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Compressive Sensing

m A signal x(n) of length N is K-sparse if it contains K nonzero
components with K < N.
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Compressive Sensing

m A signal x(n) of length N is K-sparse if it contains K nonzero
components with K < N.

m A signal is near K-sparse if it contains K significant components.

m Example: an image with near sparse wavelet coefficients:
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Compressive Sensing, cont'd

m Compressive sensing (CS) is a data acquisition process whereby a
sparse signal x(n) represented by a vector x of length N is
determined using a small number of projections represented by a
matrix ® of dimension M x N.
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Compressive Sensing, cont'd

m Compressive sensing (CS) is a data acquisition process whereby a
sparse signal x(n) represented by a vector x of length N is
determined using a small number of projections represented by a
matrix ® of dimension M x N.

m In such a process, measurement vector y and signal vector x are
interrelated by the equation

y=®-x
: cetit feeadces e ]
|
16 measurements projection matrix 4-sparse signal
of size 16 x 30 of length 30
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Signal Recovery by Using ¢; or £, Minimization

m The inverse problem of recovering signal x from measurement y
such that
Tox=y
|

MxN Nx1 Mx1

is an ill-posed problem.
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m The inverse problem of recovering signal x from measurement y
such that

is an ill-posed problem.

m (> minimization often fails to yield a sparse x, i.e., a signal
obtained as

x* = arg min||x||, subjectto ®x =1y
X

is often not sparse.
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Signal Recovery by Using ¢; or £, Minimization

m The inverse problem of recovering signal x from measurement y
such that

is an ill-posed problem.

m (> minimization often fails to yield a sparse x, i.e., a signal
obtained as

x* = arg min||x||, subjectto ®x =1y
X

is often not sparse.
m A sparse x can be recovered using /1 minimization as

x" = arg min||x||; subjectto ®x =1y
X
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Signal Recovery by Using ¢; or £, Minimization, cont'd

= Recently, £, minimization based algorithms have been shown to
recover sparse signals using fewer measurements.

m In these algorithms, the signal is recovered by using the
optimization problem

minimize ||x|[5 = Z,Nzl |x;|P
X
subject to bx =y

where p < 1.
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Signal Recovery by Using ¢; or £, Minimization, cont'd

= Recently, £, minimization based algorithms have been shown to
recover sparse signals using fewer measurements.

m In these algorithms, the signal is recovered by using the
optimization problem
minimize ||x|[5 = 3%, [P
X
subject to dx =y

where p < 1.

= Note that the objective function |[x|[? in the above problem is
nonconvex and nondifferentiable.

m Despite this, it has been shown in the literature that if the above
problem is solved with sufficient care, improved reconstruction
performance can be achieved.

Compressive Sensing 6/23 University of Victoria



Signal Recovery by Using ¢; or £, Minimization, cont'd

m Example: N =256, K = 35, M = 100.

Original signal Reconstructed using /2 minimization
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Recovery of Block-Sparse Signals

m Let N, d, and N/d be positive integers such that d < N and
N/d < N.
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Recovery of Block-Sparse Signals

m Let N, d, and N/d be positive integers such that d < N and
N/d < N.

= A signal x of length N can be divided into N/d blocks as
X = [il X3 - iN/d}T

where -
X = [X(;_l)d+1 X(i-1)d+1 " X(i—l)d+d}

fori=1,2,...,N/d.

Compressive Sensing 8/23 University of Victoria



Recovery of Block-Sparse Signals

m Let N, d, and N/d be positive integers such that d < N and
N/d < N.
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Recovery of Block-Sparse Signals

m Let N, d, and N/d be positive integers such that d < N and
N/d < N.

= A signal x of length N can be divided into N/d blocks as
X = [il X3 - iN/d}T

where

X; = [X(i—l)d—f—l X(i-1)d+1 " " X(i—l)d-i—d}T
fori=1,2,...,N/d.

= Signal x is said to be K-block sparse if it has K nonzero blocks
with K < N/d.

m Note that the definition of K-sparse in the conventional CS is the
special case of K-block sparse with d = 1.
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Recovery of Block-Sparse Signals, cont'd

m Block-sparsity naturally arises in various signals such as speech
signals, multiband signals, and some images.
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Recovery of Block-Sparse Signals, cont'd

m Block-sparsity naturally arises in various signals such as speech
signals, multiband signals, and some images.
= Speech signal:

05 . . . . . . .
O ‘
05 0.5 1 15 z 25 3 35

n

X(n)

)00

Compressive Sensing 9/23 University of Victoria



Recovery of Block-Sparse Signals, cont'd

m Block-sparsity naturally arises in various signals such as speech
signals, multiband signals, and some images.

= Speech signal:
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m Multiband spectrum:
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Recovery of Block-Sparse Signals, cont'd

An image of Jupiter:
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Recovery of Block-Sparse Signals, cont'd

m The block sparsity of a signal can be measured using the
{5 0-pseudonorm which is given by

N/d

[xll2/0 =D ([I%ill2)"

i=1
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Recovery of Block-Sparse Signals, cont'd

m The block sparsity of a signal can be measured using the
{5 0-pseudonorm which is given by

N/d

[xll2/0 =D ([I%ill2)"

i=1

m The value of function |[|x||2/o is equal to the number of blocks of
x which have all-nonzero components.
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Recovery of Block-Sparse Signals, cont'd

m The block sparsity of a signal can be measured using the
{5 0-pseudonorm which is given by

N/d

[xll2/0 =D ([I%ill2)"

i=1

m The value of function |[|x||2/o is equal to the number of blocks of
x which have all-nonzero components.

m A block-sparse signal can therefore be recovered by solving the
optimization problem

minimize  |[x||2/0
X

subject to ®dx =1y
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Recovery of Block-Sparse Signals, cont'd

m The block sparsity of a signal can be measured using the
{5 0-pseudonorm which is given by

N/d

[xll2/0 =D ([I%ill2)"

i=1

m The value of function |[|x||2/o is equal to the number of blocks of
x which have all-nonzero components.

m A block-sparse signal can therefore be recovered by solving the
optimization problem

minimize  |[x||2/0
X
subject to ®dx =1y
m Unfortunately, this problem is nonconvex with combinatorial

complexity.
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Recovery of Block-Sparse Signals, cont'd

m A practical method for recovering a block sparse signal is to solve
the problem
minimize  ||x||2/1
X
subject to ®dx =1y

where
N/d

X121 = _|I%ill2
i=1
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Recovery of Block-Sparse Signals, cont'd

m A practical method for recovering a block sparse signal is to solve
the problem
minimize  ||x||2/1
X
subject to ®dx =1y

where
N/d

X121 = _|I%ill2
i=1

u Note that function ||x||2/1 is the ¢; norm of the vector
T
[[xall2 [[%2ll2 -+ [Ixwsall2] ",

which essentially gives a measure of the inter-block sparsity of x.
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Recovery of Block-Sparse Signals, cont'd

m A practical method for recovering a block sparse signal is to solve
the problem
minimize  ||x||2/1
X
subject to ®dx =1y

where
N/d

X121 = _|I%ill2
i=1

u Note that function ||x||2/1 is the ¢; norm of the vector
T
[[xall2 [1%2ll2 -+ [xwsall2]
which essentially gives a measure of the inter-block sparsity of x.
m The above problem is a convex programming problem which can
be solved using a semidefinite-programming or a second-order

cone-programming (SOCP) solver.
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Recovery of Block-Sparse Signals, cont'd

m Example: N =512, d =8, K =5, M = 100.

Original signal Reconstructed using /1 minimization
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Block-Sparse Signal Recovery by Using /5, Minimization

m We propose reconstructing a block-sparse signal x from
measurement y by solving the /5, -regularized least-squares

problem
minixmize F.(x) = ||®x — yH§ + )\HXHS/p,e (P)

with p < 1 for a small ¢ where

N/d

X120 = > (1153 + )™

i=1
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Block-Sparse Signal Recovery by Using /5, Minimization

m We propose reconstructing a block-sparse signal x from
measurement y by solving the /5, -regularized least-squares
problem

minixmize F.(x) = ||®x — yH§ + )\HXHS/p,e (P)

with p < 1 for a small ¢ where

N/d

X120 = > (1153 + )™

i=1

m Note that

: P _ p
lim 1112, = lIxI13,

H P _
lim 1112, = [1xll2o
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Block-Sparse Signal Recovery by Using /5,, Minimization,

cont'd

m Good signal reconstruction performance is expected when problem
P on slide 14 is solved with a sufficiently small €.
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m Good signal reconstruction performance is expected when problem
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= However, for small € the objective function F.(x) becomes highly
nonconvex and nearly nondifferentiable.
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Block-Sparse Signal Recovery by Using /5,, Minimization,

cont'd

m Good signal reconstruction performance is expected when problem
P on slide 14 is solved with a sufficiently small €.

= However, for small € the objective function F.(x) becomes highly
nonconvex and nearly nondifferentiable.

m The larger the ¢, the easier the optimization of F.(x).
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Block-Sparse Signal Recovery by Using /5,, Minimization,

cont'd

m Good signal reconstruction performance is expected when problem
P on slide 14 is solved with a sufficiently small €.

= However, for small € the objective function F.(x) becomes highly
nonconvex and nearly nondifferentiable.

m The larger the ¢, the easier the optimization of F.(x).

m Therefore, we propose to solve problem P on slide 14 by using the
following sequential optimization procedure:
m Choose a sufficiently large value of € and solve problem P using
Fletcher-Reeves' conjugate-gradient (CG) algorithm. Set the solution to
X.
m Reduce the value of ¢, use x as an initializer, and solve problem P again.
m Repeat this procedure until problem P is solved for a sufficiently small
value of €. Output the final solution and stop.
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Block-Sparse Signal Recovery by Using /5,, Minimization,

cont'd

m In the kth iteration of Fletcher-Reeves' CG algorithm, iterate x, is

updated as
X1 = Xg + ady
where
di = —8+ Brk—1dk—1
IEAIE
k-1 = ——
l|gx_1ll5
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Block-Sparse Signal Recovery by Using /5,, Minimization,

cont'd

m In the kth iteration of Fletcher-Reeves' CG algorithm, iterate x, is

updated as
X1 = Xg + ady
where
di = —8+ Brk—1dk—1
IEAIE
Br—-1 s
l|gx_1ll5

m Given x, and dy, the step size a4 is obtained by solving the
optimization problem

minimize f(a) = F(xx + ady)
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Block-Sparse Signal Recovery by Using /5,, Minimization,

cont'd

» By setting the first derivative of f(«) to zero, we get
a= G(a)

where
N/d -
dthbT (Px—y)+A-p- D v+ (iLdk,-)
i=1

Gla) = — w7
2 4T
[0dil3 42 p- 37 (dqde)

~ p/2—1
v = (IR +ad|3+ &)
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Block-Sparse Signal Recovery by Using /5,, Minimization,

cont'd

» By setting the first derivative of f(«) to zero, we get
a= G(a)

where
N/d -
dthbT (Px—y)+A-p- D v+ (iLdk,’)
i=1

Gla) = — w7
2 4T
[0dil3 42 p- 37 (dqde)

. ~ 2 2\P/2
v = (II%+adi]3+ )
m In the above equations, X,; and &k,- are the ith blocks of vectors

X, and dy, respectively.
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Block-Sparse Signal Recovery by Using /5,, Minimization,

cont'd

m Step size ay is determined by using the recursive relation

a1 = G(ay) for 1=1,2,...
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Block-Sparse Signal Recovery by Using /5,, Minimization,

cont'd

m Step size o is determined by using the recursive relation

Ay = G(Oé/) for | = 1,2, e

» According to Banach's fixed-point theorem, if |dG(a)/da| < 1
then function G(«) is a contraction mapping, i.e.,

|G(a1) — G(a2)| < 7nlog — s

with n < 1 and, as a consequence, the above recursion converges
to a solution.
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Block-Sparse Signal Recovery by Using /5,, Minimization,

cont'd

m Step size o is determined by using the recursive relation

Ay = G(Oé/) for | = 1,2, e

= According to Banach's fixed-point theorem, if |dG(a)/da| <1
then function G(«) is a contraction mapping, i.e.,

|G(a1) = G(a2)| < mfar — ay
with n < 1 and, as a consequence, the above recursion converges
to a solution.

» Extensive experimental results have shown that function G(«a) for
function f(«) is, in practice, a contraction mapping.
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Performance Evaluation

m Number of perfectly recovered instances with N =512, M = 100,
and d = 8 over 100 runs.

100 —§—=—a—a—=%
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Block-sparsity level, K

Percentage of successful recoveries

£3/,-RLS: Proposed {5, ,-Regularized Least-Squares
£5/1-SOCP: £5/; Second-Order Cone-Programming (Eldar and Mishali, 2009)
BOMP: Block Orthogonal Matching Pursuit (Eldar et. al., 2010)
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Performance Evaluation, cont'd

» Average CPU time with M = N/2, K = M/2.5d, and d = 8 over
100 runs.

CPU time, seconds

10
_E'_’Z/p'RLS (p=0.1)
—e—IQH-SOCP
" —5—BOMP
10
1 1 1 L 1
2000 4000 6000 8000

Signal length, N

43/,-RLS: Proposed {5, ,-Regularized Least-Squares
£5/1-SOCP: £/, Second-Order Cone-Programming (Eldar and Mishali, 2009)
BOMP: Block Orthogonal Matching Pursuit (Eldar et. al., 2010)
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Performance Evaluation, cont'd

m Example: N =512, d =8, K =9, M = 100.

2 Qriginal signal Reconstructed using Izm minimization
P ;’ b oad
= K] &
KR! i ¢ ) %
2
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n n
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Conclusions

m Compressive sensing is an effective sampling technique for sparse
signals.
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Conclusions

m Compressive sensing is an effective sampling technique for sparse
signals.

= {1-minimization and £,-minimization with p < 1 work well for the
reconstruction of sparse signals.

= (5/1-minimization offers improved reconstruction performance for
block-sparse signals.

= The proposed {5 /,-regularized least-squares algorithm offers
improved reconstruction performance for block-sparse signals
relative to the /,,-SOCP and BOMP algorithms.
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Thank you for your attention.

This presentation can be downloaded from:
http://www.ece.uvic.ca/~andreas/RLectures/ISCAS2012-Jeevan-Pres.pdf
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