
 1

Use SeDuMi to Solve LP, SDP and SCOP Problems: Remarks and Examples* 

 

*The notes were prepared by Wu-Sheng Lu, Dept. of Electrical and Computer Engineering, University of Victoria; the 
latest revision was done on March 13, 2012. 

 
SeDuMi was originally written by Jos F. Sturm in 1999. The name of the toolbox stands for self-dual 
minimization as it implements a self-dual embedding technique for optimization over self-dual 
homogeneous cones. Presently the official web site for the software’s maintenance and development is 
http://sedumi.ie.lehigh.edu/ at Lehigh University. Below we give comments on the usage of this 
software for the solution of LP, SDP, and SOCP problems. Numerical examples are included for 
illustration purposes. Some of the examples are from A. Antoniou and W.-S. Lu, Practical 
Optimization: Algorithms and Engineering Applications, Springer, 2007. 
 
0.  As of March 2012, the latest version is SeDuMi version 1.3 officially released in April 2010. 

Although the notes given below were based on SeDuMi 1.1R2, it is believed that the example 
codes given here also work with version 1.3.  

 
I. LP Problems 
 
The solution of the primal standard-form LP problem  
 

                                       
minimize                               (1a)
subject to:                         (1b)
                                           (1c)

T

=
≥ 0

c x
Ax b
x

 

 
can be obtained by using command x = sedumi(A,b,c);  Alternatively,  both the solution of the problem 
in (1) and the solution of the dual problem 
 

                                    maximize                               (2a)
subject to:                    (2b)

T

T− ≥ −

b y
A y c

 

 
can be found by using command [x, y, info] = sedumi(A,b,c); where “info”  contains information about 
validity of the solutions obtained: 
 
(1) pinf = dinf = 0: x is an optimal solution  and y certifies optimality, viz. bTy = cTx and c - ATy ≥0. 

Stated otherwise, y is an optimal solution to maximize bTy such that c - ATy ≥0. 
 
      If size(A,2) = length(b), then y solves the linear program maximize bTy such that c - ATy ≥  0. 
  
(2) pinf = 1: there cannot be x ≥  0 with Ax = b, and this is certified by y, viz. bTy > 0 and ATy ≤  0. 

Thus y is a Farkas solution. 
  
(3) dinf = 1: there cannot be y such that c - ATy ≥  0, and this is certified by x, viz. cTx < 0, Ax = b, x ≥  

0. Thus x is a Farkas solution. 
 
 



 2

Example 1 Consider the standard-form LP problem in Example 11.9 [Antoniou and Lu]: 
 

                                    

1 2 3

1 2 3 4

1 2 3 5

1 2 3 4 5

minimize      ( ) 2 9 3
subject to:    2 2 1
                          4 1
      0, 0, 0, 0, 0

f x x x x
x x x x
x x x x

x x x x x

= + +
− + + − =

+ − − =
≥ ≥ ≥ ≥ ≥

              (3) 

 
The MATLAB code listed below uses SeDuMi to solve the problem: 
 
A = [-2 2 1 -1 0; 1 4 -1 0 -1]; 
b = [1 1]’; 
c = [2 9 3 0 0]’; 
x = sedumi(A,b,c); 
 
which gives x = [0  0.3333  0.3333  0  0]’. 
 
Example 2 Now let us consider the LP problem in Example 11.2 [Antoniou and Lu]: 
 

                                             

1 2

1

1

2

1 2

1 2

minimize     4
subject to:       0
                   2
                       0
    3.5 0
     2 6 0

x x
x
x
x

x x
x x

− −
≥

− ≥ −
≥

− − + ≥
− − + ≥

                     (4) 

 
By changing the variable x to y and defining  
 

[ ]1 1 0 1 1 1
, , 0 2 0 3.5 6

0 0 1 1 2 4
T−⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦
A b c  

 
the problem in (4) can be expressed as the one in (2). Hence the LP problem in (4) can be solved by 
using the following MATLAB code: 
 
b = [1 4]’; 
A = [-1 1 0 1 1; 0 0 -1 1 2]; 
c = [0 2 0 3.5 6]’; 
[x, y, info] = sedumi(A,b,c); 
 
where y can be taken as the solution of the problem in (4). The result is given by y = [0  3]’. In addition, 
output “info” provides the following information: 
 
       cpusec: 0.0938 
             iter: 4 
    feasratio: 1 
            pinf: 0 
            dinf: 0 
       numerr: 0 



 3

II. SOCP Problems 
 
We now consider the SOCP formulation given by Eq. (14.104) (see [Antoniou and Lu]), i.e., 
 

                       
minimize      (5a)

subject to:    for 1,..., (5b)

T

T T
i i i id i q+ ≤ + =

b x

A x c b x
 

 
where ( 1) ( 1) 11 1 1, , , , , and  for 1 .i im n nm m m

i i i iR R R R R d R i q× − − ×× × ×∈ ∈ ∈ ∈ ∈ ∈ ≤ ≤b x A b c  In order to use the 
toolbox to solve the problem in (5), we define matrix At, vectors bt and ct as follows: 
 

[ ]

[ ]

(1) (2) ( )

( )

(1) (2) ( )

( )

; ;

;

q
t t t t

i
t i i

t

q
t t t t

i
t i id

⎡ ⎤= ⎣ ⎦
= −

= −

⎡ ⎤= ⎣ ⎦
=

A A A A

A b A
b b

c c c c

c c

 

 

where 1 1

1
, ,  and   with .

q
m n m n

t t t i
i

R R R n n× × ×

=

∈ ∈ ∈ =∑A b c  

 
In addition, define a q-dimensional vector q = [n1  n2  … nq] which describes the dimensions of the q 
conic constraints involved in (5b). 
 
Once the data set {At, bt, ct} and vector q have been prepared, the MATLAB commands for solving the 
SOCP problem in (5) are as follows: 
 
K.q = q; 
[xs,ys,info] = sedumi(At,bt,ct,K); 
info 
x = ys; 
 
Example 3 Consider the problem described in Example 14.5 in [Antoniou and Lu]: Find the shortest 
distance between the two ellipses which are defined by 
 

[ ] [ ]

[ ] [ ]

1
1 1 2 1 2

2

3
2 3 4 3 4

4

1 10 3( ) 04 2
40 1 0

11
5 31 352( ) 0
3 5 138 2

2

x
c x x x x

x

x
c x x x x

x

⎡ ⎤ ⎡ ⎤⎡ ⎤⎢ ⎥ ⎢ ⎥= − + + ≥⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦
⎡ ⎤
⎢ ⎥⎡ ⎤⎡ ⎤

= − + − ≥⎢ ⎥⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎢ ⎥

⎢ ⎥⎣ ⎦

x

x

 

 
The problem can be formulated as the constrained minimization problem 
 



 4

2 2
1 3 2 4

1 2

minimize      ( ) ( ) ( )
subject to:    ( ) 0 and ( ) 0

f x x x x
c c

= − + −

≥ ≥

x
x x

 

 
By introducing an upper bound δ  for the square root of the objective function, the above problem can 
be expressed as  
 

[ ] [ ]

[ ] [ ]

1/ 22 2
1 3 2 4

1
1 2 1 2

2

3
3 4 3 4

4

minimize      

subject to:    ( ) ( )

1/ 4 0 1/ 2 3
0 1 0 4

5 / 8 3/ 8 11/ 2 35
3/ 8 5 / 8 13/ 2 2

x x x x

x
x x x x

x

x
x x x x

x

δ

δ⎡ ⎤− + − ≤⎣ ⎦
⎡ ⎤⎡ ⎤ ⎡ ⎤

− ≤⎢ ⎥⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤⎡ ⎤ ⎡ ⎤
− ≤ −⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦

 

 
If we augment the decision vector by including the upper bound δ  in it, i.e., x = [δ  x1 x2 x3 x4]T,  
then the above problem is equivalent to the problem in (5) with q = 3,  
 

[ ]

[ ] [ ]

1 2

3

1 2 3

1 2 3

1 2 3

1 0 0 0 0

0 1 0 1 0 0 0.5 0 0 0
,

0 0 1 0 1 0 0 1 0 0

0 0 0 0.7071 0.7071
0 0 0 0.3536 0.3536

,

, 0.5 0 , 4.2426 0.7071
0, 1, and 1.

T

T T

T

T T

d d d

=

−⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

− −⎡ ⎤
= ⎢ ⎥−⎣ ⎦
= = =

= = − = −

= = =

0 0

0

b

A A

A

b b b , b

c c c

 

 
The MATLAB code listed below solves the SOCP problem using SeDuMi. 
 
b = [1 0 0 0 0]’; 
A1 = [0 -1 0 1 0; 0 0 1 0 -1]’; 
A2 = [0 0.5 0 0 0; 0 0 1 0 0]’; 
A3 = [0 0 0 -0.7071 -0.7071; 0 0 0 -0.3536 0.3536]’; 
b1 = b; 
b2 = zeros(5,1); 
b3 = b2; 
c1 = [0 0]’; 
c2 = [-0.5 0]’; 
c3 = [4.2426 -0.7071]’; 
d1 = 0; 
d2 = 1; 
d3 = 1; 
At1 = -[b1 A1]; 
At2 = -[b2 A2]; 
At3 = -[b3 A3]; 



 5

At = [At1 At2 At3]; 
bt = -b; 
ct1 = [d1; c1]; 
ct2 = [d2; c2]; 
ct3 = [d3; c3]; 
ct = [ct1; ct2; ct3]; 
K.q = [size(At1,2)  size(At2,2)  size(At3,2)]; 
[xs, ys, info] = sedumi(At,bt,ct,K); 
x = ys; 
r_s = x(2:3); 
s_s = x(4:5); 
disp(‘solution points in regions R and S are:’) 
[r_s s_s] 
disp(‘minimum distance:’) 
norm(r_s – s_s) 
 
It was found that r_s = [2.0447  0.8527]’ and s_s = [2.5448  2.4857]’ which give the minimum distance 
1.7078. Additional information provided by the toolbox is as follows: 
 
info =  
       cpusec: 0.0469 
         iter: 9 
    feasratio: 1.0000 
         pinf: 0 
         dinf: 0 
       numerr: 0 
 
III. SOCP Problems with Linear Constraints 
 
SeDuMi can be used to solve SOCP problems with additional linear constraints. As an example, we 
consider the following SOCP problem 
 

                      
minimize      (6a)
subject to:                                             (6b)

                   for 1,...,  (6c)

T

T

T T
i i i id i q

+ ≥

+ ≤ + =

0
b x
D x f

A x c b x

 

 
where 1 and  m p pR R× ×∈ ∈D f  and other entries are defined in part II. In order to use the toolbox to 
solve the problem in (6), we define matrix At, vectors bt and ct, which are obtained by augmenting the 
corresponding quantities used for the problem in (5), as follows: 
 

[ ]

[ ]

(1) (2) ( )

( )

(1) (2) ( )

( )

; ; ;

;

q
t t t t

i
t i i

t

q
t t t t

i
t i id

⎡ ⎤= −⎣ ⎦
= −

= −

⎡ ⎤= ⎣ ⎦
=

A D A A A

A b A
b b

c f c c c

c c

 

 



 6

Now define K.l = p where p is the number of linear constraints in (6b). And as before, define a q-
dimensional vector q = [n1  n2  … nq] to describe the dimensions of the q conic constraints in (6c). 
The MATLAB commands to solve the SOCP problem in (5) are as follows: 
 
K.l = p; 
K.q = q; 
[xs,ys,info] = sedumi(At,bt,ct,K); 
info 
x = ys; 
 
Example 4 Consider a problem similar to the one described in Example 14.5 of [Antoniou and Lu], to 
that we now add three additional linear constraints for variables x3 and x4 as follows: 
 

3

4

3 4

2.4 0
2.4 0

1.5 2.4 0

x
x

x x

− + ≥
− ≥

− + ≥

 

 
It can be readily verified that the problem at hand is a minimum distance problem for the ellipse R and 
convex body S shown in the next figure. 
 

 
 

The MATLAB code listed below solves this SOCP problem using SeDuMi. 
 
D = [0 0 0; 0 0 0; 0 0 0; -1 0 1.5; 0 1 -1]; 
f = [2.4 -2.4 2.4]’; 
b = [1 0 0 0 0]’; 
A1 = [0 -1 0 1 0; 0 0 1 0 -1]’; 
A2 = [0 0.5 0 0 0; 0 0 1 0 0]’; 
A3 = [0 0 0 -0.7071 -0.7071; 0 0 0 -0.3536 0.3536]’; 
b1 = b; 
b2 = zeros(5,1); 
b3 = b2; 
c1 = [0 0]’; 
c2 = [-0.5 0]’; 
c3 = [4.2426 -0.7071]’; 
d1 = 0; 



 7

d2 = 1; 
d3 = 1; 
At1 = -[b1 A1]; 
At2 = -[b2 A2]; 
At3 = -[b3 A3]; 
At = [-D At1 At2 At3]; 
bt = -b; 
ct1 = [d1; c1]; 
ct2 = [d2; c2]; 
ct3 = [d3; c3]; 
ct = [f; ct1; ct2; ct3]; 
K.l = size(D,2); 
K.q = [size(At1,2)  size(At2,2)  size(At3,2)]; 
[xs, ys, info] = sedumi(At,bt,ct,K); 
x = ys; 
r_s = x(2:3); 
s_s = x(4:5); 
disp(‘solution points in regions R and S are:’) 
[r_s s_s] 
disp(‘minimum distance:’) 
norm(r_s – s_s) 
 
It was found that r_s = [1.9518  0.8795]’ and s_s = [2.4000  2.5362]’ which give the minimum distance 
1.7163. Additional information provided by the toolbox are as follows: 
 
info =  
       cpusec: 0.6406 
         iter: 13 
    feasratio: 1.0000 
         pinf: 0 
         dinf: 0 
       numerr: 0 
 
IV. SDP Problems 
 
Consider the “standard” dual SDP problem 
 

0 1 1

minimize                                          (7a)
subject to:            (7b)

T

p p+ + 0
c y 
F y F y F

 

 
where vector y = [y1  y2  …  yp]T, and Fi are symmetric matrices. In order to use SeDuMi to solve the 
SDF problem, we define 
 
bt = – c ; 
ct = vec(F0); 
At(:, i) = – vec(Fi)  for  i = 1, 2, …, p 
 
where vec(F) converts matrix F into a column vector by stacking all columns of F. The MATLAB code 
using commands from SeDuMi is as follows. 
 



 8

p = length(c); 
bt = -c; 
ct = vec(F0); 
for i = 1:p, At(:,i) = -vec(Fi); end 
K.s = size(F0,1); 
[x, y, info] = sedumi(At,bt,ct,K); 
info 
 
where y gives the solution of the problem in (7) and info provides information about the validity of the 
solution. 
 
Example 5 Solve the problem in Example 14.1 of [Antoniou and Lu]: Find scalars y1, y2, and y3 such 
that the maximum eigenvalue of F = A0 + y1A1 + y2A2 + y3A3 with 
 

0 1 2 3

2 0.5 0.6 0 1 0 0 0 1 0 0 0
0.5 2 0.4 , 1 0 0 , 0 0 0 , 0 0 1
0.6 0.4 3 0 0 0 1 0 0 0 1 0

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

A A A A  

 
is minimized. This problem can be formulated as the SDP problem 
 

                                    
0 1 1 2 2 3 3

                                   minimize                               (8a)
subject to: ( )            (8b)

t
t y y y− + 0I A A + A + A

 

 
With y = [y1  y2  y3  t]T, F0 = –A0, F1 = –A1, F2 = –A2, and c = [0  0  0  1]T, problem (8) becomes the 
standard SDP problem in (7). The MATLAB code listed below uses SeDuMi to solve the problem in (8). 
 
A0 = [2 -0.5 -0.6; -0.5 2 0.4; -0.6 0.4 3]; 
A1 = [0 1 0; 1 0 0; 0 0 0]; 
A2 = [0 0 1; 0 0 0; 1 0 0]; 
A3 = [0 0 0; 0 0 1; 0 1 0]; 
F0 = -A0; 
F1 = -A1; 
F2 = -A2; 
F3 = -A3; 
F4 = eye(3); 
At = -[vec(F1) vec(F2) vec(F3) vec(F4)]; 
bt = -[0 0 0 1]’; 
ct = vec(F0); 
K.s = size(F0,1); 
[x,y,info] = sedumi(At,bt,ct,K); 
info 
 
The result obtained is given by y = [0.5 0.6 -0.4 3]’; which says the minimum of the largest eigenvalue 
is 3 that can be achieved by the choice y1 = 0.5, y2 = 0.6, and y3 = – 0.4. The ‘info’ gives the following: 
cpusec: 0.5000 
iter: 5 
feasratio: 1.0000 
pinf: 0 
dinf: 0 
numerr: 0 



 9

V. SDP Problems with Linear Constraints 
 
In principal linear constraints can be formulated as SDP constraints (see Chap. 14 of [Antoniou and 
Lu]), but one can take the advantage of SeDuMi that allows both linear and SDP constraints 
simultaneously to make the MATLAB code more efficient. To this end, we consider the problem 
 

0 1 1

minimize                                          (9a)
subject to:                                     (9b)

          (9c)

T

p p

≥
+ + 0

c y 
Ay b
F y F y F

 

 
Similar to that in part (IV), we define 
 
bt = – c ; 
ct = vec(F0); 
At(:, i) = – vec(Fi)  for  i = 1, 2, …, p 
 
The MATLAB code using commands from SeDuMi is as follows. 
 
p = length(c); 
btt = -c; 
ctt = [-b; vec(F0)]; 
for i = 1:p, At(:,i) = -vec(Fi); end 
Att  = [-A; At];  
K.l = size(A,1); 
K.s = size(F0,1); 
[x, y, info] = sedumi(Att,btt,ctt,K); 
info 
 
where y gives the solution of the problem in (9) and info provides information about the validity of the 
solution. 
 
Example 6 We now consider a problem similar to the one in Example 5, but we add additional 
constraints that parameters y1, y2, y3 satisfy 1 2 30.7 1, 0 0.3, and 0y y y≤ ≤ ≤ ≤ ≥ . These additional 
linear constraints can be put into a matrix form ≥Ay b  with 
 

1 0 0 0 0.7
1 0 0 0 1

,0 1 0 0 0
0 1 0 0 0.3
0 0 1 0 0

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

A b  

 
where vector y is defined as in Example 5, i.e., y = [y1  y2  y3  t]T. The MATLAB code solving this 
problem using SeDuMi is as follows: 
 
A = [1 0 0 0; -1 0 0 0; 0 1 0 0; 0 -1 0 0; 0 0 1 0]; 
b = [0.7 -1 0 -0.3 0]'; 
A0 = [2 -0.5 -0.6; -0.5 2 0.4; -0.6 0.4 3]; 



 10

A1 = [0 1 0; 1 0 0; 0 0 0]; 
A2 = [0 0 1; 0 0 0; 1 0 0]; 
A3 = [0 0 0; 0 0 1; 0 1 0]; 
F0 = -A0; 
F1 = -A1; 
F2 = -A2; 
F3 = -A3; 
F4 = eye(3); 
At = -[vec(F1) vec(F2) vec(F3) vec(F4)]; 
Att = [-A; At]; 
btt = -[0 0 0 1]’; 
ct = vec(F0); 
ctt = [-b; ct]; 
K.l = size(A,1); 
K.s = size(F0,1); 
[x,y,info] = sedumi(Att,btt,ctt,K); 
info 
 
The result obtained is given by y = [1.0  0.3  -0.0  3.1556]’; which says the minimum of the largest 
eigenvalue is 3.1556 that can be achieved by the choice y1 = 1.0, y2 = 0.3, and y3 = 0. The info gives 
the following: 
 
iter: 9 
feasratio: 0.9967 
pinf: 0 
dinf: 0 
numerr: 0 
timing: [0.0313 0.2969 0.0156] 
cpusec: 0.3438 
 
VI. Other Problems 
 
6.1 [x, y, info] = sedumi(A, b, 0) solves the feasibility problem: Find x such that Ax = b and ≥ 0x . 
 
Example 7  With A and b given in Example 1, [x, y, info] = sedumi(A, b, 0) yields x = [1.3130  1.2353  
2.8405  1.6851  2.4136]T and  
 
info =  
cpusec: 0 
iter: 1 
feasratio: 1 
pinf: 0 
dinf: 0 
numerr: 0 
 
6.2 [x, y, info] = sedumi(A, 0, c) solves the feasibility problem: Find y such that ATy  ≤  c. 
 
Example 8  Let  
 

[ ]1 1 0 1 1
, 0 2 0 3.5 6

0 0 1 1 2
T−⎡ ⎤

= =⎢ ⎥−⎣ ⎦
A c  



 11

Applying [x, y, info] = sedumi(A, 0, c) yields 
 
y = [0.9810  1.2670]T and  
 
info =  
cpusec: 0.0625 
iter: 3 
feasratio: 1 
pinf: 0 
dinf: 0 
numerr: 0 


