Variable Fractional Delay FIR Filters with Sparse Coefficients

W.-S. Lu

Dept. of Electrical & Computer Engineering
University of Victoria
Victoria, Canada

T. Hinamoto

Graduate School of Engineering
Hiroshima University
Hiroshima, Japan

Outline

- Design Problem and Related Work
- Significance
- Design Method at a Glance
- A Design Example
- Concluding Remarks

1. Design Problem and Related Work

Design Problem

Find a VFD FIR digital filter of order (N, K)

$$H(z,p) = \sum_{n=0}^{N} a_n(p) z^{-n}, \quad a_n(p) = \sum_{k=0}^{K} a_{nk} p^k$$

with $0 \le p \le 1$ and sparse $A = \{a_{ij}\} \in R^{(N+1)\times(K+1)}$ that optimally approximates a desired frequency response

$$H_d(\omega, p) = e^{-j\omega(D+p)}$$

in a weighted least-squares sense.

$$J(A) = \frac{1}{2} \int_{0}^{\pi} \int_{0}^{1} W(\omega, p) |H(\omega, p) - H_{d}(\omega, p)|^{2} dp d\omega$$

subject to: sparsity(A) = N_z

Related Work

- · A. Tarczynski, G. D. Cain, E. Hermanowicz and M. Rojewki, 1997
- · W.-S. Lu and T.-B. Deng, 1999.
- · T.-B. Deng, 2001.
- · C.-C. Tseng, 2004.
- · T.-B. Deng and Y. Lian, 2006.
- Linear programming algorithms for sparse FIR filters (T. Baran, D. Wei, and A.V. Oppenheim, March 2010)
- · l_1 -minimization algorithms for sparse 1-D and 2-D FIR filters (W.-S. Lu and T. Hinamoto, 2010, 2011)

2. Significance

 Implementing a VFD filter in Farrow model is costly as each coefficient of a VFD filter is a polynomial rather than a scalar. Hence VFD digital filters with sparse coefficients are of interest because the sparsity implies reduced implementation complexity (cost), hence real-time application potential.

VFD filters are not sparse in general.

3. Design Method at a Glance

Define

$$\boldsymbol{\omega} = \begin{bmatrix} 1 & e^{-j\omega} & \cdots & e^{-jN\omega} \end{bmatrix}^T \text{ and } \boldsymbol{p} = \begin{bmatrix} 1 & p & \cdots & p^K \end{bmatrix}^T$$

and assume a separable weighting function $W(\omega, p) = W_1(\omega)W_2(p)$, then up to a constant one can write

$$J(\mathbf{A}) = \frac{1}{2} \int_{0}^{\pi} \int_{0}^{1} W(\omega, p) |H(\omega, p) - H_{d}(\omega, p)|^{2} dp d\omega$$
$$= \frac{1}{2} \operatorname{tr}(\mathbf{P} \mathbf{A}^{T} \mathbf{\Omega} \mathbf{A}) - \operatorname{tr}(\mathbf{S} \mathbf{A})$$

where

$$\mathbf{P} = \int_0^1 W_2(p) \mathbf{p} \mathbf{p}^T dp, \quad \mathbf{\Omega} = \text{Re} \left[\int_0^{\pi} W_1(\omega) \overline{\omega} \omega^T d\omega \right]$$

$$\mathbf{S} = \int_0^1 W_2(p) \mathbf{p} \omega_p^T dp, \quad \boldsymbol{\omega}_p^T = \text{Re} \left[\int_0^{\pi} W_1(\omega) \omega^T e^{j\omega(D+p)} d\omega \right]$$

To deal with large condition numbers of P and Ω , Cholesky decompositions $P = P_1^T P_1$, $\Omega = \Omega_1^T \Omega_1$ are used, and up to a constant J(A) can be written as

$$J(\boldsymbol{a}) = \frac{1}{2} \| \boldsymbol{\Gamma} \boldsymbol{a} - \boldsymbol{y} \|_{2}^{2}, \ \boldsymbol{\Gamma} = \boldsymbol{P}_{1} \otimes \boldsymbol{\Omega}_{1}, \ \boldsymbol{y} = \boldsymbol{\Gamma}^{-T} \boldsymbol{s}$$

where a and s are the vectors generated by concatenating the columns of A and S, and \otimes is the Kronecker product.

Design Phase 1

- To identify an index set of the most appropriate locations
 in a to be set to zero in order to satisfy a target sparsity.
- This is done subject to maintaining closeness of $H(e^{j\omega},p)$ to $H_d(\omega,p)$.

• The target sparsity is achieved by introducing sparsity promoting l_1 -norm of \boldsymbol{a} into an objective function:

minimize
$$\mu \| \boldsymbol{a} \|_{1} + \frac{1}{2} \| \Gamma \boldsymbol{a} - \boldsymbol{y} \|_{2}^{2}$$
 (1)

where $\|\mathbf{a}\|_1 = \sum_{i=0}^n |a_i|$. Problem (1) is a convex, for which many

fast algorithms are available. E.g. using FISTA, (1) can be solved with a small number of iterations.

Input: Data Γ and y, parameter μ and iteration number M.

Step 1. Compute $A_0 = \Gamma^{-1} y$, $a_0 = A_0(:)$. Set $b_1 = a_0$, $t_1 = 1$, and m = 1.

Step 2. Compute $a_m = S_{\mu/L} \{ \boldsymbol{b}_m - (1/L) \boldsymbol{\Gamma}^T (\boldsymbol{\Gamma} \boldsymbol{b}_m - \boldsymbol{y}) \}$, where $S_{\alpha}(u) = \operatorname{sgn}(u) \cdot \max\{|u| - \alpha, 0\}$

Step 3. Update $t_{m+1} = (1 + \sqrt{1 + 4t_m^2})/2$

Step 4. Update $b_{m+1} = a_m + ((t_m - 1)/t_{m+1})(a_m - a_{m-1}).$

Step 5. If m < M, set m = m + 1 and repeat from Step 2; otherwise stop and output a_m as solution \hat{a} .

• Hard thresholding is applied to vector \hat{a} with an appropriate value of threshold ε^* so that the length of the index set $I^* = \{i, |\hat{a}(i)| < \varepsilon^*\}$ equals to target sparsity N_z . The index set I^* is a key ingredient of design phase 2.

Design Phase 2

To find a coefficient matrix A that minimizes the WLS error
 J(A) subject to the sparsity constraint. This part of the design is carried out by solving the convex problem

minimize
$$J(\mathbf{a}) = \frac{1}{2} \| \mathbf{\Gamma} \mathbf{a} - \mathbf{y} \|_{2}^{2}$$

subject to: $a(i) = 0$ for $i \in I^{*}$

 By simply substituting the constraints into the objective function, the above problem becomes an unconstrained least square problem whose solution is given by

$$\boldsymbol{a}^*(\overline{I}^*) = \boldsymbol{\Gamma}_s^{-1} \boldsymbol{y}$$
 and $\boldsymbol{a}^*(I^*) = \boldsymbol{0}$

where \overline{I}^* denotes the set of index not in I^* and Γ_s is composed of those columns of Γ with indices in set \overline{I}^* .

4. A Design Example

The Design Problem

- Design a VFD FIR filter of order (N=65 and K=7) with cutoff $\omega_c=0.9\pi$.
- Design performance is evaluated in terms of maximum error

$$e_{\text{max}} = \max \left\{ e(\omega, p), 0 \le \omega \le 0.9\pi, 0 \le p \le 1 \right\}$$

with

$$e(\omega, p) = 20\log_{10} |H(\omega, p) - H_d(\omega, p)|$$

and L2-error

$$e_{2} = \left[\int_{0}^{0.9\pi} \int_{0}^{1} |H(\omega, p) - H_{d}(\omega, p)|^{2} dp d\omega \right]^{1/2}$$

• The weighting function was set to $W(\omega, p) = W_1(\omega)W_2(p)$ with $W_2(p) = 1$ for p in [0, 1] and

$$W_{1}(\omega) = \begin{cases} 1 & \text{for } \omega \in [0, 0.88\pi) \\ 3 & \text{for } \omega \in [0.88\pi, 0.8994\pi) \\ 0 & \text{for } \omega \in [0.88\pi, \pi] \end{cases}$$

• The target sparsity was set to $N_z=198$ which means a 37.5% of coefficients were set to zero. To achieve this sparsity, the two key parameters in phase-1 were set to $\mu=10^{-5}$, $\varepsilon^*=10^{-3}$. It took 60 FISTA iterations for the algorithm in phase 1 to converge.

- Phase 2 of the design then produced an optimal A* with sparsity (A*) = 198. Below are the numerical evaluation results:
- maximum error $e_{max} = 0.0021$.
- L2-error $e_2 = -75.25 \text{ dB}$.

$$=======$$
 Comparison 1 $=======$

- Compare with an equivalent nonsparse VFD filter of order (N = 65, K = 4) with the same specifications:
- maximum error $e_{max} = 0.0609$.
- L2-error $e_2 = -45.28 \text{ dB}$.

• Profile of frequency response error $|e(\omega,p)|$ over $0 \le \omega \le 0.9\pi, 0 \le p \le 1$: the sparse VFD filter:

• Profile of frequency response error $|e(\omega,p)| \text{ over } 0 \leq \omega \leq 0.9\pi, 0 \leq p \leq 1 \text{: the nonsparse VFD filter:}$

======= Comparison 2 =======

- To justify phase 1 of the design, we compare the above result with the following: We design a conversional (nonsparse) VFD filter of order (N = 65, K = 7), then applied hard thresholding to generate exactly 198 locations that may be considered appropriate to set to zero. We then went on the carried out phase 2 to yield a sparse VFD filter. It was found that
- maximum error $e_{max} = 0.0025$ (vs 0.0021 with phase 1)
- L2-error $e_2 = -73.41 \text{ dB}$ (vs -75.25 dB with phase 1).

• Profile of frequency response error $|e(\omega,p)| \text{ over } 0 \leq \omega \leq 0.9\pi, 0 \leq p \leq 1: \text{ the sparse VFD filter}$ without phase 1:

====== Comparison 3 ======

• Fractional delay over $0 \le \omega \le 0.9\pi$, $0 \le p \le 1$. The sparse filter:

• Fractional delay over $0 \le \omega \le 0.9\pi, 0 \le p \le 1$. The equivalent nonsparse filter:

5. Concluding Remarks

- A two-phase technique for the WLS design of VFD FIR filters subject to a target coefficient sparsity constraint has been proposed.
- The design algorithm is easy to implement abd computationally efficient because it is based on $I_1 I_2$ convex optimization.
- The performance of the filter appears to be satisfactory compared with its nonsparse counterpart.