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1. Design Problem and Related Work 

 

Design Problem 

Find a stable IIR digital filter of order (n, 2r) 
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with sparsity of {ai} = K that optimally approximates a desired 

frequency response ( )dH ω  in a least-squares or minimax 

sense. 
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Related Work 

·  Frequency-response masking filters (Y.C. Lim, 1986)  
-- Special filter structure. 

 
· Shaped window functions for narroband 2D fan filters  

(L. Khademi and L.T. Bruton, 2003) – Special filter type. 
 

· Sparse half-band like FIR filters (O. Gustafsson,  
L.S. DeBrunner, V. DeBrunner, and H. Johnnsson, 2007) 

 
· Linear programming algorithms for sparse FIR filters  

(T. Baran, D. Wei, and A.V. Oppenheim, March 2010) 
 
· l1-minimization algorithms for sparse 1-D and 2-D  

FIR filters (W.-S. Lu and T. Hinamoto, May 2010, Jan. 
2011) 
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2. Significance 

· Digital filters with sparse coefficients are of interest 

because the sparsity implies real-time application potential 

and reduction in implementation complexity (hence cost).   

· IIR filters are not sparse in general. 

 

 

 

 

 

 



 6

3．Design Method at a Glance 

Design Phase 1 

· To identify an index set of the most appropriate locations 

for numerator polynomial a(z) to be zero in order to satisfy a 

target sparsity.  

· This is done subject to: 

  (i) Keeping closeness of ( )jH e ω  to ( )dH ω . 

  (ii) stability of H(z). 

· The target sparsity is achieved by the l1-norm of 

coefficient vector a into an objective function so as to  

promote its sparsity. This yields 
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· (1) is not a convex problem because ( , ) ( )j
dH e Hω ω

∞
−x  is 

not convex, however, 

· the feasibility region is convex, and 

· the second term of the objective function, 
1

μ a , is convex. 

· under these circumstances we decide to use a sequential 

design approach to an optimal solution of (1), where in  
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each step in the sequential technique the term 

( , ) ( )j
dH e Hω ω

∞
−x  is approximated by a convex term, hence 

we deal with a sequential convex problem to achieve the 

design. 

· The convex subproblem in kth iteration looks like this: 
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where        
1

for filter coeff. upper bound of minimax error
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· Once the unique global solution ∗δ  of (2) is obtained, xk is 

updated to 1k k
∗

+ = +x x δ .  

· The process continues until certain termination condition is 

met and a solution point 
*

*
*

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

a
x

d
 is found. 

· An index set is generated by hard thresholding as 

{ }: i ti a ε∗ ∗= <I                        (3) 

where tε  is a threshold so tuned that the set ∗I  contains   

n – k + 1 indices.  

· It is the index set in (3) that is the goal of the first phase 

of the design. 
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Design Phase 2 

The goal is to design an IIR digital filter that optimally 

approximates a desired frequency response ( )dH ω  in minimax 

sense subject to sparsity and stability. 

· The problem at hand can be formulated as 

minimize    ( , ) ( )j
dH e Hω ω

∞
−

x
x              (4) 

subject to:    ( ) is stable
                    0 for i

H z
a i ∗= ∈I

 

· The constraints in (4) define a convex region. However, 

the objective function is not convex. 
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·  We apply a sequential design approach similar to that 

used in phase 1, where in each step ( , ) ( )j
dH e Hω ω

∞
−x  is 

approximated by a convex term, hence we deal with a 

sequence of convex problems to achieve the design. The 

convex subproblem if the kth iteration looks like this: 
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4. A Design Example 
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The Design Problem  

· Design a stable lowpass IIR filter of order (n = 35,   
r = 1) with 0.2pω π=  and 0.23aω π= , where the 

numerator a(z) possesses at least 16 zeros i.e. k = 20. 
Passband group delay = 21. 

 
· A total of 200 grid points are evenly placed over the 

passband and stopband. 
 
· Other parameters were set to 0.1, 0.005, 0.004tβ μ ε= = = . 
 
· It took 20 iterations for the algorithm in design phase 1 

to yield an index set  ∗I  = {4, 5, 6, 7, 8, 9, 10, 11, 12, 
16, 17, 29, 30, 32, 33, 34} 
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· It took another 20 iterations for the algorithm in phase 
2 to converge. The denominator coefficients were found 
to be d11 = –1.5230137262, d12 = 0.9500000026. The 
coefficients of numerator a(z) are shown in the figure 
below. 
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· maximum passband ripple: 0.0325 

· minimum stopband attenuation: 29.7270 dB 

· passband group delay 21 with maximum ripple 0.1818 

· magnitude of the two poles: 0.9747 

· number of zeros in numerator: 16 

========  Comparison 1  ======= 

· Compare with an equivalent nonsparse IIR filter of order 

(n = 19, r = 1) with the same design specifications: 

· maximum passband ripple: 0.0676 

· minimum stopband attenuation: 23.4019 dB 

· passband group delay 12 with maximum ripple 0.4579 
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========  Comparison 2  ======= 

· Compared with an equiripple linear-phase FIR filter of 

order of length 88 that was designed using the Parks-

McClellan algorithm with the same design specifications 

· and comparable maximum passband ripple and 

· comparable minimum stopband attenuation 

· passband group delay = 43.5 (versus 21) 

· 44 multiplications versus 18 multiplications per output 

sample required by the sparse IIR filter. 
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5. Concluding Remarks 

• The proposed technique works for minimax design of 

stable IIR filters with sparse coefficients. The 

performance of these filters appears to be satisfactory 

compared with their non-sparse counterparts. 

• A drawback of these filters is the longer group delay 

relative to their non-sparse counterparts, thus a topic of 

future research: sparse filters with low group delay. 

• Implementation techniques for sparse filters with 

irregularly located zero coefficients seems worth 

investigation. 


