A Unified Approach to the Design of Interpolated and Frequency-Response-Masking FIR Filters

Wu-Sheng Lu

University of Victoria

Victoria, Canada

Takao Hinamoto

Hiroshima University

Higashi-Hiroshima, Japan

May 2016

Outline

- Early Work
- Filter Structures
- Convex-Concave Procedure (CCP)
- Design of Interpolated FIR (IFIR) Filters
- Design of Frequency-Response Masking (FRM) FIR Filters
- Design Examples

1. Early Work

Interpolated FIR (IFIR) Filters

- Y. Neuvo, C. Y. Dong, and S. K. Mitra, 1984.
- T. Saramäki, Y. Neuvo, and S. K. Mitra, 1988.

Frequency-Response Masking (FRM) FIR Filters

- Y. C. Lim, 1986.
- Y. C. Lim and Y. Lian, 1993.
- Many variants since 1990s.

2. Filter Structures

Interpolated FIR (IFIR) Filters

$$H(z) = F(z^L)M(z)$$

Frequency-Response Masking (FRM) FIR Filters

$$H(z) = F(z^{L})M_{a}(z) + \left[z^{-L(N-1)/2} - F(z^{L})\right]M_{c}(z)$$

3. Convex-Concave Procedure (CCP)

CCP refers to a heuristic method to solve a general class of *nonconvex* problems of the form

minimize
$$f(x) - g(x)$$

subject to: $f_i(x) \le g_i(x)$ for $i = 1, 2, ..., m$

where f(x), g(x), $f_i(x)$, and $g_i(x)$ for i = 1, 2, ..., m are convex. The basic CCP algorithm is an iterative procedure including two steps:

(i) Convexify the objective function and constraints by replacing g(x) and $g_i(x)$, respectively, with their affine approximations

$$\hat{g}(\mathbf{x}, \mathbf{x}_k) = g(\mathbf{x}_k) + \nabla g(\mathbf{x}_k)^T (\mathbf{x} - \mathbf{x}_k)$$

$$\hat{g}_i(\mathbf{x}, \mathbf{x}_k) = g_i(\mathbf{x}_k) + \nabla g_i(\mathbf{x}_k)^T (\mathbf{x} - \mathbf{x}_k) \text{ for } i = 1, 2, ..., m$$

(ii) Solve the convex problem

minimize
$$f(\mathbf{x}) - \hat{g}(\mathbf{x}, \mathbf{x}_k)$$

subject to: $f_i(\mathbf{x}) \le \hat{g}_i(\mathbf{x}, \mathbf{x}_k)$ for $i = 1, 2, ..., m$

Property 1

• If x_0 is feasible for the original problem, x_0 is also a feasible point for the convexified problem.

• If x_{k+1} is produced by solving the convexified problem, then x_{k+1} is also feasible for the original problem.

Property 2

CCP is a descent algorithm, namely, $\{f(x_k), k = 0,1,...\}$ decreases monotonically.

Property 3

Iterates $\{x_k, k = 0,1,...\}$ converge to a critical point of the original problem.

4. Design of Interpolated FIR (IFIR) Filters

Frequency response of an IFIR filter:

$$H(e^{j\omega}) = F(e^{jL\omega})M(e^{j\omega})$$

Its zero-phase frequency response:

$$H_0(\mathbf{x},\omega) = \left[\mathbf{a}_f^T \mathbf{t}_f(L\omega)\right] \left[\mathbf{a}_m^T \mathbf{t}_m(\omega)\right]$$

where ${\it a}_f$ and ${\it a}_m$ are coefficient vectors determined by the impulse responses of F(z) and M(z) respectively, and ${\it t}_f(\omega)$ and ${\it t}_m(\omega)$ are vectors with trigonometric components determined by the filter lengths and types Let $H_d(\omega)$ be the desired zero-phase response of the IFIR filter, the frequency-weighted minimax design of an IFIR filter amounts to finding ${\it a}_f$ and ${\it a}_m$ that solve the nonconvex minimax problem

$$\underset{\boldsymbol{a}_{f}, \boldsymbol{a}_{m}}{\operatorname{minimize}} \max_{\boldsymbol{\omega} \in \Omega} w(\boldsymbol{\omega}) \left[\boldsymbol{a}_{f}^{T} \boldsymbol{t}_{f}(L\boldsymbol{\omega}) \right] \left[\boldsymbol{a}_{m}^{T} \boldsymbol{t}_{m}(\boldsymbol{\omega}) \right] - H_{d}(\boldsymbol{\omega}) \right]$$

where $w(\omega) > 0$ is a frequency-selective weight over $\omega \in \Omega$.

• Converting the problem to:

minimize
$$\delta$$
subject to: $\left[\boldsymbol{a}_{f}^{T}\boldsymbol{t}_{f}(L\omega)\right]\left[\boldsymbol{a}_{m}^{T}\boldsymbol{t}_{m}(\omega)\right] \leq \delta_{w} + H_{d}(\omega)$

$$-\left[\boldsymbol{a}_{f}^{T}\boldsymbol{t}_{f}(L\omega)\right]\left[\boldsymbol{a}_{m}^{T}\boldsymbol{t}_{m}(\omega)\right] \leq \delta_{w} - H_{d}(\omega)$$

• Convexifying the problem by adding $\frac{1}{2}p(x,\omega)$ with

$$p(\mathbf{x},\omega) = \left[\mathbf{a}_f^T \mathbf{t}_f(L\omega)\right]^2 + \left[\mathbf{a}_m^T \mathbf{t}_m(\omega)\right]^2$$

hence the constraints become

$$\left[\boldsymbol{a}_{f}^{T}\boldsymbol{t}_{f}(L\omega) + \boldsymbol{a}_{m}^{T}\boldsymbol{t}_{m}(\omega)\right]^{2} \leq p(\boldsymbol{x},\omega) + 2\delta_{w} + 2H_{d}(\omega)$$

$$\left[\boldsymbol{a}_{f}^{T}\boldsymbol{t}_{f}(L\omega) - \boldsymbol{a}_{m}^{T}\boldsymbol{t}_{m}(\omega)\right]^{2} \leq p(\boldsymbol{x},\omega) + 2\delta_{w} - 2H_{d}(\omega)$$

which fit nicely into a CCP, hence the convexification is done by linearizing $p(x,\omega)$ on the right-hand sides of the constraints.

♦ Summarizing, the *k*-th iteration in the CCP solves the convex problem

minimize
$$\delta$$
 subject to:
$$\begin{bmatrix} \eta_i(\mathbf{x}, \mathbf{x}_k, \omega) & \mathbf{t}_i^T(\omega)\mathbf{x} \\ \mathbf{t}_i^T(\omega)\mathbf{x} & 1 \end{bmatrix} \succeq \mathbf{0} \quad \text{for } \omega \in \Omega_d, i = 0, 1$$

where

$$\eta_{i} = p(\boldsymbol{x}_{k}, \boldsymbol{\omega}) + \nabla p(\boldsymbol{x}_{k}, \boldsymbol{\omega})^{T} (\boldsymbol{x} - \boldsymbol{x}_{k}) + 2\delta_{w} + (-1)^{i} 2H_{d}(\boldsymbol{\omega}),$$

$$\boldsymbol{t}_{i}(\boldsymbol{\omega}) = \begin{bmatrix} \boldsymbol{t}_{f}(L\boldsymbol{\omega}) \\ (-1)^{i} \boldsymbol{t}_{m}(\boldsymbol{\omega}) \end{bmatrix}$$

$$\Omega_{d} = \{\omega_{j}, j = 1, 2, ..., K\} \subseteq \Omega$$

In words, the k-th iteration of the design algorithm solves an SDP problem involving a total of 2K 2-by-2 matrices that are required to be positive semidefinite.

5. Design of Frequency-Response Masking (FRM) FIR Filters

Frequency response of an FRM filter:

$$H(e^{j\omega}) = F(e^{jL\omega})M_a(e^{j\omega}) + \left[e^{-jL(N-1)\omega/2} - F(e^{jL\omega})\right]M_c(e^{j\omega})$$

Its zero-phase frequency response:

$$H(\boldsymbol{x},\omega) = \left[\boldsymbol{a}_f^T \boldsymbol{t}_f(L\omega)\right] \left[\boldsymbol{a}_a^T \boldsymbol{t}_a(\omega) - \boldsymbol{a}_c^T \boldsymbol{t}_c(\omega)\right] + \boldsymbol{a}_c^T \boldsymbol{t}_c(\omega)$$

where a_f , a_a and a_c are coefficient vectors determined by the impulse responses of F(z), $M_a(z)$ and $M_c(z)$, respectively.

Let $H_d(\omega)$ be the desired zero-phase response of the IFIR filter, the frequency-weighted minimax design of an IFIR filter amounts to finding a_f and a_c that solve the nonconvex minimax problem

$$\underset{a_f, a_a, a_c}{\text{minimize}} \max_{\omega \in \Omega} w(\omega) |H(x, \omega) - H_d(\omega)|$$

where $w(\omega) > 0$ is a frequency-selective weight over $\omega \in \Omega$.

• Converting the problem to:

minimize
$$\delta$$
 subject to: $H(\boldsymbol{x}, \omega) - \delta_w - H_d(\omega) \le 0, \quad \omega \in \Omega$
$$-H(\boldsymbol{x}, \omega) - \delta_w + H_d(\omega) \le 0, \quad \omega \in \Omega$$

O Convexifying the problem by adding the term

$$p(\boldsymbol{x},\omega) = \left[\boldsymbol{a}_f^T \boldsymbol{t}_f(L\omega)\right]^2 + \frac{1}{2} \left[\boldsymbol{a}_a^T \boldsymbol{t}_a(\omega)\right]^2 + \frac{1}{2} \left[\boldsymbol{a}_c^T \boldsymbol{t}_c(\omega)\right]^2$$

hence the constraints become

$$u(\mathbf{x},\omega) \leq p(\mathbf{x},\omega)$$

$$v(x,\omega) \le p(x,\omega)$$

where

$$u(\mathbf{x}, \omega) = p(\mathbf{x}, \omega) + H(\mathbf{x}, \omega) - \delta_{w} - H_{d}(\omega)$$

$$v(\mathbf{x},\omega) = p(\mathbf{x},\omega) - H(\mathbf{x},\omega) - \delta_w + H_d(\omega)$$

are convex because

$$p(\mathbf{x},\omega) + H(\mathbf{x},\omega) = \frac{1}{2} \begin{bmatrix} \mathbf{a}_f^T & \mathbf{a}_a^T \end{bmatrix} \mathbf{M}_0 \begin{bmatrix} \mathbf{a}_f \\ \mathbf{a}_a \end{bmatrix} + \frac{1}{2} \begin{bmatrix} \mathbf{a}_f^T & \mathbf{a}_c^T \end{bmatrix} \mathbf{N}_1 \begin{bmatrix} \mathbf{a}_f \\ \mathbf{a}_c \end{bmatrix} + \mathbf{a}_c^T \mathbf{t}_c$$

$$p(\mathbf{x},\omega) - H(\mathbf{x},\omega) = \frac{1}{2} \begin{bmatrix} \mathbf{a}_f^T & \mathbf{a}_a^T \end{bmatrix} \mathbf{M}_1 \begin{bmatrix} \mathbf{a}_f \\ \mathbf{a}_a \end{bmatrix} + \frac{1}{2} \begin{bmatrix} \mathbf{a}_f^T & \mathbf{a}_c^T \end{bmatrix} \mathbf{N}_0 \begin{bmatrix} \mathbf{a}_f \\ \mathbf{a}_c \end{bmatrix} - \mathbf{a}_c^T \mathbf{t}_c$$

with positive semidefinite $M_i = m_i m_i^T$ and $N_i = n_i n_i^T$ where

$$\mathbf{m}_{i} = \begin{bmatrix} \mathbf{t}_{f}(L\omega) \\ (-1)^{i} \mathbf{t}_{a}(\omega) \end{bmatrix}$$
 and $\mathbf{n}_{i} = \begin{bmatrix} \mathbf{t}_{f}(L\omega) \\ (-1)^{i} \mathbf{t}_{c}(\omega) \end{bmatrix}$ for $i = 0, 1$

The above form of constraints fits nicely into a CCP, hence convexification can be done by linearizing $p(x,\omega)$ on the right-hand sides of the constraints, i.e.,

$$u(\mathbf{x}, \omega) \le \tilde{p}(\mathbf{x}, \mathbf{x}_{k}, \omega) \text{ for } \omega \in \Omega$$

 $v(\mathbf{x}, \omega) \le \tilde{p}(\mathbf{x}, \mathbf{x}_{k}, \omega) \text{ for } \omega \in \Omega$

where
$$\tilde{p}(\mathbf{x}, \mathbf{x}_k, \omega) = p(\mathbf{x}_k, \omega) + \nabla p(\mathbf{x}_k, \omega)^T (\mathbf{x} - \mathbf{x}_k)$$
 with

$$\nabla p(\boldsymbol{x}_k, \omega) = \begin{bmatrix} 2[\boldsymbol{a}_f^T \boldsymbol{t}_f(L\omega)] \boldsymbol{t}_f(L\omega) \\ [\boldsymbol{a}_a^T \boldsymbol{t}_a(\omega)] \boldsymbol{t}_a(\omega) \\ [\boldsymbol{a}_c^T \boldsymbol{t}_c(\omega)] \boldsymbol{t}_c(\omega) \end{bmatrix}$$

♦ Summarizing, the *k*-th iteration in the CCP solves the convex problem

minimize
$$\delta$$

subject to: $u(\mathbf{x}, \omega_j) \leq \tilde{p}(\mathbf{x}, \mathbf{x}_k, \omega_j)$ for $j = 1, ..., K$
 $v(\mathbf{x}, \omega_j) \leq \tilde{p}(\mathbf{x}, \mathbf{x}_k, \omega_j)$ for $j = 1, ..., K$

where $\{\omega_i, j=1,2,...,K\}\subset\Omega$.

In words, the *k*-th iteration of the design algorithm solves an SOCP problem minimizing a linear objective subject to a total of 2K quadratic constraints.

6. Design Examples

Example 1 The first algorithm was applied to design a lowpass IFIR filter with normalized passband edge $\omega_p = 0.15\pi$, stopband edge $\omega_a = 0.2\pi$. The sparsity factor was set to L = 4, and orders of F(z) and M(z) are 31 and 17, respectively. The frequency weight $w(\omega)$ was set to $w(\omega) = 1$ for ω in the passband and $w(\omega) = 2$ for ω in the stopband. An initial was generated by the standard technique proposed in [3]. A total of K = 1400 frequency grids were uniformly placed in $[0, \omega_p] \cup [\omega_a, \pi]$ to form the discrete set Ω_d for problem. It took the algorithm 91 iterations to converge to an IFIR filter with $A_p = 0.03171$ dB and $A_a = 60.84$ dB.

The same design problem was addressed as Example 10.29 in [4] using the method described in [Saramäki, 1993]. The method was implemented as function ifir in Signal Processing Toolbox of MATLAB. With

[F,M] = ifir(4,'low', [0.15, 0.2], [0.002, 0.001],'advanced')

the function returns with optimized impulses of filter F(z) of order 31 and M(z) of order 17 (in Example 10.29 of [4], the order of M(z) was said to be 16, however the order of M(z) produced by the above MATLAB code was actually 17), with $A_p = 0.0340 \, \mathrm{dB}$ and $A_a = 60.18 \, \mathrm{dB}$.

Amplitude Response in dB

Passband Ripple (0.03171 dB vs 0.0340 dB)

Stopband Attenuation (60.84 dB vs 60.18 dB)

Example 2 The second algorithm was applied to design a lowpass FRM filter with the same design specifications as in the first example in [3] and [10]. The normalized passband and stopband edges were $\omega_p = 0.6\pi$ and $\omega_a = 0.61\pi$. The sparsity factor was set to L = 9, and orders of F(z), $M_a(z)$, and $M_c(z)$ were 44, 40, and 32, respectively. A trivial weight $w(\omega) \equiv 1$ was utilized. With K = 1100, it took the algorithm 60 iterations to converge to an FRM filter with $A_p = 0.1321$ dB and $A_a = 42.44$ dB, which are favorably compared with those achieved in [3] $(A_p = 0.1792 \text{ dB} \text{ and } A_a = 40.96 \text{ dB})$, which has been a benchmark for FRM filters, and those reported in [10] $(A_p = 0.1348 \text{ dB} \text{ and } A_a = 42.25 \text{ dB})$.

Amplitude Response in dB

Passband Ripple in dB

Thank you.

Q & A