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1. Design Problem and Related Work 

Design Problem 

Find a VFD FIR digital filter of order (N, K) 
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Related Work 

·  A. Tarczynski, G. D. Cain, E. Hermanowicz and M. Rojewki, 1997 
 
·  W.-S. Lu and T.-B. Deng, 1999. 
 
·  T.-B. Deng, 2001. 
 
·  C.-C. Tseng, 2004. 
 
·  T.-B. Deng and Y. Lian, 2006. 

 
·  Linear programming algorithms for sparse FIR filters  

(T. Baran, D. Wei, and A.V. Oppenheim, March 2010) 
 
·  l1-minimization algorithms for sparse 1-D and 2-D  

FIR filters (W.-S. Lu and T. Hinamoto, 2010, 2011) 
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2. Significance 

· Implementing a VFD filter in Farrow model is costly as 

each coefficient of a VFD filter is a polynomial rather than 

a scalar. Hence VFD digital filters with sparse coefficients 

are of interest because the sparsity implies reduced 

implementation complexity (cost), hence real-time 

application potential.  

 

· VFD filters are not sparse in general. 
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3．Design Method at a Glance 

Define 

1 and 1
T Tj jN Ke e p pω ω− −⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦pω  

and assume a separable weighting function 1 2( , ) ( ) ( )W p W W pω ω= , 

then up to a constant one can write  
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To deal with large condition numbers of P and Ω, Cholesky 

decompositions 1 1 1 1,T T= =P P P Ω Ω Ω  are used, and up to a 

constant J(A) can be written as  
21

1 12 2
( ) , , TJ −= − = ⊗ =a a y P y sΓ Γ Ω Γ  

where a and s are the vectors generated by concatenating 
the columns of A and S, and ⊗ is the Kronecker product.  
  
Design Phase 1 

· To identify an index set of the most appropriate locations 

in a to be set to zero in order to satisfy a target sparsity.  

· This is done subject to maintaining closeness of ( , )jH e pω  

to ( , )dH pω . 
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· The target sparsity is achieved by introducing sparsity 

promoting l1-norm of a into an objective function: 
21

21 2
minimize  μ + −

a
a a yΓ                       (1) 

where 
1

0

n

i
i

a
=

= ∑a . Problem (1) is a convex, for which many 

fast algorithms are available. E.g. using FISTA, (1) can be 

solved with a small number of iterations. 

Input:  Data Γ and y, parameter μ and iteration number M. 
Step 1. Compute A0 = Γ−1y, a0 = A0(:). Set b1 = a0, t1 = 1, and m = 1. 
Step 2. Compute am = Sμ/L{bm − (1 /L)ΓT (Γbm − y)},  

where ( ) sgn( ) max{| | ,0}S u u uα α= ⋅ −  
Step 3. Update tm+1 = 2(1 1 4 ) / 2mt+ +  
Step 4. Update bm+1 = am + 1(( 1) / )m mt t +− (am − am−1). 
Step 5. If m < M, set m = m + 1 and repeat from Step 2; otherwise stop and 

output am as solution â. 
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·Hard thresholding is applied to vector â  with an 
appropriate value of threshold ε ∗  so that the length of the 
index set ˆ{ , ( ) }I i a i ε∗ ∗= <   equals to target sparsity Nz. The 
index set I ∗ is a key ingredient of design phase 2.  
 

Design Phase 2 

· To find a coefficient matrix A that minimizes the WLS error 

J(A) subject to the sparsity constraint. This part of the design 

is carried out by solving the convex problem 
21

2 2
minimize  ( )

subject to:  ( ) 0 for

J

a i i I ∗
= −

= ∈
a

a a yΓ
 

· By simply substituting the constraints into the objective 

function, the above problem becomes an unconstrained least 

square problem whose solution is given by 
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1( )    and   ( )sI I∗ ∗ − ∗ ∗= = 0a y aΓ  

where I ∗  denotes the set of index not in I ∗  and sΓ  is 

composed of those columns of Γ with indices in set I ∗. 

 

4. A Design Example 

The Design Problem  

· Design a VFD FIR filter of order (N = 65 and K = 7) with 
cutoff 0.9cω π= . 

· Design performance is evaluated in terms of maximum 
error 

{ }max max ( , ),0 0.9 , 0 1e e p pω ω π= ≤ ≤ ≤ ≤  
    with 

10( , ) 20log ( , ) ( , )de p H p H pω ω ω= −  
    and L2-error 
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· The weighting function was set to 1 2( , ) ( ) ( )W p W W pω ω=  with 

W2(p) = 1 for p in [0, 1] and 
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W

ω π
ω ω π π

ω π π
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⎪ ∈⎩

 

· The target sparsity was set to Nz = 198 which means a 

37.5% of coefficients were set to zero. To achieve this 

sparsity, the two key parameters in phase-1 were set to 
5 310 , 10μ ε− ∗ −= = . It took 60 FISTA iterations for the 

algorithm in phase 1 to converge.  
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· Phase 2 of the design then produced an optimal A*  

    with sparsity(A*) = 198. Below are the numerical 

evaluation results: 

· maximum error emax =  0.0021. 

· L2-error e2 = –75.25 dB.   

========  Comparison 1  ======= 

· Compare with an equivalent nonsparse VFD filter of 

order (N = 65, K = 4) with the same specifications: 

· maximum error emax =  0.0609. 

· L2-error e2 = –45.28 dB.   
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· Profile of frequency response error  

| ( , ) | over 0 0.9 , 0 1e p pω ω π≤ ≤ ≤ ≤ : the sparse VFD filter: 
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· Profile of frequency response error  

 | ( , ) | over 0 0.9 , 0 1e p pω ω π≤ ≤ ≤ ≤ : the nonsparse VFD filter: 
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========  Comparison 2  ======= 

· To justify phase 1 of the design, we compare the above 

result with the following:  We design a conversional 

(nonsparse) VFD filter of order (N = 65, K = 7), then 

applied hard thresholding to generate exactly 198 

locations that may be considered appropriate to set to 

zero. We then went on the carried out phase 2 to yield 

a sparse VFD filter. It was found that  

· maximum error emax =  0.0025 (vs 0.0021 with phase 1) 

· L2-error  e2 = –73.41 dB (vs  –75.25 dB with phase 1). 
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· Profile of frequency response error  

| ( , ) | over 0 0.9 , 0 1e p pω ω π≤ ≤ ≤ ≤ : the sparse VFD filter 

without phase 1: 
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========  Comparison 3 ======= 

  · Fractional delay over 0 0.9 , 0 1pω π≤ ≤ ≤ ≤ . The sparse filter: 
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· Fractional delay over 0 0.9 , 0 1pω π≤ ≤ ≤ ≤ . The equivalent 

nonsparse filter: 
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5. Concluding Remarks 

· A two-phase technique for the WLS design of VFD FIR 

filters subject to a target coefficient sparsity constraint 

has been proposed.  

· The design algorithm is easy to implement abd 

computationally efficient because it is based on l1 – l2 

convex optimization. 

·The performance of the filter appears to be satisfactory 

compared with its nonsparse counterpart. 

 


