Design of Composite Filters with Equiripple Passbands and Least-Squares Stopbands

Wu-Sheng Lu Dept. of Electrical and Computer Engineering University of Victoria wslu@ece.uvic.ca

Takao Hinamoto Hiroshima University Higashi-Hiroshima, 739-8527, Japan hinamoto@ieee.org

Outline

- Early Work on Composite Filters (C-Filters)
- Composite Filters and Problem Formulation
- Design Method
- Design Example and Comparisons
- **1. Early Work on Composite Filters**
- Interpolated Filters (Neuvo, Dong, Mitra 1984; Saramäki, Neuvo, Mitra 1988).
- Frequency-Response-Masking Filters (Lim 1986).
- C-filters composed of a prototype filter and a shaping filter in cascade (Shiung, Yang, Yang) 2016).

2. Composite Filters and Problem Formulation • The linear-phase C-filter we study assumes the form $H(z) = H_p(z) \cdot H_s(z)$ where

• The frequency response of a C-filter is given by $H(\omega) = H_p(\omega) \cdot H_s(\omega)$

• The shaping filters employed in this paper are complementary comb filters (CCFs) of the form L

• Given a desired lowpass frequency response $H_d(\omega)$, prototype filter length *N*, and number

3. Design Method A. Design Strategy

B. Solving (7) with y fixed to $y = y_k$ With a fixed *y* that satisfies (7d), (7d) can be

$$H_{s}(z) = \prod_{l=1}^{l} (1+z^{-1})^{k_{l}}$$

Cascading several CCFs with appropriate powers, a shaping filter can offer much reduced stopband energy. The figure on the right-hand side below illustrates the case $\{kl\} = \{4, 4, 1, 2\}$.

of CCFs *L*, we seek to find a linear-phase FIR C-filter such that the peak-to-peak amplitude ripple in passband is minimized subject to constraints on filter's energy as well we peak gain in stopband and total group delay:

> $\underset{\mathbf{x},\mathbf{y}}{\text{minimize}} \quad \max_{\boldsymbol{\omega}\in\Omega_{n}} |H(\boldsymbol{\omega}) - H_{d}(\boldsymbol{\omega})| \quad (7a)$ subject to: $\int_{\omega_a}^{\pi} |H(\omega)|^2 d\omega \le e_a$ (7b) $\max_{\omega\in\Omega_a}|H(\omega)|\leq\delta_a$ (7c) $\frac{1}{2} \sum_{l=1}^{L} l \cdot k_l \le D$ (7d)

Let **x** be the vector of the coefficients of the prototype filter, and $\mathbf{y} = \begin{bmatrix} k_1 & k_2 & \cdots & k_L \end{bmatrix}^T$. Note that (a) In frequency response $A(\omega)$, design variables **x** and

y are separate from each other; (b) $A(\omega)$ depends on **x** linearly, but on **y** nonlinearly. It is therefore intuitively natural to optimize these design variables separately in an alternate fashion. This leads to a *sequential* design procedure where in each step one of the variables, say **x**, is optimized while the other variable, *y*, is held fixed, and the solution so produced, *xk*, is held fixed in the next step when variable y is updated to y_{k+1} . The procedure continues until a stopping criterion is met.

neglected. By introducing an upper bound δ_p for the objective function, the problem becomes

$$\begin{array}{l} \text{minimize } \delta_p \\ \text{s.t. } |H(\omega) - H_d(\omega)| \leq \delta_p \quad \text{for } \omega \in \Omega_p \\ \int_{\omega_a}^{\pi} |H(\omega)|^2 d\omega \leq e_a \\ |H(\omega)| \leq \delta_a \quad \text{for } \omega \in \Omega_a \end{array}$$

• If the desired frequency response assumes the form $H_d(\omega) = e^{-j\tau\omega} A_d(\omega)$ and

 $\tilde{c}(\omega) = c(\omega) \prod_{l=1}^{L} \left(2\cos\frac{l\omega}{2} \right)^{k_l}, \ \boldsymbol{Q} = \int_{\omega_a}^{\pi} \tilde{c}(\omega) \tilde{c}^T(\omega) d\omega$

then the problem can be formulated as

minimize δ_p	(10a)
s.t. $ \mathbf{x}^T \tilde{\mathbf{c}}(\omega) - A_d(\omega) \le \delta_p$ for $\omega \in \tilde{\Omega}_p$	(10b)
$\boldsymbol{x}^T \boldsymbol{Q} \boldsymbol{x} \leq \boldsymbol{e}_a$	(10c)
$ \mathbf{x}^{T} \tilde{\mathbf{c}}(\omega) \leq \delta_{a} \text{ for } \omega \in \tilde{\Omega}_{a}$	(10d)

Note that

(a) the objective function is linear;

(b) constraints (10b) and (10d) are linear; (c) constraint (10c) is convex because Q is P.D. (d) as a result, (10) is a convex problem that admits a global solution which we denote by (δ_k, x_k) .

C. Updating y with x fixed to $x = x_k$ Consider the stopband energy given by

 $J(\mathbf{y}) = \int_{\omega_a}^{\pi} |H(\omega)|^2 d\omega = \int_{\omega_a}^{\pi} |\mathbf{x}^T \mathbf{c}(\omega)|^2 \prod_{l=1}^{L} \left(4\cos^2\frac{l\omega}{2}\right)^{k_l} d\omega$

where $x = x_k$ is obtained by solving (10) and is fixed throughout this part of the algorithm.

• Our strategy to update y is via minimizing *J*(*y*) with respect to *y* subject to several relevant constraints on y.

• A technical difficulty to use continuous optimization to optimize *y* is that the components of *y* are constrained to be integers.

• This problem is handled by extending these

• The gradient and Hessian of *J*(*y*) are evaluated in closed-form as

$$\frac{\partial J(\mathbf{y})}{\partial k_i} = \int_{\omega_a}^{\pi} |H(\omega)|^2 \cdot \log\left(4\cos^2\frac{i\omega}{2}\right) d\omega$$
$$\frac{\partial^2 J(\mathbf{y})}{\partial k_i \partial k_j} = \int_{\omega_a}^{\pi} |H(\omega)|^2 \cdot \log\left(4\cos^2\frac{i\omega}{2}\right) \log\left(4\cos^2\frac{j\omega}{2}\right) d\omega$$

From which the Hessian of J(y) is shown to be P.S.D. because for an arbitrary vector **v** of length *L* we have

$$\boldsymbol{v}^T \nabla^2 J(\boldsymbol{y}) \boldsymbol{v} = \int_{\omega_a}^{\pi} |H(\omega)|^2 \left(\sum_{i=1}^{L} v_i \log\left(4\cos^2\frac{i\omega}{2}\right) \right)^2 d\omega \ge 0$$

• Above analysis motivates a convex quadratic

• We now update y by minimizing $\tilde{J}(y, y_k)$ subject to several constraints. These includes: (a) An upper bound on group delay as seen in (7d);

(b) Nonnegativeness of the components of *y*; (c) An additional constraint is imposed to ensure the performance of the C-filter over the passband, especially at passband edge ω_p :

$$1 - d_p \leq |H(\omega)|_{\omega = \omega_p} \leq 1 + d_p$$

which is equivalent to $\log(1 - d_p) \le c + \sum_{l=1}^{L} k_l \log \left| 2\cos\frac{l\omega_p}{2} \right| \le \log(1 + d_p) \quad (12)$ with $c = \log |\mathbf{x}_k^T \mathbf{c}(\omega_p)|$

D. Summary of the Algorithm

Step 1 Input $y_0, (N, L, D), \omega_p, \omega_a, \delta_a, e_a, d_p$, and K. **Step 2** For *k* = 0, 1, ...,

(i) fix $y = y_k$ and solve (10) for x_k ;

(ii) fix $\mathbf{x} = \mathbf{x}_k$, perform *K* iterations of (13) for *yk*+1;

(iii) if y_{k+1} is unequal to y_k , set k = k + 1 and

repeat from step (i), otherwise go to step 3; **Step 3** Output $x^* = x_k, y^* = y_k$.

<u>Remarks</u>

• Because both (10) and (13) are convex problems, globally optimal iterates **x**^k and **y**^k can be calculated efficiently;

• The objective in (13a) represents the filter's stopband energy, minimizing it tends to increase some powers in the shaping filter until its group delay reaches upper bound *D*, see (7d). When this occurs, *y*^{*k*} remains unchanged and the algorithm terminates.

components from nonnegative integers to nonnegative reals. Then an optimizing y with nonnegative integer components is obtained by rounding.

4. Design Example and Comparisons

• We illustrate the design method by applying it

to design a narrow-band lowpass C-filter with

linear-phase response and sharp transition

band with $\omega_p = 0.1\pi$ and $\omega_a = 0.11\pi$. The length of

prototype filter was set to N = 519 and the peak

gain of the C-filter in the stopband was set to be

• The performance of th filter was evaluated in

terms of peak-to-peak passband ripple Ap (in

dB), minimum stopband attenuation *Aa* (in dB),

stopband energy *Ea*, number of multiplications

• With L = 7, D = 18, $y_0 = [1 \ 1 \ 1 \ 1 \ 1 \ 1]$, $d_p =$

0.08, and $e_a = 0.0005$, problem (10) was solved

and its solution **x**⁰ together with **y**⁰ defines a C-

filter achieving $A_p = 0.1681$, $A_a = 60$, and $E_a =$

M per output sample, and group delay.

no greater than -60 dB.

 2.15×10^{-8} .

approximation of *J*(*y*) as

 $\tilde{J}(\boldsymbol{y}, \boldsymbol{y}_k) = J(\boldsymbol{y}_k) + \boldsymbol{d}_k^T \nabla J(\boldsymbol{y}_k) + \frac{1}{2} \boldsymbol{d}_k^T \nabla^2 J(\boldsymbol{y}_k) \boldsymbol{d}_k$ where $d_k = y - y_k$.

Thus we update *y* by solving min $\frac{1}{2}(y - y_k)^T \nabla^2 J(y_k)(y - y_k) + (y - y_k)^T \nabla J(y_k)$ (13a) subject to: $(7d), y \ge 0$, and (12)(13b)

• With \mathbf{x}_0 help fixed, K = 5 iterations of (13) were performed to obtain an integer solution $y_1 = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$ 1 1 2]. Since y₁ differs y₀, problem (10) was solved again with y fixed to y1, where ea was adjusted in order to obtain an **x**¹ with practically the same peak gain in the stopband and stopband energy as **x**₀ so that the two iterates **x**⁰ and **x**¹ can be compared with each other in terms of peak passband ripple.

• With $e_a = 0.000295$, the C-filter defined by (x_1, y_1) achieved $A_p = 0.1389$, $A_a = 60.04$, and $E_a = 2.12 \times 10^{-8}$.

• We then run (13) again with x fixed to x_1 and K = 5, which yields $y_2 = [1 \ 1 \ 1 \ 1 \ 1 \ 2]$. Since y_2 is equal to y_1 , the algorithm is terminated and (*x*₁, *y*₁) is claimed as the solution.

• The amplitude responses of the prototype and Cfilter are shown in Fig. 3(a) and (b), respectively, and the amplitude response of the C-filter in passband is depicted in Fig. 3(c).

• The filters that are most relevant to the Cfilters are linear-phase equiripple-passbandand-lease-squares-stopband (EPLSS) FIR filters with constrained peak gain in stopband, and linear-phase FIR filters with equiripple passbands and stopbands obtained using the Parks-McClellan (P-M) algorithm.

• For comparison purposes an EPLSS lowpass filter and a P-M filter with the same passband and stopband edges as those in the C-filter were designed, both EPLSS and P-M filters satisfy the same peak stopband gain of -60 dB as the C-filter. The evaluation results are summarized in Table I.

Fig. 3(c): Amplitude response of C-filter in passband.

TABLE I Comparisons of C-filter with EPLSS and P-M filters

<u>Filters</u>	Ν	Ap	Aa	Ea	М	<u>Delay</u>
C-Filter	519	0.1389	60.04	2.12e-8	260	277.5
EPLLS	551	0.1465	60.03	2.13e-8	276	275
P-M	531	0.1463	60.03	1.36e-6	266	265