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1. Design Problem and Related Work 

 

Design Problem   

Find a stable IIR transfer function H(z) of order (n, r) 
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that optimally approximates a desired frequency response ( )dH ω  in 

a minimax sense subject to a coefficient sparsity constraint: 
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2. Significance 

·IIR digital filters are not sparse in general. 

· Implementing an IIR filter can be costly, especially when the 

filter’s order is high.  

·Implementing an IIR filter of low order can be made more 

efficient if the filter in question is sparse. 
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3．Design Method at a Glance 

A. Linear Representation of ( )jH e ω  

We begin by designing a conventional stable IIR filter H(z) = a(z)/b(z), 

then write ( )jH e ω  as 
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This “linear” representation of frequency response ( )jH e ω  lies a 

foundation for the development of the proposed design method 

▪  Our design practice with the new algorithm has indicated that 

the poles of the sparse filter designed (with both the coefficients of 

a(z) and b(z) being treated as design variables) practically do not 

move when compared with the poles obtained from a 

corresponding non-sparse design, especially when the order of b(z) 

is not high. Note that this phenomenon coincides with an 

observation made in [16], although [16] does not deal with sparse 

filters. 

The proposed design is accomplished in three phases that are  

described as follows. 



 8

▪  Phase 1 — Identifying Indices of Zero Coefficients 

Phase 1 identifies an index set I* with length |I*| ≥ K for coefficients 

{ak} that are most appropriate to be set to zero, namely the ak’s 

whose nullification leads to least performance degradation. To this 

end, we seek sparse {ak} subject to sufficient closeness between 

( )jH e ω  and ( )dH ω  across the entire region Ω.  

▪  Note that stability is not an issue here because a stable and 

fixed b(z) has been used in constructing the basis functions { ( )}kw ω . 

The index identification problem at hand is formulated as  

1
minimize  

a
a                            (3a) 

0
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where 
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= ∑a  is the l1-norm whose minimization promotes the 

sparsithy of coefficient vector a, and δ  is a constant to be specified. 

▪ Problem (3) is convex, actually it is a second-order cone 

programming (SOCP) problem which can be solved efficiently. 

▪ The solution of problem (3) is sparse in general, as long as the 

feasible region defined by (3b) is nonempty. The question is 

whether or not the sparsity constraint (1b) is met by the solution 

of (3). It is in this regard the error bound δ  in (3b) plays a role: a 

greater δ  defines a larger feasible region which includes an 

increasing number of sparser solutions. Therefore, the designer 

may use δ  as a means to control the degree of sparsity in 

coefficients {ak} so as to satisfy (1b).  
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▪  In addition to using δ  to control solution’s sparsity, hard-

thresholding with an appropriate threshold value may be applied 

to the solution of (3) for fine tuning the exact number of zero 

coefficients in {ak}. 

▪  In summary, design phase 1 produces an index set I* ⊂ {0, 1, . . . , 

n} with |I*| ≥ K for nullifying the coefficients {ak, k ∈ I*}. 

▪  Phase 2 — Optimum Design of Sparse IIR Filters 

With index I* identified, we now re-visit problem (1) which can 

now be expressed more specifically as 

,
minimize  max | ( ) ( ) |

subject to:  0  for  
                   ( ) is stable
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By substituting (4b) into ( )jH e ω  in (4a), (4b) is eliminated and  

problem (4) is reduced to a standard formulation of non-sparse 

minimax design of stable IIR filters, for which many solution 

methods are available, see e.g. Ch. 16 of [17].  

▪ Phase 3 — Performance Enhancement 

The design may be considered complete as long as both phases 1 

and 2 are done. However there is a simple “follow-up” step that 

generates a filter having more sparse coefficients without 

considerably degrading approximation accuracy. 

Let us take a look at the linear representation of ( )jH e ω  given by (2) 

in connection with the design steps in phases 1 and 2: Phase 1 

essentially identifies a low-dimensional subspace spanned by basis 
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functions { ( ), }kw k Iω ∗∈  and claims that the design of a stable IIR 

filter with satisfactory performance can be carried out in that low-

dimensional subspace; and Phase 2 actually carries out the design 

that yields a sparse IIR filter. From this perspective, the objective 

in this stage of the design is to identify a subspace of even lower 

dimension in which the final design shall be performed. A natural 

way to further reduce the dimension of the working subspace is to 

examine the design result from phase 2, namely the optimized 

coefficient vector a, and approximate it with a sparser vector a* so 

as to increase the sparsity of the IIR filter. Evidently, additional 

steps need to be done to ensure the filter’s optimality within the 

reduced subspace. Specifically, design phase 3 consists of two 

steps as follows. 



 13

1) Apply hard-thresholding with an appropriate threshold to vector 

a obtained from phase 2 to generate more zero coefficients. Bear 

in mind there is always a tradeoff between the degree of sparsity 

and performance of the filter in terms of approximation accuracy 

in both magnitude and phase responses. The critical result of this 

step is an augmented index set I** that contains set I* (obtained 

from phase 1) as a subset. 

2) Redo optimization (4) with I* in (4b) replaced by I**. 
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4. A Design Example 

Below the proposed algorithm with an example is illustrated by 

designing a lowpass IIR filter of order (n, r) = (26, 2) with a sparsity 

lower bound K = 6 for coefficients {ak}. The desired frequency 

response is given in terms of normalized passband edge 0.4pω π= , 

stopband edge 0.45aω π=  and passband group delay 16. The largest 

magnitude of poles is required to be less than 0.95. 

To prepare basis functions { ( )}kw ω , a nonsparse IIR filter of order 

(26, 2) with the same design specifications was designed using the 

method in Ch. 16 of [17]. The denominator obtained is given by 

b(z) = 1 − 0.44115170 z−1+ 0.9 z−2 

which was used to construct { ( )}kw ω  using (2). A total 200 grid 
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points evenly placed over [0, ] [ , ]p aω ω π∪  were used to form set Ω. 

With δ = 0.05, SeDuMi was used to solve problem (3). The solution 

vector a contains six coefficients whose magnitudes are less than 

10−8. The indices of these practically zero coefficients are identified 

to form the index set I* = {2, 4, 9, 11, 23, 25}. We stress that in case 

the number of (practically) zero coefficients does not meet the 

required sparsity bound K, constant δ in (3b) may be adjusted to 

expand the feasible region so as to include more sparse solutions. 

With I* identified, phase 2 was performed to design a sparse IIR 

filter with K = 6. The coefficients of numerator a(z) are shown in the 

left column in Table 1, the denominator was found to be 

ˆ( )b z  = 1 − 0.43970895 z−1 + 0.9 z−2 

To carry out phase 3, a hard-thresholding with threshold 0.0035 
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was applied to the coefficients {ak} obtained from phase 2 that 

yielded two more zeros as seen in the augmented index set I** = {2, 

4, 6, 7, 9, 11, 23, 25}. This index set was used in the second step in 

phase 3 to solve problem (4) where I* was replaced by I**. The 

optimized a*(z) with 8 zero coefficients is shown in the right column 

in Table 1, and the optimized denominator is given by 

b*(z) = 1 − 0.43800965 z−1+ 0.902 z−2  

The magnitude of the two poles of the optimized H*(z) = a*(z)/b*(z) 

was found to be 0.9497, hence the filter is stable. The maximum 

passband ripple, minimum stopband attenuation, and relative 

maximum ripple in passband group delay were found to be 0.0255, 

31.7625 dB, and 0.1416, respectively. The performance of the IIR 

filter obtained from phase 2 was quite comparable with that of 
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H*(z), hence H*(z) is considered a favorable design as it is more 

sparse. The amplitude response of sparse IIR filter H*(z) (solid line) 

is depicted in Fig. 1.  

▪  For comparison, an equivalent nonspase lowpass IIR filter of 

order (n = 18, r = 2) with the same design specifications (except the 

passband group delay which was set to 13 for best performance) 

was designed using a well established method described in Ch. 16 

of [17]. The reason to compare H*(z) with a nonsparse IIR filter of 

order (18, 2) is because they have same number of nonzero 

coefficients . The maximum passband ripple, minimum stopband 

attenuation, and relative maximum ripple in passband group delay 

of the non sparse IIR filter were found to be 0.0444, 27.0292 dB, and 

0.2557. The largest magnitude of the poles was 0.9466. The 



 18

amplitude response of the equivalent non-sparse IIR filter (dashed 

line) is shown in Fig. 1.  

▪  It is interesting to note that the denominator b(z) produced by a 

non-sparse design for constructing basis functions is practically the 

same as the denominators obtained in phases 2 and 3. As a 

matter of fact, the relative difference in poles between b(z) and ˆ( )b z  

and between b(z) and b*(z) was only 7.8 × 10−4 and 2.2 × 10−3, 

respectively. This justifies the linear representation of ( )jH e ω  with a 

fixed b(z) as the foundation of the new design algorithm.  

▪  Comparison of the sparse IIR filter with a minimax linear phase 

FIR was also made. With 0.4pω π=  and 0.45aω π= , a 59-tap 

equiripple FIR filter was designed using the Parks-McClellan 
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algorithm to achieve an amplitude response comparable to that of 

H*(z) designed above. The phase response of the FIR filter is 

perfectly linear, but its group delay is 29 compared with 16 offered 

by the sparse IIR filter. Moreover, with 59 taps the FIR filter 

requires more multiplications and additions per output relative to 

the sparse IIR filter which has only 18 nonzero coefficients in a*(z) 

and 2 non-unity coefficients in b*(z). From the numerical evidence 

given above, we see that sparse IIR filters have the potential to 

offer good filtering performance as well as implementation 

efficiency. 
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Fig. 1. Amplitude responses of the sparse IIR filter (solid line)  

and an equivalent nonsparse IIR filter (dashed line). 
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TABLE I 
COEFFICIENTS of a(z) from PHASE 2 (LEFT COLUMN) and  PHASE 3 (RIGHT COLUMN) 

0.010392851102970   0.010036395187765 
0.017116960822615   0.015646826495216 
0       0 
0.005030800830541   0.003323342301283 
0       0 
0.007417943302547   0.008114566505141 
-0.000001867894394  0 
-0.003408484954507  0 
-0.007738790632433  -0.006517428535895 
0       0 
0.020340709998230   0.023141230949229 
0       0 
-0.023613854872256  -0.027680623773149 
-0.033053080229689  -0.027024000127553 
0.052507098113062   0.042556154643593 
0.200704762712400   0.207983936192666 
0.357458937038486   0.349500928736363 
0.400358031290358   0.407323106379040 
0.316804799636574   0.315491540932951 
0.171495341811609   0.171347025547514 
0.027590628329020   0.032645254558257 
-0.012835200844937  -0.016448691169804 
-0.017963977929487  -0.014784668904078 
0       0 
0.010935099950532   0.010963543735549 
0       0 
-0.004853370866795  -0.005343831411609 


