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1. Introduction 

•  Two-channel FIR filter bank 

H0(z)

H1(z)

F0(z)

F1(z)

2

2

2

2

x(n) x(n)^

 

  0 0 1 1 0 0 1 1
1 1ˆ ( ) [ ( ) ( ) ( ) ( )] ( ) [ ( ) ( ) ( ) ( )] ( )
2 2

X z F z H z F z H z X z F z H z F z H z X z= + + − + − −  

•  Perfect reconstruction (PR) conditions 

0 0 1 1( ) ( ) ( ) ( ) 2 lF z H z F z H z z−+ =  

0 0 1 1( ) ( ) ( ) ( ) 0F z H z F z H z− + − =  

 



 4

•   A conjugate quadrature (CQ) filter bank assumes 

  ( 1) 1 ( 1) 1 ( 1) 1
1 0 0 0 1 1( ) ( ), ( ) ( ), ( ) ( )N N NH z z H z F z z H z F z z H z− − − − − − − − −= − − = =  

⇒  the 2nd PR condition is automatically satisfied  

(no aliasing) and the 1st PR condition becomes  

                   1 1
0 0 0 0( ) ( ) ( ) ( ) 2H z H z H z H z− −+ − − =               (PS) 

 which is called the power symmetric (PS) condition 

because it implies 

                    ( )( ) ( )( )2 2
2 2

0 0 1j jH e H eπ θ π θ− ++ =       for any  θ  
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2. Early and Recent Work  

•   Representative early and recent work include 

○  Smith and Barnwell (1984) 

○   Mintzer (1985) 

○   Vaidyanathan and Nguyen (1987) 

○   Rioul and Duhamel (1994) 

○   Lawton and Michelli (1997) 

○   Tuqan and Vaidyanathan (1998) 

○   Dumitrescu and Popeea (2000) 

○ Tay (2005, 2006) 
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• The most common design technique:  

♦  A half-band filter P(z) is a zero-phase FIR filter 

satisfying  

P(z) + P(–z) = 2 

  ♦  Let 1
0 0( ) ( ) ( )P z H z H z−= , then the PS condition 

1 1
0 0 0 0( ) ( ) ( ) ( ) 2H z H z H z H z− −+ − − =  

  becomes 

P(z) + P(–z) = 2 

So P(z) is a half-band filer and it is nonnegative: 

( ) 2

0 0 0( ) ( ) ( ) 0j j j jP e H e H e H eω ω ω ω−= = ≥     (P) 
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 ♦  Design steps:  

(a) Design a lowpass half-band FIR filter P(z) with   

nonnegativity property ( ) 0jP e ω ≥  

(b) Perform a spectral decomposition 1
0 0( ) ( ) ( )P z H z H z−=  

● Vanishing moment (VM): the number of VMs equals to 

the number of zeros of H0 at ω π= :  

    
1

0

0

( ) ( ) ( 1) 0
l j N

l n l
nl

n

d H e j n h
d

ω

ω πω

−

==

= − − =∑ ,   for l = 0, 1, …, L – 1  
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3. Least-Squares Design of CQ Filters 

Problem Formulation 

•  Let  

1

0
0

( )
N

n
n

n

H z h z
−

−

=

= ∑  with N even, and  h = [h0  h1 … hN-1]T 

• A direct approach: minimizing a least squares type 

objective function subject to the PS  constraint: 

2

0

1 1
0 0 0 0

minimize ( )

subject to:   ( ) ( ) ( ) ( ) 2
a

j

h
H e d

H z H z H z H z

π ω

ω
ω

− −+ − − =

∫  
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•  The objective function is a positive definite quadratic form:   

2

0 ( )
a

j TH e d h Qh
π ω

ω
ω =∫  

with Q a symmetric positive definite Toeplitz matrix: 

1toeplitz sin sin[( 1) ]
1a a aQ N

N
π ω ω ω⎛ ⎞−⎡ ⎤= − − −⎜ ⎟⎢ ⎥−⎣ ⎦⎝ ⎠

"  

•  The constraint is the PS condition: 

1 1
0 0 0 0( ) ( ) ( ) ( ) 2H z H z H z H z− −+ − − =         (PS) 

that is equivalent to N/2 second-order equality  

constraints:  
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1 2

2
0

( ) for 0,1, , ( 2) / 2
N m

n n m
n

h h m m Nδ
− −

+
=

⋅ = = −∑ …  

with  ( ) 1 for 0 and ( ) 0 for 0m m m mδ δ= = = ≠ . 

•  The design problem now becomes a polynomial 

optimization problem (POP): 

 
21/ 2

1 2

2
0

minimize

subject to:  ( ) for 0 ( 2) / 2

T

h
N m

n n m
n

h Qh Q h

h h m m Nδ
− −

+
=

=

⋅ = ≤ ≤ −∑
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●  The POP can be modified to include VM requirement: 

21/ 2

1 2

2
0
1

0

minimize

subject to:   ( ) for 0 ( 2) / 2

                   ( 1) 0    for  0,1, , 1

  

T

h
N m

n n m
n

N
n l

n
n

h Qh Q h

h h m m N

n h l L

δ
− −

+
=

−

=

=

⋅ = ≤ ≤ −

− = = −

∑

∑ …

 

•  Features of these problems: 

 ♦  All polynomials are of second-order. 

 ♦  The objective function is convex 

 ♦  Nonconvex problems because of the N/2  
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second-order equality constraints (the PS conditions). 

•  Examples of the PS constraints 

1.  N = 4  ⇒ 2 constraints: 

2 2 2 2
0 1 2 3

0 2 1 3

1
0

h h h h
h h h h
+ + + =

⋅ + ⋅ =
 

2.  N = 20 ⇒ 10 constraints: 
2 2 2
0 1 19

0 2 1 3 17 19

0 4 1 5 15 19

0 6 1 7 13 19

0 16 1 17 2 18 3 19

0 18 1 19

1 (20 terms)
0 (18 terms)
0 (16 terms)
0 (14 terms)

0 (4 terms)
0 (2 terms)

h h h
h h h h h h
h h h h h h
h h h h h h

h h h h h h h h
h h h h

+ + + =

⋅ + ⋅ + + ⋅ =

⋅ + ⋅ + + ⋅ =

⋅ + ⋅ + + ⋅ =

⋅ + ⋅ + ⋅ + ⋅ =

⋅ + ⋅ =

"
"
"
"
# #
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Constrained Linear Updates  

• In the kth iteration of the algorithm we update filter 

coefficients from   h(k)  to  h(k+1) = h(k) + d  to achieve two 

things: 

♦  to reduce the filter’s stopband energy Th Qh 

♦  to better approximate constraints  
1 2

2
0

( ), 0 / 2 1
N m

n n m
n

h h m m Nδ
− −

+
=

⋅ = ≤ ≤ −∑  

•  The stopband energy at h(k+1) is equal to 
21/ 2 ( )( )kQ d h+  

• The constraints at h(k+1) becomes 
( ) ( ) ( ) ( )

2 2 2 2 ( )k k k k
n n m n n m n n m n n m

n n n n

h h h d d h d d mδ+ + + ++ + + =∑ ∑ ∑ ∑  
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• Imposing constraints on the smallness of increment 

vector d:    

                          id β≤        for i = 1, 2, …, N  

 the 2nd-order constraints can be linearized: 

 

( )

( ) ( ) ( ) ( )
2 2 2 2

very small, drop

( ) ( ) ( ) ( )
2 2 2

linear updatesa known term, denoted by ( )

( )      for     0,1

k

k k k k
n n m n n m n n m n n m

n n n n

k k k k
n n m n n m n n m

n n n

s m

h h h d d h d d

h h h d d h

m mδ

+ + + +

+ + +

+ + +

≈ + +

= =

∑ ∑ ∑ ∑

∑ ∑ ∑

��	�


��	�
 �����	����


, ,( 2) / 2N −…
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• This leads to a set of (N – 2)/2 linear equations: 

( ) ( ) ( ) ( )
2 2 ( ) ( ) ( )k k k k

n n m n n m
n n

h d d h m s m u mδ+ ++ = − ≡∑ ∑  

 which can be expressed as 

( ) ( )k kC d u=  

●  The smallness constraint on d is given by 

  for  1       id i n Ad bβ≤ ≤ ≤ ⇔ ≤  

●  The linear constraint on VMs is given by 

1
( ) ( )

0

( 1) ( ) 0    for  0 1     
N

n l k k
n n

n

n d h l L Dd v
−

=

− + = ≤ ≤ − ⇔ =∑  
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A Quadratic Programming (QP) Formulation 

• Summarizing, the solution strategy is to iteratively update 

the filter coefficients from h(k)  to  h(k+1) = h(k) + d(k)  with  d(k)  

obtained by solving the QP problem 

21/ 2 ( )

( ) ( )

( )

minimize ( )

subject  to:  

k

d

k k

k

Q d h

Ad b

C u
d

D v

+

≤

⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
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4. Minimax Design of CQ Filters  

Problem Formulation 

•   The formulation in this case is changed to 

 

0

1 2

2
0
1

0

                        minimize maximize ( )

subject to:  ( ) for 0 ( 2) / 2

                    ( 1) 0    for  0,1, , 1

  

a

j

h

N m

n n m
n

N
n l

n
n

H e

h h m m N

n h l L

ω

ω ω π

δ

≤ ≤

− −

+
=

−

=

⋅ = ≤ ≤ −

− = = −

∑

∑ …
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Constrained Linear Updates 

●  Like in the least squares design, the constrained  linear 

update gives 

0

( ) ( )

( )

      minimize maximize ( )

      subject  to:              

          

a

j

d

k k

k

H e

Ad b

C u
d

D v

ω

ω ω π≤ ≤

≤

⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
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• Dealing with the objective function, we write 

[ ] [ ]

1

0
0

( ) ( ) ( )

( ) 1 cos cos( 1) , ( ) 0 sin sin( 1)

N
j jn T T

n
n

T T

H e h e h c jh s

c N s N

ω ω ω ω

ω ω ω ω ω ω

−
−

=

= = −

= − = −

∑

" "

 

  hence 

( ) ( )2 2

0
( )

( ) ( ) ( ) ( )
( )

T
j T T

T

c
H e h c h s h T h

s
ω ω

ω ω ω
ω

⎡ ⎤
= + = ⋅ ≡ ⋅⎢ ⎥

⎣ ⎦
 

 ⇒   ( ) ( ) ( ) ( ) ( ) ( )
0 ( , ) ( ) ( ) ( )j k k k k k kH e h d T h d T d gω ω ω+ = ⋅ + = +  

 

 



 20

• This converts the minimax problem into 

 

( ) ( )

( ) ( )

( )

minimize          

subject  to:   ( ) for { } [ , ]

  
                     

 

k k
i i a

k k

k

T d g

Ad b

C u
d

D v

η

ω η ω ω π+ ≤ ⊆

≤

⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦  

 

 which is an SOCP problem. 



 21

5． Experimental Results 

 5.1 Comparison with designs by Smith-Barnwell’s method  

 

Filter H0(z) Largest Eq. Error 

H0(z) of [2] 8.3168 × 10-8 N = 8 

Refined  H0(z) < 10-15 

H0(z) of [2] 2.6356 × 10-6 
N = 16 

Refined  H0(z) < 10-15 

H0(z) of [2] 2.1623 × 10-6 
N = 32 

Refined  H0(z) < 10-15 
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5.2 LS and minimax designs with N = 96 and L = 0, 1, …, 5 

 

  Least squares with N = 96, 0.56aω π=  

L Energy in Stopband Largest Equation Error 

0 5.6213 × 10-10 < 10-15 

1 5.6660 × 10-10 < 10-15 

2 5.6660 × 10-10 < 10-15 

3 5.8954 × 10-10 < 10-15 

4 5.8954 × 10-10 < 10-15 

5 6.2901 × 10-10 7.6190 × 10-10 
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  Minimax with N = 96, 0.56aω π=  

 

L Instantaneous 
Energy in Stopband 

Largest Equation Error 

0 2.8649 × 10-9 < 10-15 

1 3.0323 × 10-9 8.8247 × 10-7 

2 3.0654 × 10-9 2.5128 × 10-5 

3 3.4075 × 10-9 1.0654 × 10-6 

4 3.1281 × 10-9 4.0553 × 10-7 

5 3.7121 × 10-9 1.0982 × 10-5 
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Minimax design with N = 96, L  = 3, 0.56aω π= : 
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