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1. Design Problem and Related Work
Design Problem
Find a VFD FIR digital filter of order (N, K)

H(z,p)=) a,(p)z", a,(p)=D a,p"

with 0< p<1 and sparse 4 = {a;} RV that optimally

approximates a desired frequency response
H, (o, p)= e )

In a weighted least-squares sense.

J(A)=%[ [W (o, p)|H (e, p)—H,(o,p) dpdw

subject to:  sparsity(4) = N,
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2. Significance

- Implementing a VFD filter in Farrow model is costly as
each coefficient of a VFD filter is a polynomial rather than
a scalar. Hence VFD digital filters with sparse coefficients
are of Interest because the sparsity Implies reduced
Implementation complexity (cost), hence real-time

application potential.

« VFD filters are not sparse in general.



3. Design Method at a Glance

Define
T

(oz[l e’ .. e_jN“’]T and pz[l p pK]
and assume a separable weighting function W (w, p) =W, (o)W, (p),

then up to a constant one can write
Tl
2
J(A) =3[ [W (e p)|H (@, p)- H, (@, p)| dpde
00

Ltr(PA'QA) —tr(SA)

where
P = .OlVVZ(p)pppo, Q= Re[ .ﬂWl(a))cﬁa)Tda)}

J0

1 Vs :
S:.OWZ(p)p(o;dp, a); = Re jo Wl(a))a)Te]“’(D*p)da)}
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To deal with large condition numbers of P and Q, Cholesky
decompositions P=P'P, Q=0Q'Q are used, and up to a
constant J(A4) can be written as

J(a) =§Hl"a—yH§, Fr=P®Q, y=IT"'s

where a and s are the vectors generated by concatenating
the columns of 4 and §, and ® is the Kronecker product.

Design Phase 1

- To identify an index set of the most appropriate locations

IN a to be set to zero in order to satisfy a target sparsity.

« This is done subject to maintaining closeness of H(e’’, p)

to H,(w, p).



« The target sparsity is achieved by introducing sparsity

promoting /;-norm of a into an objective function:
minimize e, +%Hl‘a—yH§ (1)

n

where ||a|, =) |a,|. Problem (1) is a convex, for which many
i=0

fast algorithms are available. E.g. using FISTA, (1) can be

solved with a small number of iterations.

Input: Data I' and y, parameter x4 and iteration number M.
Step 1. Compute Ag = F_ly, ao=Ao(}). Setby=ag, =1 and m = 1.
Step 2. Compute a,, =S, {b,, — (L IL)[" (I'b,, — y)},
where S (u)=sgn(u)-max{ u|-«,0}
Step 3. Update ¢,.; =(1+1+42)/2
Step 4. Update b,+; =a,, + ((¢, -1)/¢,..)(a, — a,—;).
Step 5. If m <M, set m =m + I and repeat from Step 2; otherwise stop and

output a, as solution a.
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- Hard thresholding is applied to vector a with an
appropriate value of threshold ¢ so that the length of the
index set I"={i|a(i)|<&} equals to target sparsity N,.. The
iIndex set /" is a key ingredient of design phase 2.

Design Phase 2

« To find a coefficient matrix 4 that minimizes the WLS error
J(A) subject to the sparsity constraint. This part of the design
IS carried out by solving the convex problem

minimize J (a) = 4|Ta -y,
subjectto: a(i)=0 for iel”
- By simply substituting the constraints into the objective

function, the above problem becomes an unconstrained least

square problem whose solution is given by
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a’(I")=T"y and a"(I")=0
where [ denotes the set of index not in I" and T, is

composed of those columns of T" with indices in set I".

4. A Design Example
The Design Problem

« Design a VFD FIR filter of order (N = 65 and K = 7) with
cutoff w, =0.97.

« Design performance is evaluated in terms of maximum
error

e . = max{e(a),p),O <w<097,0<p< 1}
with
e(w, p) =20log,, ‘H(a),p) -H, (a),p)‘
and L2-error

10



097 1 1/2

e, = J HH(w,p)—Hd(a),zv)\2 dpd @

- The weighting function was set to W (w, p) = W,(o)W,(p) With
W,(p) =1 for p in [0, 1] and

1 for w<[0,0.887)
W(w)=+3 for @<[0.887,0.8994r)
0 for »<[0.887, 7]

« The target sparsity was set to N, = 198 which means a
37.5% of coefficients were set to zero. To achieve this
sparsity, the two key parameters in phase-1 were set to

1u=10","=10" . It took 60 FISTA iterations for the

algorithm in phase 1 to converge.
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Phase 2 of the design then produced an optimal A4*

with sparsity(4*) = 198. Below are the numerical
evaluation results:

maximum error e, = 0.0021.
L2-error e, = -75.25 dB.

=== Comparison 1 = ======

Compare with an equivalent nonsparse VFD filter of

order (N = 65, K = 4) with the same specifications:

maximum error e, = 0.0609.

L2-error e, = -45.28 dB.
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(ap) |(d‘@)s|

|le(w, p)| over 0<w<0.97,0< p<1: the sparse VFD filter:

Profile of frequency response error

Normalized frequency ®

Fractional delay p
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« Profile of frequency response error

le(w, p)| over 0<w<0.97,0< p<1: the nonsparse VFD filter:

le(w,p)| (dB)

Fractional delay p Normalized frequency ®
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———————— CompariSC)nZ ——

- To justify phase 1 of the design, we compare the above
result with the following: We design a conversional
(nonsparse) VFD filter of order (N = 65, K = 7), then
applied hard thresholding to generate exactly 198
locations that may be considered appropriate to set to
zero. We then went on the carried out phase 2 to yield
a sparse VFD filter. It was found that

*  maximum error en, = 0.0025 (vs 0.0021 with phase 1)

« L2-error e, =-73.41dB (vs -75.25 dB with phase 1).
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Profile of frequency response error

the sparse VFD filter

<p<l:

0

|le(w, p)| over 0<w <097

without phase 1:

Normalized frequency ®

Fractional delay p
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:::::::::CmanSm13:::::::

- Fractional delay over 0<w<0.97,0< p <1. The sparse filter:
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Fractional delay over 0<w<097,0<p<1. The equivalent

nonsparse filter:
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5. Concluding Remarks

+ A two-phase technique for the WLS design of VFD FIR

filters subject to a target coefficient sparsity constraint
has been proposed.

- The design algorithm is easy to Iimplement abd
computationally efficient because it is based on |, — |,
convex optimization.

* The performance of the filter appears to be satisfactory

compared with its nonsparse counterpart.
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