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1. Introduction

e Two-channel FIR filter bank

Ho(2) Y2 A2 Fo(2)
x(n) 20

H1(2) Y2 A2 F,(2)

X () = %[Fo<z>Ho<z>+ F1<z>H1<z>]x(z)+%[Fo<z>Ho<—z)+ F(2)H,(—2)]X (~2)

e Perfect reconstruction (PR) conditions
F,(2)H,(2)+ F(2)H,(z) = 22"

FO(Z)Ho(_Z)'I' FI(Z)H1(_Z) =(



e A conjugate quadrature (CQ) filter bank assumes
H(2)=-z""""H,(-z"), F,(2)=27"""H (z™"), F(2)=z""H,(z™)
— the 2" PR condition is automatically satisfied
(no aliasing) and the 1°* PR condition becomes
H,(2)H,(z)+H,(-2)H, (-27") =2 (PS)
which is called the power symmetric (PS) condition

because it implies
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2. Early and Recent Work
Representative early and recent work include

o Smith and Barnwell (1984)

o Mintzer (1985)

o Vaidyanathan and Nguyen (1987)
o Rioul and Duhamel (1994)

o Lawton and Michelli (1997)

o Tugan and Vaidyanathan (1998)
o Dumitrescu and Popeea (2000)

o Tay (2005, 2006)



e The most common design technique:
¢ A half-band filter P(z) is a zero-phase FIR filter
satisfying

P(z) + P(-2) =2

¢ Let P(z)=H,(2)H,(z""), then the PS condition
HO(Z)HO(Z_I)'l'Ho(_Z)Ho(_Z_l):2

becomes
P(z) + P(-z)=2
So P(z) is a half-band filer and it is nonnegative:
P(e/)=H,(e")H,(e ") =|H,(e")] 20 (P)
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¢ Design steps:
(a) Design a lowpass half-band FIR filter P(z) with
nonnegativity property P(e!*)>0
(b) Perform a spectral decomposition P(z)=H, (2)H,(z™")
e Vanishing moment (VM): the number of VMs equals to

the number of zeros of Hy at w=r:

d'H, (e')

N -1
— =)' (=D)"'n'h =0, forl=0,1,.. L—1
- ( J)g( )"nh, or

=7



3. Least-Squares Design of CQ Filters
Problem Formulation

o |et

N-1
HO(Z)ZZhnZ_n with N even, and h= [h() h ... hN_l]T
n=0

e A direct approach: minimizing a least squares type

objective function subject to the PS constraint:

HO(ej‘”)‘zda)

. . . 7Z-
minimize I
h Wa

subject to: H (2)H,(z7)+H,(-2)H (-z27)=2



e The objective function is a positive definite quadratic form:

with Q a symmetric positive definite Toeplitz matrix:

H, ()] dw=h"Qh

Q= toeplitz([ﬂ—a)a —sin w, N_l 1 sin[(N —l)a)a]D
e The constraint is the PS condition:
Hy(2)H,(z ) +H (-2)H,(-z7") =2 (PS)

that is equivalent to N/2 second-order equality

constraints:



N —

—
\S)

m

h -h

n n+2m

=5(m) for m=0,1,...,(N=2)/2

Il
e

n

with 6(m)=1 for m=0 and 6§(m)=0 for m=0.

e The design problem now becomes a polynomial

optimization problem (POP):

minimize h'Qh = [Q"=h|f

N—-1-2m
subject to: Y h -h . =6(m) for 0<m<(N-2)/2

N=

[\
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e The POP can be modified to include VM requirement:

minimize h"Qh =[Q"h[]

N—-1-2m
subjectto: > h, -h.,. =8(m) for 0<m<(N-2)/2
=0
—1

(-)"n'h, =0 for 1=0,1,...,L—1

Z =

=)
S

e Features of these problems:
¢ All polynomials are of second-order.
¢ The objective function is convex

¢ Nonconvex problems because of the N/2
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second-order equality constraints (the PS conditions).
e Examples of the PS constraints
1. N=4 = 2 constraints:

hy +h’ +h’ +h’ =1
h,-h, +h -h =0

2. N=20 = 10 constraints:

he +h}+---+h) =1 (20 terms)
h,-h,+h-hy+--+h,-hy,=0 (18 terms)
h,-h,+h-h,+---+h,-h,=0 (16 terms)
h,-h,+h-h +---+h,-h,=0 (14 terms)

h,-he+h-h,+h-hg+h,-hg=0 (4 terms)
h,-hg+h-hy=0 (2 terms)
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Constrained Linear Updates

e In the kth iteration of the algorithm we update filter
coefficients from h® to h®*P=h®+d to achieve two
things:
¢ to reduce the filter’'s stopband energy h'Qh

¢ to better approximate constraints

N—

f—

-2m

h -h

n n+2m

=5(m), 0<m<N/2-1

Il
S

n

e The stopband energy at h“" is equal to [Q"*(d +h®)|

e The constraints at h*" becomes
> hOhE > hd L+ > dh L+ d L, = 8(m)
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e Imposing constraints on the smallness of increment
vector d:

di|<B fori=1,2,....N

the 2"-order constraints can be linearized:

(K| (K) (k) (k)
Zh hn+2m + Zhn dn+2m + Zdnhn+2m + Zdndmzm
n n n

n

J/

very small, drop

~ (K| (k) (k) (k)
~ Zh hn+2m + Zh dn+2m + Zdnhn+2m

J
Vv '

a known term, denoted by s’ (m) linear updates

=o(m) for m=0,1,....,(N-2)/2
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e This leads to a set of (N —2)/2 linear equations:

> hiod Lo+ > dh =8(m)—s®(m)=u®(m)

n

which can be expressed as
c®d =y®
e The smallness constraint on d is given by

d|<pB for 1<i<n < Ad<b

e The linear constraint on VMs is given by

N -1
Y (-1)"n'(d, +h®)=0 for 0<I<L—-1 < Dd=v®
n=0
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A Quadratic Programming (QP) Formulation

e Summarizing, the solution strategy is to iteratively update
the filter coefficients from h® to h®™D=h® +d® with d®

obtained by solving the QP problem

. e . 2
minimize HQ”z(d + h(k))H

subject to: Ad <b

C® e
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4. Minimax Design of CQ Filters

Problem Formulation

e The formulation in this case is changed to

mlnlmlze maximize ‘ H, (e )‘

Wy SO
N-1-2m
subject to: Z h -h

n=0
—1

=o(m) for 0<M<(N-2)/2

n+2m

N
(-D)"n'h. =0 for 1=0,1,...,L—1

n=0
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Constrained Linear Updates

e Like in the least squares design, the constrained linear

update gives

minimize maximize ‘ H, (e “")‘

d 0, <o<rx

subject to: Ad <Db
c® (k)
D v
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e Dealing with the objective function, we write

N-1
H,(e*)=>he ™ =h"c(w)- jh"s(w)
n=0

C(a)):[l CoS@ - cos(N—l)a)]T, S(a)):[O sin@ -+ sin(N—l)a)]T

hence

\Ho(ejw)\ — \/(hTC(a)))2 +(hTs(a)))2 — =T (w)-h|

c(w)' | -
s(w)'

= |H,(e”,h® +d")|=|T(0)-(h® +d")| =[T ()d " + g®|
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e This converts the minimax problem into
minimize 7

subject to: HT ()d™ + g(k)H <p for {w}clw,, 7]

Ad <b
e [yt
d=|"
D V(k)

which is an SOCP problem.
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5. Experimental Results

5.1 Comparison with designs by Smith-Barnwell’s method

Filter Ho(z) Largest EqQ. Error
N = 8 Ho(z) of [2] 8.3168 x 10
Refined Hy(z) <10%
N = 16 Ho(z) of [2] 2.6356 x 10°°
Refined Hq(z) < 107"
\ = 32 Ho(z) of [2] 2.1623 x 10°°
Refined Ho(z) < 107"

21




10

-10

N=32,L=0, o, =0.5802

0.4 0.5 0.6
Normalized frequency

22




5.2 LS and minimax designs with N =96andL =0, 1, ..., 5

Least squares with N=96, w, =0.56x

L | Energy in Stopband | Largest Equation Error
0 5.6213 x 10 < 10"

1 5.6660 x 10 < 107"

2 5.6660 x 10 < 107"

3 5.8954 x 10 < 107"

4 5.8954 x 10" < 10"

5 6.2901 x 10 7.6190 x 10
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Minimax with N=96, w, =0.56x

L Instantaneous Largest Equation Error
Energy in Stopband

0 2.8649 x 10° < 10™

1 3.0323 x 107 8.8247 x 107

2 3.0654 x 107 2.5128 x 107

3 3.4075 x 107 1.0654 x 10°

4 3.1281 x 107 4.0553 x 10~

5 3.7121 x 107 1.0982 x 10°
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Minimax design with N =96, L = 3, o, =0.567:
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