From Convex Programming to Optimization over Polynomials: An Introduction to Current Research Activities

Wu-Sheng Lu

Dept. of Electrical and Computer Engineering
University of Victoria

Part I: Convex Programming (Jan. 23, 2:30 – 3:30 pm)

Part II: Polynomial Optimization Problems (Jan. 30, 2:30 – 3:30 pm)

Outline of Part I

- 1. Optimization Problems
- 2. A Duality Theory
- 3. Semidefinite Programming
- 4. Software

1. Optimization Problems

• Unconstrained Optimization

$$\underset{x \in R^n}{\operatorname{minimize}} \, f(x)$$

- Example: Solve polynomial system

$$p_1(x) = 0, \ p_2(x) = 0, \dots, \ p_m(x) = 0$$
 (1)

$$(1) \Leftrightarrow p_1^2(x) = 0, \ p_2^2(x) = 0, \ \dots, \ p_m^2(x) = 0$$

$$(1) \Leftrightarrow p_1^2(x) = 0, \ p_2^2(x) = 0, \dots, \ p_m(x) = 0$$

$$(2) \Leftrightarrow f(x) = \sum_{i=1}^m p_i^2(x) = 0$$

- x^* is a solution of (1) iff the global minimum of f(x) is zero and x^* is a global minimizer.
- Constrained Optimization

minimize
$$f(x)$$
 (3a)

subject to:
$$a_i(x) = 0, i = 1, ..., p$$
 (3b)

$$c_j(x) \ge 0, \ j = 1, \dots, q$$
 (3c)

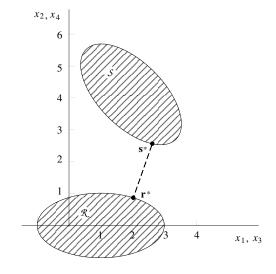
- Feasible region and feasible points

$$K = \{x : a_i(x) = 0 \text{ for } 1 \le i \le p, \ c_j(x) \ge 0 \text{ for } 1 \le j \le q\}$$

$$(3) \Leftrightarrow \underset{x \in K}{\text{minimize }} f(x)$$

$$(4)$$

■ Example: Minimum distance between two ellipses



minimize
$$f(x) = (x_1 - x_3)^2 + (x_2 - x_4)^2$$
 subject to:
$$\frac{1}{4}x_1^2 + x_2^2 - \frac{1}{2}x_1 \le \frac{3}{4}$$

$$\frac{5}{8}(x_3^2 + x_4^2) + \frac{3}{4}x_3x_4 - \frac{11}{2}x_3 - \frac{13}{2}x_4 \le -\frac{35}{2}$$

■ Example: Optimum data detection in wireless communications

$$\begin{array}{ll} \text{minimize} & x^TQx+p^Tx & (Q\succeq 0)\\ \text{subject to:} & x_i\in\{0,\ 1\},\ i=1,\ \dots,\ n\\ & \\ & \\ \text{minimize} & x^TQx+p^Tx\\ \text{subject to:} & x_i^2-x_i=0,\ i=1,\ \dots,\ n \end{array}$$

• Convex Programming (CP)

minimize
$$f(x)$$
 (5a)

subject to:
$$a_i(x) = 0 \quad i = 1, ..., p$$
 (5b)

$$c_j(x) \ge 0 \quad j = 1, \dots, q \tag{5c}$$

where
$$f(x)$$
 is convex
 $a_i(x)$ are linear, $1 \le i \le p$
 $-c_i(x)$ are convex, $1 < j < q$

- A CP problem minimizes a convex objective function over a convex feasible region.
 - Example:

minimize
$$-x_1 - x_2$$

subject to: $x_1^2 + x_2^2 \le 1$

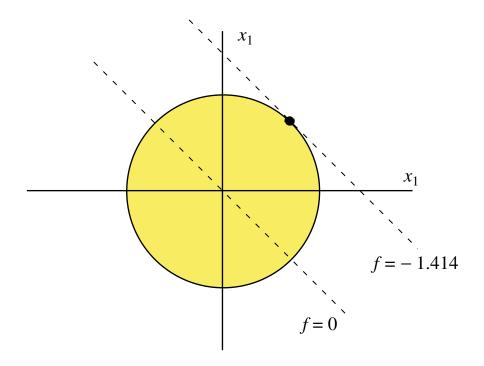
The objective function is convex and the feasible region is convex $(-c_1(x) = x_1^2 + x_2^2 - 1 \text{ convex})$, hence a CP problem.

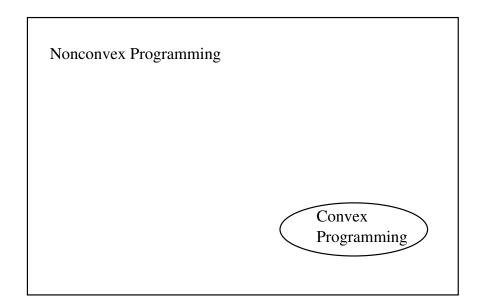
- Why convex programming?
 - CP has several desirable properties:

Globlaness and uniqueness of solution; convexity of solution set; Karush-Kuhn-Tucker (KKT) conditions.

For CP problem (5), the KKT conditions are both necessary and sufficient:

Suppose x^* is a minimizer of (5) that is regular for the constraints active at x^* , then (a) $a_i(x^*) = 0$ for $1 \le i \le p$





(b)
$$c_j(x^*) \ge 0$$
 for $1 \le j \le q$

(c) $\exists \lambda_i^*$ and μ_i^* such that

$$\nabla f(x^*) = \sum_{i=1}^p \lambda_i^* \nabla a_i(x^*) + \sum_{j=1}^q \mu_j^* \nabla c_j(x^*)$$

(d)
$$\mu_j^*c_j(x^*)=0$$
 for $1\leq j\leq q$ (complementarity conditions) (e) $\mu_j^*\geq 0$ for $1\leq j\leq q$

- There exists a nice duality theory
- There exist efficient solvers.
- Classification of CP problems
 - Linear programming (LP)

minimize
$$c^T x$$

subject to: $Ax \ge b$

■ Convex quadratic programming (QP)

minimize
$$x^TQx + q^Tx + K \ (Q \succeq 0)$$

subject to: $Ax \geq b$

■ Second-order cone programming (SOCP)

minimize
$$b^T x$$

subject to: $||A_i x + b_i|| \le c_i^T x + d_i, i = 1, \dots, q$

■ Semidefinite programming (SDP)

minimize
$$c^T x$$

subject to: $F(x) = F_0 + \sum_{i=1}^q x_i F_i \succeq 0$
 $(F_0, F_i \text{ are symmetric matrices})$

- Relations of SDP with LP, QP, and SOCP
 - LP:

minimize
$$c^T x$$

subject to: $Ax \ge b$

Write $Ax \ge b$ as

$$-b + Ax = -b + [a_1 \dots a_n]x = -b + \sum_{i=1}^n a_i x_i \ge 0$$

$$\iff \underbrace{\operatorname{diag}\{-b\}}_{F_0} + \sum_{i=1}^n x_i \underbrace{\operatorname{diag}\{a_i\}}_{F_i} \succeq 0$$

$$\iff F_0 + \sum_{i=1}^n x_i F_i \succeq 0$$

■ SOCP

minimize $b^T x$ subject to: $||A_i x + b_i|| \le c_i^T x + d_i$ $1 \le i \le q$

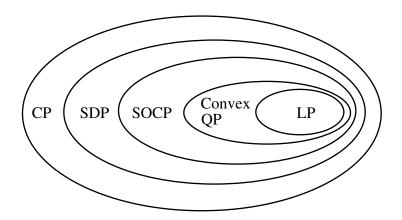
Note:

$$||u|| \le t \iff \begin{bmatrix} tI & u \\ u^T & t \end{bmatrix} \succeq 0$$

Hence $||A_i x + b_i|| \le c_i^T x + d_i$

$$\iff \begin{bmatrix} (c_i^T x + d_i)I & A_i x + b_i \\ (A_i x + b_i)^T & c_i^T x + d_i \end{bmatrix} \succeq 0$$

■ $LP \subset QP \subset SOCP \subset SDP$



2. Wolfe's Theorem on Duality

Consider the general CP problem (as the primal problem)

(P) minimize
$$f(x)$$

subject to: $a_i(x) = a_i^T x - b_i = 0, i = 1, ..., p$
 $c_i(x) \ge 0, j = 1, ..., q$

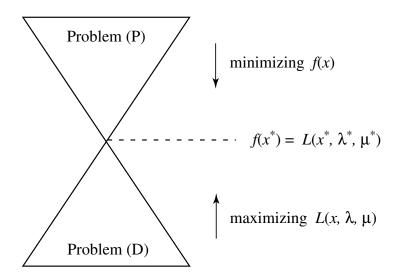
Define its Lagrangian

$$L(x, \lambda, \mu) = f(x) - \sum_{i=1}^{p} \lambda_i a_i(x) - \sum_{j=1}^{q} \mu_j c_j(x)$$

• The dual of problem (P) can be created by the following theorem due to P. Wolfe (1961): Let x^* be a minimizer of (P) and λ^* , μ^* be the associated Lagrange multipliers. Assume x^* is a regular point of the constraints. Then (x^*, λ^*, μ^*) also solves the dual problem

(D)
$$\begin{array}{ll} \underset{x,\lambda,\mu}{\text{maximize}} & L(x,\lambda,\mu) \\ \text{subject to:} & \nabla L(x,\,\lambda,\,\mu) = 0 \\ & \mu \geq 0 \end{array}$$

In addition, $f(x^*) = L(x^*, \lambda^*, \mu^*)$



• Define duality gap $\delta(x,\ \lambda,\ \mu)=f(x)-L(x,\ \lambda,\ \mu)$ Wolfe's theorem says $\delta\geq 0$ for feasible $x,\ \lambda,\ \mu,$ and $\delta=0$ at $(x^*,\ \lambda^*,\ \mu^*).$

In fact, for a feasible set (x, λ, μ)

$$\delta = f(x) - L(x, \lambda, \mu) = \sum_{i=1}^{p} \lambda_i a_i(x) + \sum_{j=1}^{q} \mu_j c_j(x)$$
$$= \sum_{j=1}^{q} \mu_j c_j(x) \ge 0$$

and δ reduces to zero at (x^*, λ^*, μ^*) because of the complementarity conditions

$$\mu_i^* c_j(x^*) = 0, \quad j = 1, \dots, q$$

• Example: Linear programming

(P) minimize $c^T x$ (Engineering) subject to: $Ax \ge b$

$$L(x, \lambda, \mu) = c^T x - (Ax - b)^T \mu$$

(D) maximize
$$c^T x - (Ax - b)^T \mu$$

subject to:
$$c - A^T \mu = 0, \ \mu \ge 0$$

$$\updownarrow$$

subject to:
$$A^T \mu = c, \ \mu \ge 0$$

3. Semidefinite Programming (SDP)

- Why is SDP popular?
 - SDP is a class of CP problems (theoretical tractability)
 - LP, QP, SOCP are subclasses of SDP
 - SDP arises in a number of important applications in science and engineering
 - Efficient SDP solvers are available
- Examples

Let
$$A(x) = A_0 + x_1 A_1 + \dots + x_n A_n$$

– Find $x^* = [x_1^* \ \dots \ x_n^*]^T$ that minimizes the largest eigenvalue of A(x), i.e., find x^* to solve

$$\mathop{\mathsf{minimize}}_x \max \lambda[A(x)]$$

 \blacksquare A(x) is symmetric

$$\implies A(x) = U^T \begin{bmatrix} \lambda_{max} & 0 \\ & \ddots & \\ 0 & \lambda_{min} \end{bmatrix} U$$

with U orthogonal $\Rightarrow tI - A(x) = t \cdot U^T IU - A(x)$

$$= U^T \begin{bmatrix} t - \lambda_{max} & 0 \\ & \ddots & \\ 0 & t - \lambda_{min} \end{bmatrix} U$$

- Hence $tI A(x) \succeq 0$ iff $t \geq \lambda_{max}$
- The value of t satisfying $tI A(x) \succeq 0$ provides at right upper bound for λ_{max} This is an SDP problem:

minimize

subject to:
$$tI - A(x) \succeq 0$$

- Find x^* that minimizes the 2-norm of A(x), i.e., find x^* to solve

$$\underset{x}{\operatorname{minimize}} \max \lambda^{1/2} [A^T(x)A(x)]$$

We need to solve

minimize t

subject to:
$$t^2I - A^T(x)A(x) \succeq 0$$

which can be converted into the SDP problem

minimize
$$t$$
 subject to:
$$\begin{bmatrix} tI & A(x) \\ A^T(x) & tI \end{bmatrix} \succeq 0$$

- Duality
 - the primal SDP assumes the form

(P) minimize
$$c^T x$$

subject to: $F(x) = F_0 + \sum_{i=1}^n x_i F_i \succeq 0$

- the Lagrangian:

$$L(x, Y) = c^{T}x - Y \cdot (F_0 + \sum_{i=1}^{n} x_i F_i)$$

where the inner product $A \cdot B = \operatorname{trace}(AB) = \sum_i \sum_j a_{ij} b_{ij}$

- the Wolfe dual:

maximize
$$c^T x - Y \cdot F_0 - \sum_{i=1}^n x_i (Y \cdot F_i)$$

subject to: $\nabla_x L(x, Y) = 0$
 $Y \succeq 0$

$$\implies \qquad \text{(D)} \qquad \text{maximize} \qquad -Y \cdot F_0$$

$$\text{subject to:} \qquad Y \cdot F_i = c_i, \ \ 1 \leq i \leq n$$

$$\qquad Y \succ 0$$

- Duality gap:

$$\delta = c^T x + Y \cdot F_0 = \sum_{i=1}^n c_i x_i + Y \cdot F_0 = \sum_{i=1}^n x_i (Y \cdot F_i) + Y \cdot F_0$$
$$= Y \cdot (F_0 + \sum_{i=1}^n x_i F_i) = Y \cdot F(x) \ge 0$$

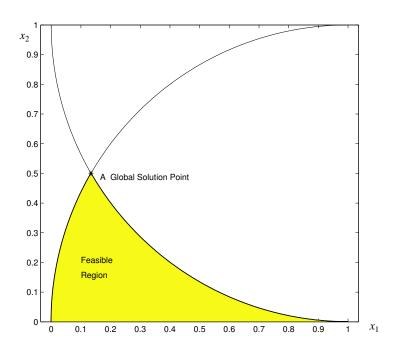
- Example

minimize
$$x_1 - 2x_2$$

subject to: $x_1 \ge 0, x_2 \ge 0$
 $(x_1 - 1)^2 + x_2^2 \le 1$
 $(x_1 - 1)^2 + (x_2 - 1)^2 \ge 1$

Number of variables: 2, Number of constraints: 4

■ This is a nonconvex problem because its feasible region is not convex:



- The global solutin of the problem is $x^* = [0.1340 \ 0.5]^T$.
- Put the problem in an extended space (dimensional extension)

Let
$$y_{10}=x_1,\ y_{01}=x_2,\ y_{20}=x_1^2,\ y_{02}=x_2^2$$
 and express the problem as minimize $y_{10}-2y_{01}$ subject to: $y_{10}\geq 0,\ y_{01}\geq 0$ $-y_{20}+2y_{10}-y_{02}\geq 0$ $y_{20}-2y_{10}+y_{02}-2y_{01}+1\geq 0$ (one might add:) $y_{20}\geq 0,\ y_{02}\geq 0$

Number of variables: 4, Number of constraints: 6 This is an LP problem whose unique global solution is

$$y^* = [0 \ 0.5 \ 0 \ 0]^T$$

which gives $\tilde{x}^* = [0 \ 0.5]^T$.

■ Now use a further dimensional extension $y_{11} = x_1x_2$ to allow a semidefinite constraint:

$$0 \preceq \begin{bmatrix} 1 \\ x_1 \\ x_2 \end{bmatrix} \begin{bmatrix} 1 & x_1 & x_2 \end{bmatrix} = \begin{bmatrix} 1 & x_1 & x_2 \\ x_1 & x_1^2 & x_1 x_2 \\ x_2 & x_1 x_2 & x_2^2 \end{bmatrix} = \begin{bmatrix} 1 & y_{10} & y_{01} \\ y_{10} & y_{20} & y_{11} \\ y_{01} & y_{11} & y_{02} \end{bmatrix}$$

This leads to a SDP problem:

$$\begin{aligned} & \text{minimize} & & y_{10} - 2y_{01} \\ & \text{subject to:} & & y_{10} \geq 0, \ y_{01} \geq 0, \ y_{20} \geq 0, \ y_{11} \geq 0, y_{02} \geq 0 \\ & & & -y_{20} + 2y_{10} - y_{02} \geq 0 \\ & & & y_{20} - 2y_{10} + y_{02} - 2y_{01} + 1 \geq 0 \\ & & \begin{bmatrix} 1 & y_{10} & y_{01} \\ y_{10} & y_{20} & y_{11} \\ y_{01} & y_{11} & y_{22} \end{bmatrix} \succeq 0 \end{aligned}$$

Number of variables: 5, Number of constraints: 8 The unique global solution of the SDP problem is given by

$$y^* = [0.1340 \;\; 0.5 \;\; 0.0179 \;\; 0.0670 \;\; 0.25]^T$$
 which gives $\tilde{x}^* = [0.1340 \;\; 0.5]^T.$

- 4. Software for CP (MATLAB-compatible)
 - Commercial
 Optimization Toolbox (MathWorks) LP, QP
 Robust Control Toolbox (MathWorks) SDP
 - Public-domain
 SDPT3 (Cornell, NUS, CMU) LP, QP SOCP, SDP
 SDPA (Tokyo Inst. Tech.) LP, QP, SOCP, SDP
 SeDuMi (J.F. Sturm; McMaster) LP, QP, SOCP, SDP
 http://sedumi.mcmaster.ca

Part II: Polynomial Optimization Problems (POP)

- 1. Unconstrained and Constrained POP
- 2. Lasserre's Conversion
- 3. Moments and Moment Matrices
- 4. Connection of Moment Problems to SDP
- 5. Solving POP via SDP Relaxation
- 6. Software and An Example

1. Unconstrained and Constrained POP

• Unconstrained POP

$$\underset{x \in R^n}{\text{minimize}} \, p(x) \tag{1}$$

• Constrained POP

$$\underset{x \in K}{\text{minimize}} \ p(x) \tag{2a}$$

$$K = \{x \in R^n : h_1(x) \ge 0, \dots, h_m(x) \ge 0\}$$
(2b)

K is known as a semi-algebraic set.

 LP, QP, SOCP, SDP are subclasses of POP LP and QP — obvious.

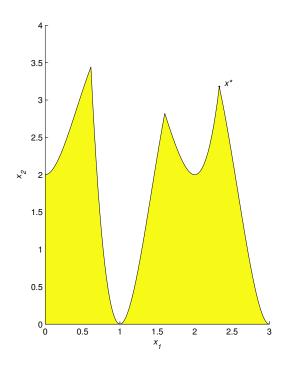
SOCP:
$$||A_i^T x + b_i|| \le c_i^T x + d_i$$

 $\iff ||A_i^T x + b_i||^2 \le (c_i^T x + d_i)^2, c_i^T x + d_i \ge 0$
SDP: $F(x) = F_0 + x_1 F_1 + \dots + x_n F_n \succeq 0$
 $\iff \underbrace{\text{its principal minors}}_{\text{polynomials in } x}$ are nonnegative

- But POP also include a great many nonconvex problems.
 - Example (Laurent, 2006)

minimize
$$p(x) = -x_1 - x_2$$

subject to: $x_2 \le 2x_1^4 - 8x_1^3 + 8x_1^2 + 2$
 $x_2 \le 4x_1^4 - 32x_1^3 + 88x_1^2 - 96x_1 + 36$
 $0 < x_1 < 3, \ 0 < x_2 < 4$



- Example

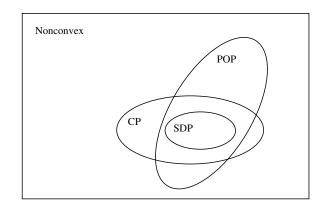
$$\begin{array}{ll} \text{minimize} & x^TQx+q^Tx\\ \text{subject to:} & x_i \in \{0,\ 1\}\\ \Longleftrightarrow & \text{minimize} & x^TQx+q^Tx\\ \text{subject to:} & x_i^2-x_i=0,\ 1\leq i\leq n\\ \Longleftrightarrow & \text{minimize} & x^TQx+q^Tx\\ \text{subject to:} & x_i^2-x_i\geq 0 \quad 1\leq i\leq n\\ & -x_i^2+x_i\geq 0 \quad 1\leq i\leq n \end{array}$$

- Example (Mathematical programming with equilibrium constraints):

$$\begin{array}{ll} \text{minimize} & (x_1+x_2+y_1-15)^2+(x_1+x_2+y_2-15)^2\\ \text{subject to:} & 0\leq x_1\leq 10,\ 0\leq x_2\leq 10,\ y_1\geq 0,\ y_2\geq 0\\ & z_1=\frac{8}{3}x_1+2x_2+2y_1+\frac{8}{3}y_2-36\geq 0\\ & z_2=2x_1+\frac{5}{4}x_2+\frac{5}{4}y_1+2y_2-25\geq 0\\ & y_1z_1+y_2z_2=0 \end{array}$$

2. Lasserre's Conversion

In his SIAM 2001 paper, Jean B. Lasserre takes a fresh look at the POP problems as minimizing a linear function of sequence of moments over all probability measures, which in turn connects the problems to the theory of moment matrices and leads eventually to SDP-relaxation based solution methods.



• Probability Measures

A probability measure is a real-valued function μ on a set S satisfying the following properties

- $-\mu(\phi) = 0, \ \mu(S) = 1$
- For subsets X and Y with $X \cap Y = \phi$, $\mu(X \cup Y) = \mu(X) + \mu(Y)$
- For subsets X and Y with $X\subseteq Y$, $\mu(X)\leq \mu(Y)$ So we see that a probability measure is a nonnegative measure, i.e., $\mu(X)\geq 0$ for any $X\subseteq S$
 - \blacksquare Example: Let \mathcal{S} be the real line and

$$d\mu = \frac{1}{\sqrt{\pi}} e^{-x^2} dx$$
$$\mu(\mathcal{S}) = \int_{-\infty}^{\infty} d\mu = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-x^2} dx = 1$$

 \blacksquare Example: Let S be the real line and

$$d\mu = \delta(x - x^*)dx$$

where $\delta(x)$ is Dirac's δ -function defined by

$$\delta(x) = \begin{cases} 0 & x \neq 0 \\ \infty & x = 0 \end{cases} \int_{-\infty}^{\infty} \delta(x) dx = 1$$

Note

$$\mu(\mathcal{S}) = \int_{-\infty}^{\infty} d\mu = \int_{-\infty}^{\infty} \delta(x - x^*) dx = 1$$

We call this μ the Dirac measure at x^* , having mass 1 at x^* and mass zero elsewhere.

■ Example:

$$d\mu = \sum_{i=1}^{r} \lambda_i \delta(x - x_i) dx$$

with

$$\lambda_i > 0$$
 and $\sum_{i=1}^r \lambda_i = 1$

This is a nonnegative measure satisfying

$$\int_{R^n} d\mu = \int_{R^n} \sum_{i=1}^r \lambda_i \delta(x - x_i) dx = \sum_{i=1}^r \lambda_i \int_{R^n} \delta(x - x_i) dx$$
$$= \sum_{i=1}^r \lambda_i = 1$$

The points x_i are called atoms and the measure is called r-atomic.

• Lasserre's Observations

If

$$p^* = \min_{x \in R^n} p(x) \quad \text{ then } p^* = \min_{\mu \in \mathcal{P}(R^n)} \int_{R^n} p(x) d\mu \tag{3}$$

– If

$$p_K^* = \min_{x \in K} p(x) \quad \text{then } p_K^* = \min_{\mu \in \mathcal{P}(K)} \int_K p(x) d\mu \tag{4}$$

where

 $\mathcal{P}(R^n)$ — all probability measures over R^n

 $\mathcal{P}(K)$ — all probability measures over K

 $\textit{Proof of (3):} \ \ p(x) \geq p^* \quad \text{for all } x \in R^n$

$$\implies \int_{R^n} p(x)d\mu \ge p^* \int_{R^n} d\mu = p^*$$

$$\implies \min_{\mu \in \mathcal{P}(R^n)} \int_{R^n} p(x)d\mu \ge p^*$$
(5)

On the other hand, suppose p^* is achieved by p(x) at x^* , i.e., $p(x^*) = p^*$. We consider the Dirac measure $d\mu = \delta(x - x^*)dx$ and compute

$$\int_{\mathbb{R}^n} p(x)d\mu = \int_{\mathbb{R}^n} p(x)\delta(x - x^*)dx = p(x^*) = p^*$$

Hence

$$\min_{\mu \in \mathcal{P}(R^n)} \int_{R^n} p(x) d\mu \le p^* \tag{6}$$

(5) and (6) imply (3).

- The significance of (3) and (4) is that the problem of minimizing polynomial p(x) over a semi-algebraic set is now converted to the problem of minimizing the integral $\int p(x)d\mu$ over all probability measures.
- Next, the later problem is converted to the optimization over sequences of moments.

3. Moments and Moment Matrices

Notation

$$p(x) = \sum_{\alpha} p_{\alpha} x^{\alpha}, \ x^{\alpha} = x_1^{\alpha_1} x_2^{\alpha_2} \dots x_n^{\alpha_n}$$
 (7)

The order of p(x) is equal to the largest $\sum_{i=1}^{n} \alpha_i$ among all nonzero coefficients p_{α} in (7).

- The terms in (7) are arranged according to a basis for d-degree real-valued polynomial p(x): $1, x_1, x_2, \ldots, x_n, x_1^2, x_1x_2, \ldots, x_1x_n, \ldots, x_n^2, \ldots, x_1^d, \ldots, x_n^d$
- The number of the terms in the basis is called the dimension of the basis and is denoted by s(d)

$$s(d) = \binom{n+d}{d} = \frac{(n+d)!}{n!d!}$$

Example:

• Writing

$$\int p(x)d\mu = \int \sum_{\alpha} p_{\alpha} x^{\alpha} d\mu = \sum_{\alpha} p_{\alpha} \int x^{\alpha} d\mu = \sum_{\alpha} p_{\alpha} y_{\alpha}$$

where

$$y_{\alpha} = \int x^{\alpha} d\mu$$

are the moments for the nonnegative measure μ , the problems in (3) and (4) become

$$\min_{\mu \in \mathcal{P}(R^n)} \int_{R^n} p(x) d\mu = \min_{\{y_\alpha\}} \sum_{\alpha} p_\alpha y_\alpha \tag{8}$$

with $\{y_{\alpha}\}$ a sequence of moments associated with a representing measure μ over \mathbb{R}^n ; and

$$\min_{\mu \in \mathcal{P}(K)} \int_{K} p(x) d\mu = \min_{\{y_{\alpha}\}} \sum_{\alpha} p_{\alpha} y_{\alpha}$$

$$\tag{9}$$

with $\{y_{\alpha}\}$ a sequence of moments associated with a representing measure μ over set K.

- In (8) and (9), the probability measures are replaced by the sequence of moments, and the objective functions are linear functions of $\{y_{\alpha}\}$ so the question now is how those sequences $\{y_{\alpha}\}$ that are associated with nonnegative measures can be characterized. It is at this point of the development where the theory of moment matrices comes to play an important role.
 - Moment matrix M(y)
 - Example: n = 2 $\alpha = (\alpha_1, \alpha_2) : (0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2), (3, 0), \dots$ $x^{\alpha} : 1, x_1, x_2, x_1^2, x_1x_2, x_2^2, x_1^3, \dots$ $\{y_{\alpha}\} : y_{00}, y_{10}, y_{01}, y_{20}, y_{11}, y_{02}, y_{30}, \text{ with } y_{00} = 1$

$$M(y) = \begin{bmatrix} y_{00} & y_{10} & y_{01} & y_{20} & y_{11} & y_{02} & \cdots & y_{\alpha} & \cdots \\ y_{10} & y_{20} & y_{11} & y_{30} & y_{21} & y_{12} & \cdots & \vdots \\ y_{01} & y_{11} & y_{02} & y_{21} & y_{12} & y_{03} & \cdots & \vdots \\ y_{20} & y_{30} & y_{21} & y_{40} & y_{31} & y_{22} & \cdots & \vdots \\ y_{11} & y_{21} & y_{12} & y_{31} & y_{22} & y_{13} & \cdots & \vdots \\ y_{02} & y_{12} & y_{03} & y_{22} & y_{13} & y_{04} & \cdots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \ddots & \ddots & \vdots & \vdots \\ y_{\beta} & \cdots & \cdots & \cdots & \cdots & \cdots & y_{\alpha+\beta} \\ \vdots & \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \end{bmatrix}$$

- Truncated moment matrix $M_t(y)$ It starts with a truncated sequence of moments $\{y_\alpha\} \in s(2t)$, and can be obtained from M(y) as a leading principal submatrix of dimension s(t).
 - \blacksquare Example: n=2, t=1:

$$M_1(y) = \begin{bmatrix} 1 & y_{10} & y_{01} \\ y_{10} & y_{20} & y_{11} \\ y_{01} & y_{11} & y_{02} \end{bmatrix}$$

If $d\mu = \delta(x - x^*)dx$ with $x^* = \begin{bmatrix} x_1^* & x_2^* \end{bmatrix}^T$ then

$$M_1(y) = \begin{bmatrix} 1 & x_1^* & x_2^* \\ x_1^* & x_1^{*^2} & x_1^* x_2^* \\ x_2^* & x_1^* x_2^* & x_2^{*^2} \end{bmatrix} = \begin{bmatrix} 1 \\ x_1^* \\ x_2^* \end{bmatrix} \begin{bmatrix} 1 & x_1^* & x_2^* \end{bmatrix} \succeq 0$$

If
$$d\mu = \frac{1}{\pi}e^{-(x_1^2 + x_2^2)}dx_1dx_2$$
 then
$$y_{10} = y_{01} = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} xe^{-x^2}dx = 0$$

$$y_{20} = y_{02} = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} x^2xe^{-x^2}dx = \frac{\pi}{2}$$

$$y_{11} = 0$$

Hence

$$M_1(y) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{\pi}{2} & 0 \\ 0 & 0 & \frac{\pi}{2} \end{bmatrix} \succ 0$$

- 4. Connection of Moment Problems to SDP
 - In general, an arbitrary vector p_{α} of dimension s(t) can be associated with a polynomial of degree t, and we can write

$$0 \le \int p^{2}(x)d\mu = \int \left(\sum_{\alpha} p_{\alpha}x^{\alpha}\right) \cdot \left(\sum_{\beta} p_{\beta}x^{\beta}\right)d\mu$$
$$= \sum_{\alpha} \sum_{\beta} p_{\alpha}p_{\beta} \int x^{\alpha+\beta}d\mu$$
$$= \sum_{\alpha} \sum_{\beta} p_{\alpha}p_{\beta}y_{\alpha+\beta} = p_{\alpha}^{T}M_{t}(y)p_{\alpha}$$

Hence

$$M_t(y) \succeq 0 \implies M(y) \succeq 0$$

• The Constrained Case

Consider one polynomial constraint: $K = \{x : h(x) \ge 0\}$

- We need to define "shift vector" as h*y whose α -component is $\sum_{\beta} h_{\beta} y_{\alpha+\beta}$
- If h(x) is a polynomial of degree 2d or 2d-1, $y \in R^{s(2t)}$ is the truncated sequence of moments up to order 2t of a nonnegative measure supported by $K = \{x : h(x) \ge 0\}$, then $M_{t-d}(h * y) \succeq 0$.

This is because

$$p^{T} M_{t-d}(h * y) p = \int_{K} h(x) p^{2}(x) d\mu \ge 0$$

- In general, for $K = \{x : h_1(x) \ge 0, \ldots, h_m(x) \ge 0\}$ where each $h_j(x)$ is a polynomial of degree $2d_j$ or $2d_j - 1$, and $y \in R^{s(2t)}$ is truncated sequence of moments of a nonnegative measure supported by K, then

$$M_t(y) \succeq 0, \ M_{t-d_j}(h_j * y) \succeq 0 \quad 1 \le j \le m$$

• In summary,

$$-\min_{x \in R^n} p(x) = \min_{\mu \in \mathcal{P}(R^n)} \int_{R^n} p(x) d\mu = \min_{y \in \mathcal{M}} p^T y$$

where \mathcal{M} is the set of sequences y, each of which admits a representing measure.

$$-\min_{x \in K} p(x) = \min_{\mu \in \mathcal{P}(K)} \int_K p(x) d\mu = \min_{y \in \mathcal{M}(K)} p^T y$$

where $\mathcal{M}(K)$ — the set of sequences having respresenting measures supported by set K.

$$-y \in \mathcal{M} \Rightarrow M(y) \succeq 0$$

$$-y \in \mathcal{M}(K) \Rightarrow M_t(y) \succeq 0, M_{t-d_i}(h_i * y) \succeq 0$$

So if we let $\mathcal{M}_+ = \{y : M(y) \succeq 0\}$, then $\mathcal{M} \subseteq \mathcal{M}_+$.

- Is
$$\mathcal{M} = \mathcal{M}_+$$
?

If yes, then the unconstrained POP becomes an "SDP" problem:

$$\hat{p}^* = \underset{y \in \mathcal{M}_+}{\text{minimize}} \, p^T y \tag{10}$$

- It is known that $\mathcal{M} \subset \mathcal{M}_+$ is proper, so the minimum of (10) offers only a lower bound of the global minimum p^* in (3):

$$\hat{p}^* \leq p^*$$

- Also, technical difficulties exist for implementing (10) because M(y) is of infinite dimension.
- For constrained POP:

- Let
$$\mathcal{M}_+^{put} = \{y : M(y) \succeq 0, \ M(h_j * y) \succeq 0, \ 1 \leq j \leq m\}$$
, then
$$\mathcal{M}(K) \subset \mathcal{M}_+^{put}$$

Thus the minimum of the SDP problem

$$\hat{p}_K^* = \underset{y \in \mathcal{M}_{\perp}^{put}}{\text{minimize}} \, p^T y \tag{11}$$

offers a lower bound for p_K^* in (4):

$$\hat{p}_K^* \le p_K^*$$

5. Soving POP via SDP Relaxation

• Lasserre proposes to deal with the unconstrained POP problem

$$\underset{x \in R^n}{\operatorname{minimize}} \, p(x)$$

by solving a series of truncated SDP problems

$$p_t^* = \min p^T y \text{ s.t. } y_0 = 1, M_t(y) \succeq 0$$
 (12)

where $t \ge \deg(p(x))/2$.

 $\bullet \;$ Similarly, the constrained POP $\; \underset{x \in K}{\operatorname{minimize}} \; p(x) \;$ is treated by solving

$$p_{tK}^* = \min p^T y$$
 s.t. $y_0 = 1$,
 $M_t(y) \succeq 0, \ M_{t-d_j}(h_j * y) \succeq 0, \ 1 \le j \le m$ (13)

where $t \ge \max(d_0, d_1, \ldots, d_m), d_0 = \lceil \deg(p)/2 \rceil, d_j = \lceil \deg(h_j)/2 \rceil, \text{ for } 1 \le j \le m.$

- Properties of Lasserre's Solution Method
 - For a fixed t, (13) is a standard SDP problem and can be solved efficiently.
 - Under certain compactness condition on set K, $p_{tK}^* \to p_K^*$ as $t \to \infty$, and the convergence sometimes can even be achieved in finite number of steps.
 - Optimality certificate: If $M_t(y)$ satisfies certain rank condition, then $p_{tK}^* = p_K^*$.
 - Under this rank condition, the global minimizers can be constructed.

6. Software and An Example

• Public-domain

GloptiPoly (Henrion and Lasserre)

SparsePOP (Waki, Kim, Kojima, and Muramatsu)

SOSTOOLS (Prajna, Papachristodoulou, and Parrilo)

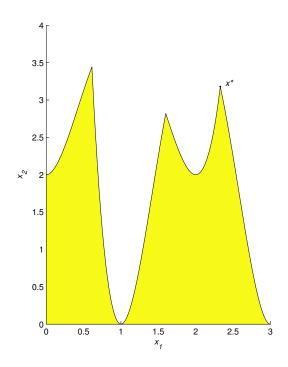
- All three packages incorporate SeDuMi for solving the SDP problems involved.
- Example (Laurent, 2006)

minimize
$$p(x) = -x_1 - x_2$$
 subject to:
$$x_2 \le 2x_1^4 - 8x_1^3 + 8x_1^2 + 2$$

$$x_2 \le 4x_1^4 - 32x_1^3 + 88x_1^2 - 96x_1 + 36$$

$$0 < x_1 < 3, \ 0 < x_2 < 4$$

• MATLAB code using GloptiPoly



function $x = laurent_ex42_f(order)$

```
P{1}.c = [0 -1 0 0 0; -1 0 0 0]; P{1}.t = 'min';
P{2}.c = [2 -1; 0 0; 8 0; -8 0; 2 0]; P{2}.t = '>=';
P{3}.c = [36 -1; -96 0; 88 0; -32 0; 4 0]; P{3}.t = '>=';
P{4}.c = [0; 1]; P{4}.t = '>=';
P{5}.c = [3; -1]; P{5}.t = '>=';
P{6}.c = [0 1]; P{6}.t = '>=';
P{7}.c = [4 -1]; P{7}.t = '>=';
out = gloptipoly(P, order);
x = out.sol{:};
```

• Results

Order t	Bound \hat{p}_{tK}	Solution
2	-7.00	none
3	-6.67	none
4	-5.51	$[2.3295 \ 3.1785]^{\dagger}$

†: Global minimizer.

• MATLAB code using SparsePOP

```
function x = laurent_ex42_j(order)
% Name of the problem to be solved.
 problemName = 'laurent_ex42_j.gms';
% objPoly
 objPoly.typeCone = 1;
 objPoly.dimVar = 2;
 objPoly.degree = 1;
 objPoly.noTerms = 2;
 objPoly.supports = [1 0; 0 1];
 objPoly.coef = [-1; -1];
% ineqPolySys
 ineqPolySys{1}.typeCone = 1;
  ineqPolySys{1}.dimVar = 2;
 ineqPolySys{1}.degree = 4;
  ineqPolySys{1}.noTerms = 5;
  ineqPolySys{1}.supports = [0 0; 0 1; 2 0; 3 0; 4 0];
 ineqPolySys{1}.coef = [2; -1; 8; -8; 2];
% ineqPolySys
 ineqPolySys{2}.typeCone = 1;
 ineqPolySys{2}.dimVar = 2;
  ineqPolySys{2}.degree = 4;
 ineqPolySys{2}.noTerms = 6;
 ineqPolySys{2}.supports = [0 0; 0 1; 1 0; 2 0; 3 0; 4 0];
 ineqPolySys{2}.coef = [36; -1; -96; 88; -32; 4];
% lower bounds for variables x1 and x2
 1bd = [0, 0];
% upper bounds for variables x1 and x2
 ubd = [3, 4];
% Default values of parameters
param.dummy = 0; param.symbolicMath = 0;
param.reduceMomentMatSW = 1; param.relaxOrder = order;
[param, SDPobjValue, POP, cpuTime, SeDuMiInfo, SDPinfo] = ...
       sparsePOP(param, objPoly, ineqPolySys, lbd, ubd);
fileId = 1; printLevel=2;
printSolution(fileId, printLevel, problemName, param, ...
       SDPobjValue, POP, cpuTime, SeDuMiInfo, SDPinfo);
x = POP.xVect; return
```

• Results

Order t	Bound \hat{p}_{tK}	Solution
2	-7.00	[2.9907 4.0]*
3	-6.64	[2.6377 4.0]*
4	-5.51	$[2.3295 \ 3.1785]^{\dagger}$

^{*:} Not feasible.

^{†:} Global minimizer.