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Compressive Sensing

m A signal x(n) of length N is K-sparse if it contains K nonzero
components with K < N.
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Compressive Sensing

m A signal x(n) of length N is K-sparse if it contains K nonzero
components with K < N.

m A signal is near K-sparse if it contains K significant components.
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Compressive Sensing, cont'd

m Sparsity is a generic property of signals: A real-world signal always
has a sparse or near-sparse representation with respect to an
appropriate basis.
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m Sparsity is a generic property of signals: A real-world signal always
has a sparse or near-sparse representation with respect to an
appropriate basis.
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Compressive Sensing, cont'd

» Compressive sensing (CS) is a data acquisition process whereby a
sparse signal x(n) represented by a vector x of length N is
determined using a small number of projections represented by a
matrix ® of dimension M x N.
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Compressive Sensing, cont'd

» Compressive sensing (CS) is a data acquisition process whereby a
sparse signal x(n) represented by a vector x of length N is
determined using a small number of projections represented by a
matrix ® of dimension M x N.

m In such a process, measurement vector y and signal vector x are
interrelated by the equation

y=®.x C T
Y =
Mx1 MxN
- - Nx1
measurements projection sparse signal
matrix of interest
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Compressive Sensing, cont'd

m CS theory shows that these random projections contain much,
sometimes all, the information content of signal x.
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Compressive Sensing, cont'd

m CS theory shows that these random projections contain much,
sometimes all, the information content of signal x.

m If a sufficient number of such measurements are collected,
recovering signal x from measurements y is possible.

m A condition for this to be possible is

M>c-K-log(N/K)

where c is a small constant.
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Compressive Sensing, cont'd

m CS theory shows that these random projections contain much,
sometimes all, the information content of signal x.

m If a sufficient number of such measurements are collected,
recovering signal x from measurements y is possible.

m A condition for this to be possible is
M>c-K-log(N/K)
where c is a small constant.
m Typically,
K<M<N
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Signal Recovery by /1 Minimization

m Recovering signal vector x from measurement vector y such that

is an ill-posed problem.
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Signal Recovery by /1 Minimization

m Recovering signal vector x from measurement vector y such that

is an ill-posed problem.

m Given that x is sparse, x can be reconstructed by solving the
{1-minimization problem

minimize 1|1
X

subjectto ®Px =y
N
where ||x|[1 = > |xil.
i=1
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Signal Recovery by ¢/; Minimization, cont'd

m Why /;-norm minimization?
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Signal Recovery by ¢/; Minimization, cont'd

» Why ¢1-norm minimization?

T As c increases, the
T contour of ||x|]; = ¢
grows and touches the
hyperplane ®x =y,
yielding a sparse
solution

Contours for ||x||; = ¢
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Signal Recovery by ¢/; Minimization, cont'd

m Why /5-norm minimization fails to work?
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Signal Recovery by ¢/; Minimization, cont'd

m Why /5-norm minimization fails to work?

As r increases, the
contour of ||x|[o = r
grows and touches the
hyperplane ®x =y.

The solution x*
obtained is not sparse.

Contours of ||x|[o = r
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Signal Recovery by ¢; Minimization, cont’d

If ® = {¢;} where ¢; are independent and identically distributed
random variables with zero-mean and variance 1/N and

M > cK log(N/K), the solution of the ¢;-minimization problem would
recover exactly a K-sparse signal with high probability.
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Signal Recovery by ¢/; Minimization, cont'd

If ® = {¢;} where ¢; are independent and identically distributed
random variables with zero-mean and variance 1/N and

M > cK log(N/K), the solution of the ¢;-minimization problem would
recover exactly a K-sparse signal with high probability.

m For real-valued data {®,y}, the /;-minimization problem is a linear
programming problem.

Compressive Sensing 10 University of Victoria



Signal Recovery by ¢/; Minimization, cont'd

m Example: N =512, M =120, K = 26
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1 Minimization, cont'd

Signal Recovery by /¢

m Example: N =512, M =120, K = 26

A Sparse Signal with K = 26 Reconstructed Signal by L1 Minimization, M = 120
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Signal Recovery by ¢, Minimization

m The sparsity of a signal can be measured by using its (g

pseudonorm
N
[x[lo =Y _Ixi[°
i=1
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Signal Recovery by ¢, Minimization

m The sparsity of a signal can be measured by using its (g
pseudonorm
N
[xllo = > _xl°
i=1

m Hence the sparsest solution of ®x =y can be obtained by solving
the fo-norm minimization problem

minimize l1x]]o
X

subjectto ®x =1y
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Signal Recovery by ¢, Minimization

m The sparsity of a signal can be measured by using its (g
pseudonorm
N
[xllo = > _xl°
i=1

m Hence the sparsest solution of ®x =y can be obtained by solving
the fo-norm minimization problem

minimize l1x]]o
X
subject to ®x =y
m Unfortunately, the fg-norm minimization problem is nonconvex
with combinatorial complexity.

Compressive Sensing 12 University of Victoria



Signal Recovery by ¢, Minimization, cont'd

m An effective signal recovery strategy is to solve the
{p-minimization problem
minimize  [|x[|5  with 0<p<1
X
subject to dx =y
N

where |[x|[5 = > |x;|P.
i=1
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Signal Recovery by ¢, Minimization, cont'd

m An effective signal recovery strategy is to solve the
{p-minimization problem

minimize  [|x[|5  with 0<p<1
subject to dx =y
N

where ||x||g = > |xiP.
i=1

® The ¢,-norm minimization problem is nonconvex.
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Signal Recovery by ¢, Minimization, cont'd

= Contours of ||x|[, =1 with p < 1
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Signal Recovery by ¢, Minimization, cont'd

= Why ¢, minimization with p < 17
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Signal Recovery by ¢, Minimization, cont'd

= Why ¢, minimization with p < 17

As c increases, the contour
|[x[|5 = ¢ grows and touches
the hyperplane ®x =y,
yielding a sparse solution

<= 7]

The possibility that the contour
S will touch the hyperplane at
P another point is eliminated.

Contours of |[x||f = c with p < 1
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Signal Recovery by ¢, Minimization, cont'd

m We propose to minimize an approximate {y-norm
N
2 2
%[00 = Z (1 _ ¥/ )
i=1
where x lies in the solution space of ®x =y, namely,

X:X5+Vr€

where X, is a solution of ®x =y and V, is an orthonormal basis
of the null space of ®.
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Signal Recovery by ¢, Minimization, cont'd

» Why norm ||x||o,, works?
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Signal Recovery by ¢, Minimization, cont'd

» Why norm ||x||o,, works?

(1 _ e—xi2/20'2>

With o small,

=0

xj=0

and

~1

<1 _ e—x?/2a2)

x;i#0
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Signal Recovery by ¢, Minimization, cont'd

» Why norm ||x||o,, works?

(1 _ efxl?/2o2>

With o small,

<1 _ efxi2/2a2)

Therefore, for a K-sparse signal,

=0

~1

7X-2 0'2
oo =D (1= /2" ) ~ K = [Ixll
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Signal Recovery by ¢, Minimization, cont'd

m Improved recovery rate can be achieved by using a re-weighting
technique.
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Signal Recovery by ¢, Minimization, cont'd

m Improved recovery rate can be achieved by using a re-weighting
technique.

m This involves solving the optimization problem

minimize wjdl— e—[Xs(i)+V;T£]2/202}
ize 3w {
where

1
Wi(k—i—l) -
;| + €
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Performance Evaluation

Number of perfectly recovered instances versus sparsity K by various
algorithms with N = 256 and M = 100 over 100 runs.
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IR: Iterative re-weighting (Chartrand and Yin, 2008)
SLO: Smoothed ¢p-norm minimization (Mohimani et. al., 2009)
NRALO: Proposed
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Performance Evaluation, cont'd

Average CPU time versus signal length for various algorithms with

M = N/2 and K = M/2.5.
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IR: Iterative re-weighting (Chartrand and Yin, 2008)
SLO: Smoothed ¢p-norm minimization (Mohimani et. al., 2009)
NRALO: Proposed

Compressive Sensing 20 University of Victoria



Performance Evaluation, cont'd

Performance comparison of ¢; minimization with approximate ¢

minimization for N = 512, M = 80, K = 30.
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Conclusions

m Compressive sensing is an effective technique for signal sampling.
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Conclusions

m Compressive sensing is an effective technique for signal sampling.

® /1 minimization works in general for the reconstruction of sparse
signals.

= (, minimization with p < 1 can improve the recovery performance
for signals that are less sparse.

m Approximate o-norm minimization offers good performance with
improved complexity.
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Thank you for your attention.

This presentation can be downloaded from:
http://www.ece.uvic.ca/~andreas/RLectures/ MWSCAS2010-Jeevan-Web.pdf
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