighted minimax design of an IFIR filter amounts to finding a,

and a_ that solve the nonconvex minimax problem
minimize max w(w) [aﬁf (La))][a;tm (a))]— Hd(a))‘

af,a.m we)

where W(w) >0 is a frequency-selective weight over w € Q.



¢ Converting the problem to:
minimize o

subject to: | ajt, (Lw) || at, (@) |< 6, + H, (@)

-l ait; (Lo) | ant, (@) | < 5, —H, ()

0 Convexifying the problem by adding 5 p(X, @) with
2 2
p(x,@) =| ajt, (Le) | +| ajt, (@) ]

hence the constraints become

"aTt, (Lw)+at (@) < p(x, )+ 25, +2H, (o)

alt, (Lo)-at, (@) ] < p(x,@)+26, ~2H,(w)

which fit nicely into a CCP, hence the convexification is done by

linearizing p(X,®) on the right-hand sides of the constraints.
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¢ Summarizing, the k-th iteration in the CCP solves the convex problem
minimize o
17, (X, %, ) tiT (@)X

subject to: .
t' (o)X 1

}EO forweQ,,1=0,1

where
7= P(X, @) + Vp(X, @) (X—X,)+ 26, +(-1)'2H, (),

{ t. (Lw) }
ti(w) = i
(_1)I 1:m (a))

Q, ={a)j, 1=12,...,.K}cQ

In words, the k-th iteration of the design algorithm solves an SDP problem
involving a total of 2K 2-by-2 matrices that are required to be positive
semidefinite.
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5. Design of Frequency-Response Masking (FRM) FIR Filters

Frequency response of an FRM filter:

H(e?”) = F(e™)M, (e") +| e "2 _F(el) [M (e*)
Its zero-phase frequency response:

H(x,0) = ajt, (Lo) || a]t, () - t. (o) | +a]t, ()

where a,,a, and a_are coefficient vectors determined by the impulse
responses of F(z), M, (z) and M_(z), respectively.
Let H,(w) be the desired zero-phase response of the IFIR filter, the
frequency-weighted minimax design of an IFIR filter amounts to finding a,
a,, and a_ that solve the nonconvex minimax problem

minimize max w(w)|H (x,®) - H, ()

as,ay, d, wel)

where W(w) >0 is a frequency-selective weight over o € Q.
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¢ Converting the problem to:
minimize o
subjectto: H(X,w)-0,—H,(®w)<0, weQ
-H(X,w)-0,+H,(®0) <0, weQ

¢ Convexifying the problem by adding the term
p(x,0)=[alt, (L) | +4[alt,(@)] +4[a/t, (@) |

hence the constraints become
u(x,m) < p(Xx,w)
V(X, o) < p(X,w)
where
u(x,w) = p(xX,w)+H(X,w)-06,—H,(w)
V(X,0) = p(X,o)-H(X,w)-9, +H, (®)

are convex because
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a

a
0(%, @) + H(x,0) = 3 2] a;w{a }%[ai N, |2l
1 T T af 1 T T _af_ T
p(x’a))_H(X’a))zf[af aa]Ml 3 +§[af a(:]NO 3 _actc

with positive semidefinite M, =mm. and N. =nn' where

{ t; (L) } { t; (L) } .
m. = | and n. = . for 1=0,1
(_1)I ta (Cf)) (_1)I tc (C())

The above form of constraints fits nicely into a CCP, hence convexification
can be done by linearizing p(X,®) on the right-hand sides of the
constraints, i.e.,

u(x,m) < p(x,x,,o) for weQ

V(X,w) < p(X, X, ,@) for e

where P(X,X,,®)= p(X,,®)+Vp(X,,o)" (X— X, ) with
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2ajt, (Lo)lt, (Lw)
Vp(x,0)=| [at,(o)]t, (@)
[ t. (0)]t, ()
¢ Summarizing, the k-th iteration in the CCP solves the convex problem
minimize o
subject to: u(x,®;) < p(X, X, ;) for j=1,...,K

V(X,@;,) < p(X, X, ;) for j=1,..,K

where {a)j, 1=12,..,.K}c Q.

In words, the k-th iteration of the design algorithm solves an SOCP

problem minimizing a linear objective subject to a total of 2K quadratic

constraints.
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6. Design Examples

Example 1 The first algorithm was applied to design a lowpass IFIR filter with
normalized passband edge w, = 0.15m, stopband edge w, = 0.2rt. The sparsity
factor was set to L = 4, and orders of F(z) and M(z) are 31 and 17, respectively. The
frequency weight w(w) was set to w(w) = 1 for w in the passband and w(w) = 2 for
w in the stopband. An initial was generated by the standard technique proposed in
[3]. A total of K = 1400 frequency grids were uniformly placed in [0, wp]u[w,, 7] to
form the discrete set €2, for problem. It took the algorithm 91 iterations to

converge to an IFIR filter with A, =0.03171 dB and A, = 60.84 dB.

The same design problem was addressed as Example 10.29 in [4] using the method
described in [Saramaki, 1993]. The method was implemented as function ifir in
Signal Processing Toolbox of MATLAB. With
[F,M] = ifir(4,’low’, [0.15, 0.2], [0.002, 0.001],’advanced’)

the function returns with optimized impulses of filter F(z) of order 31 and M(z) of
order 17 (in Example 10.29 of [4], the order of M(z) was said to be 16, however the
order of M(z) produced by the above MATLAB code was actually 17), with A, =
0.0340dB and A, = 60.18 dB.
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Amplitude Response in dB
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Passband Ripple (0.03171 dB vs 0.0340dB)
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Stopband Attenuation (60.84 dB vs 60.18 dB)
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Example 2 The second algorithm was applied to design a lowpass FRM filter
with the same design specifications as in the first example in [3] and [10]. The
normalized passband and stopband edges were w, = 0.6t and w, = 0.61mt. The
sparsity factor was set to L = 9, and orders of F(z), M,(z), and M_.(z) were 44, 40,
and 32, respectively. A trivial weight w(w) = 1 was utilized. With K = 1100, it
took the algorithm 60 iterations to converge to an FRM filter with A, = 0.1321
dB and A, = 42.44 dB, which are favorably compared with those achieved in [3]
(A, =0.1792 dB and A, = 40.96 dB), which has been a benchmark for FRM filters,
and those reported in [10] (A, =0.1348 dB and A, = 42.25 dB).
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Amplitude Response in dB
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Passband Ripple in dB
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Thank you.

Q&A
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