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1. Early Work on Composite Filters 

•   Interpolated Filters (Neuvo, Dong, Mitra 

     1984; Saramäki, Neuvo, Mitra 1988). 

•   Frequency-Response-Masking Filters (Lim 

     1986). 

•   C-filters composed of a prototype filter and a 

     shaping filter in cascade (Shiung, Yang, Yang 

     2016). 
 

2. Composite Filters and Problem Formulation  
• The linear-phase C-filter we study assumes the form  
 

where 
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•  The frequency response of a C-filter is given by 

 

 

 

 

 

 

 

 

•  The shaping filters employed in this paper are 
complementary comb filters (CCFs) of the form 

  

 

Cascading several CCFs with appropriate powers, 
a shaping filter can offer much reduced stopband 
energy. The figure on the right-hand side below 
illustrates the case {kl} = {4, 4, 1, 2}. 

 

 

 

 

 

 

 

•  Given a desired lowpass frequency response  
             , prototype filter length N, and number 
of CCFs L, we seek to find a linear-phase FIR 
C-filter such that the peak-to-peak amplitude  
ripple in passband is minimized subject to 
constraints on filter’s energy as well we peak 
gain in stopband and total group delay: 
 
 
 
 
 
 
 
 

3. Design Method 
A.  Design Strategy 
Let x be the vector of the coefficients of the prototype 
filter, and                                       . Note that  
(a) In frequency response           ,  design variables x and 

y are separate from each other;  
(b)            depends on x linearly, but on y nonlinearly.  
It is therefore intuitively natural to optimize these 
design variables separately in an alternate fashion. 
This leads to a sequential design procedure where in 
each step one of the variables, say x, is optimized while 
the other variable, y, is held fixed, and the solution so 
produced, xk, is held fixed in the next step when 
variable y is updated to yk+1.  The procedure continues 
until a stopping criterion is met.   

B.  Solving (7) with y fixed to y = yk 

With a fixed y that satisfies (7d), (7d) can be 
neglected. By introducing an upper bound  
for the objective function, the problem becomes 
 
 
 
 
 
 
•  If the desired frequency response assumes the 
form                                     and 
 
 
 

then the problem can be formulated as 

 

 

 

 

 

 

Note that 

(a) the objective function is linear; 

(b) constraints (10b) and (10d) are linear; 

(c) constraint (10c) is convex because Q is P.D. 

(d) as a result, (10) is a convex problem that 
admits a global solution which we denote by  

             . 

C. Updating y with x fixed to x = xk 

Consider the stopband energy given by 
 
 
 
where x = xk is obtained by solving (10) and is 
fixed throughout this part of the algorithm.  
•  Our strategy to update y is via minimizing J(y) 
with respect to y subject to several relevant 
constraints on y.  
•  A technical difficulty to use continuous 
optimization to optimize y is that the 
components of y are  constrained to be integers.  
•  This problem is handled by extending these 
components from nonnegative integers to 
nonnegative reals. Then an optimizing y with 
nonnegative integer components is obtained by 
rounding. 

•  The gradient and Hessian of J(y) are evaluated in 
closed-form as 
 
 
 
 
 
 
From which the Hessian of J(y) is shown to be P.S.D. 
because for an arbitrary vector v of length L we have  
 
 
 
•  Above analysis motivates a convex quadratic  
approximation of J(y) as 
 
 
where dk = y – yk. 
 

•   We now update y by minimizing 
subject to several constraints. These includes: 
(a) An upper bound on group delay as seen in 

(7d); 
(b) Nonnegativeness of the components of y; 
(c) An additional constraint is imposed to ensure 

the performance of the C-filter over the 
passband, especially at passband edge     :  
 

 
       which is equivalent to 
 
 
 with                              . 
Thus we update y by solving 
 
 
 

D.  Summary of the Algorithm 
Step 1 Input 
Step 2 For k = 0, 1, …,  
  (i)  fix y = yk and solve (10) for xk; 
  (ii) fix x = xk, perform K iterations of (13)  
         for yk+1; 
  (iii) if yk+1 is unequal to yk, set k = k + 1 and 
          repeat from step (i), otherwise go to step 3; 
Step 3 Output x* = xk, y* = yk. 
Remarks 
•  Because both (10) and (13) are convex 
problems, globally optimal iterates xk and yk can 
be calculated efficiently; 
•  The objective in (13a) represents the filter’s 
stopband energy, minimizing it tends to increase 
some powers in the shaping filter until its group 
delay reaches upper bound D, see (7d). When 
this occurs, yk remains unchanged and the 
algorithm terminates. 

4. Design Example and Comparisons 
 

•  We illustrate the design method by applying it 
to design a narrow-band lowpass C-filter with 
linear-phase response and sharp transition 
band with                                            . The length of 
prototype filter was set to N = 519 and the peak 
gain of the C-filter in the stopband was set to be 
no greater than -60 dB.  
•  The performance of th filter was evaluated in 
terms of peak-to-peak passband ripple Ap (in 
dB), minimum stopband attenuation Aa (in dB), 
stopband energy Ea, number of multiplications 
M per output sample, and group delay.  
•  With L = 7, D = 18, y0 = [1 1 1 1 1 1 1], dp = 
0.08, and ea = 0.0005, problem (10) was solved 
and its solution x0 together with y0 defines a C-
filter achieving Ap = 0.1681, Aa = 60, and Ea = 
2.15           .  
 

•  With x0 help fixed, K = 5 iterations of (13) were 
performed  to obtain an integer solution y1 = [1 1 1 1 
1 1 2]. Since y1 differs y0, problem (10) was solved 
again with y fixed to y1, where ea was adjusted in 
order to  obtain an x1 with practically the same peak 
gain in the stopband and stopband energy as x0 so 
that the two iterates x0 and x1 can be compared with 
each other in terms of peak passband ripple.  
•  With ea = 0.000295, the C-filter defined by (x1, y1) 
achieved Ap = 0.1389, Aa = 60.04, and Ea = 2.12           . 
•  We then run (13) again with x fixed to x1 and K = 5, 
which yields y2 = [1 1 1 1 1 1 2]. Since y2 is equal to y1, 
the algorithm is terminated and (x1, y1) is claimed as 
the solution.  
•  The amplitude responses of the prototype and C-
filter are shown in Fig. 3(a) and (b), respectively, and 
the amplitude response of the C-filter  in passband is 
depicted in Fig. 3(c).  

•  The filters that are most relevant to the C-
filters are linear-phase equiripple-passband-
and-lease-squares-stopband (EPLSS) FIR filters 
with constrained  peak gain in stopband, and 
linear-phase FIR filters with equiripple 
passbands and stopbands obtained using the 
Parks-McClellan (P-M) algorithm.  
•  For comparison purposes an EPLSS lowpass 
filter and a P-M filter with the same passband 
and stopband edges as those in the C-filter 
were designed, both EPLSS and P-M filters 
satisfy the same peak stopband gain of -60 dB 
as the C-filter. The evaluation results are 
summarized in Table I. 

Fig. 3(a): Amplitude response of prototype filter 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3(b): Amplitude response of C-filter. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 3(c): Amplitude response of C-filter in passband. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

TABLE  I 
Comparisons of C-filter with EPLSS and P-M filters 

 
Filters         N              Ap            Aa            Ea             M       Delay   
C-Filter     519     0.1389    60.04    2.12e-8     260     277.5    
EPLLS       551      0.1465     60.03     2.13e-8      276     275 
P-M            531      0.1463     60.03    1.36e-6      266      265 


