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1. Optimization Problems

e Unconstrained Optimization

minimize f(zx)

— Example: Solve polynomial system

pi(z) =0, pa(x) =0, ...
(1) pi(x) =0, pi(z) =0, ...

(2) = flz)= Zp?(x) =0

) pm(x) =0
, Do) =0

ey
2)

m z* is a solution of (1) iff the global minimum of f(x) is zero and x* is a global

minimizer.
e Constrained Optimization

minimize  f(x)

subject to:  a;(x)
(

Vv

¢i(z)

0,:=1,...,p
0,j=1,.

... q

— Feasible region and feasible points

K={x: a;(x)=0for1 <i<p, ¢j(x) >0forl <j<gq}

3) & mirwlierln(ize f(x)

m Example: Minimum distance between two ellipses

X2, Xy

X1, X3

(3a)
(3b)
(3¢)

“)



minimize f(z) = (11 — x3)? + (25 — 74)

subject to: lxz + 22 — lxl < 3
471 2" T 4
D, 9 o9 3 11 13 35
§<x3 + LL’4) + Z$3$4 - ?l’g — 71’4 ~ —7

m Example: Optimum data detection in wireless communications

minimize 2’ Qz +p'z  (Q = 0)

subjectto:  x; €{0, 1}, i=1, ..., n
T

minimize 2’ Qz + p’x

subjectto:  z7 —2;=0,i=1, ..., n

e Convex Programming (CP)

minimize  f(x) (5a)
subjectto:  a;(z) =0 i=1,...,p (5b)
cj(x) >0 j=1,..., ¢ (5¢)

where f(x) is convex
a;(x) are linear, 1 <i <p
—c;(z) are convex, 1 < j <g¢

— A CP problem minimizes a convex objective function over a convex feasible region.

m Example:
minimize —I; — o

subject to: % + a3 <1

The objective function is convex and the feasible region is convex (—c;(x) = 22 + x5 — 1 convex),
hence a CP problem.

e Why convex programming?

m CP has several desirable properties:
Globlaness and uniqueness of solution; convexity of solution set; Karush-Kuhn-Tucker
(KKT) conditions.
For CP problem (5), the KKT conditions are both necessary and sufficient:

Suppose x* is a minimizer of (5) that is regular for the constraints active at x*, then
(@ a;(z*)=0for1 <i<p
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(b) ¢j(z*) >0forl1 <j<gq
(c) 3\} and p such that

Vi) =Y NVa(a)+ Y 1Ve,(x")
i=1 j=1

(d)pjej(x*) = 0 for 1 < j < g (complementarity conditions)
(e)p;>0forl <j<gq

m There exists a nice duality theory

m There exist efficient solvers.
e (Classification of CP problems

m Linear programming (LP)
minimize ¢’z
subjectto: Az >

m Convex quadratic programming (QP)

minimize 2" Qz + ¢ v+ K (Q = 0)
subjectto:  Ax > b

m Second-order cone programming (SOCP)

minimize b’z
subject to: || Az +bi|| < clz+di,i=1, ..., ¢

m Semidefinite programming (SDP)

minimize ¢’z q
subjectto:  F'(x) = Fy + Z ; F; =0

. . =1
(Fy, F; are symmetric matrices)

e Relations of SDP with LP, QP, and SOCP

m LP:

minimize ¢’z

subjectto: Az >0

Write Ax > b as

—b+ Az =—-b+]a; ... an]x:—b—i—ZaixiZO

i=1



< diag{—b} + Z z;diag{a;} = 0
—— N——

i=1

FO Fi

i=1
m SOCP
minimize b’ x
subject to: || Ax +bi|| < clz+di 1<i<gq

Note:

tI u

<
lll <t = |17}

E

Hence || Az + b;|| < ]z +d,

(AZ.T + bl)T CZTJI + dl -

m LP C QP C SOCP C SDP

2. Wolfe’s Theorem on Duality
Consider the general CP problem (as the primal problem)

(P) minimize f(z)
subjectto: a;(v) =alx—b;=0i=1,...,p
ci(z) >0, j=1, » 4
Define its Lagrangian
p q

L, A, ) = £(2) = 3 haite) = 3 ey (a)

i=1 j=1



e The dual of problem (P) can be created by the following theorem due to P. Wolfe (1961):

Let z* be a minimizer of (P) and \*, u* be the associated Lagrange multipliers. Assume
x* is a regular point of the constraints. Then (z*, A*, *) also solves the dual problem

(D) maxi/{nize L(z, A\, 1)
LA

subjectto:  VL(xz, A\, u) =0
p =0

In addition, f(x*) = L(x*, \*, u*)

Problem (P)
l minimizing f(x)

----------- f') = LGS, A )

T maximizing L(x, A, |

Problem (D)

e Define duality gap 6(x, A\, p) = f(x) — L(z, X\, u)
Wolfe’s theorem says 0 > 0 for feasible x, A, p,
and § = 0 at (z*, \*, u*).

In fact, for a feasible set (z, A, u)

0 = flx) = L(x, A, p) = Zm )+ D e (@)
IZWCJ'(SC)>

and ¢ reduces to zero at (z*, \*, u*) because of the complementarity conditions
pici(r*) =0, j=1,..., ¢

e Example: Linear programming

P) minimize ¢’z (Engineering)

subjectto: Az >



L(z, A, p) =c'w — (Az = b)Tp

(D) maximize ¢’z — (Az —b)Tp
subjectto: c¢— AT =0, u>0

)
(D) maximize b’ p (Math)
subjectto:  ATp=¢, n>0

3. Semidefinite Programming (SDP)
e Why is SDP popular?

— SDP is a class of CP problems (theoretical tractability)
— LP, QP, SOCP are subclasses of SDP
— SDP arises in a number of important applications in science and engineering

— Efficient SDP solvers are available

e Examples
Let A(x) = Ag + 1141+ - - -+ 1, A,

— Find z* = [z} ... 2] that minimizes the largest eigenvalue of A(z), i.e., find z* to
solve

minimize max A\[A(z)]

m A(z) is symmetric

—  A(x)=U"T U

with U orthogonal = tI — A(z) =t -UTIU — A(x)

t_>\mam 0
:UT e U
0 t_)\mzn

m Hence t1 — A(z) = 0iff ¢ > \pas

m The value of ¢ satisfying t/ — A(x) = 0 provides at right upper bound for A,
This is an SDP problem:

minimize ¢
subjectto: tI — A(z) =0



— Find z* that minimizes the 2-norm of A(z), i.e., find z* to solve

minimize max \Y2[AT (2) A(z)]

We need to solve
minimize ¢
subject to: 21 — AT (2)A(x) = 0
which can be converted into the SDP problem
minimize ¢
tI  Ax)

subject to:
! AT(z)  tl

=0

e Duality

— the primal SDP assumes the form
(P) minimize ¢’ .
subjectto:  F(x) = Fy + Z v, F; =0
i=1
— the Lagrangian:

Lz, Y)=c'z2 Y - (Fy + ZIZFZ)
i=1

where the inner product A - B = trace(AB) = >, >~ a;;bi;
— the Wolfe dual:

n

maximize cax—Y - F,— Z (Y - F)
=1

subjectto: V. L(z, Y)=0
Y =0

= (D) maximize —Y - Fj
subjectto: Y - -F;=¢, 1<1<n
Y =0
— Duality gap:

n

i=1 i=1

=Y (Fo+ > xF) =Y F(z) >0
=1



— Example

minimize 1z — 229
subjectto:  x; >0, x5 >0
(r,— 1) +a5<1
(x; — 12+ (- 1)2>1

Number of variables: 2, Number of constraints: 4

m This is a nonconvex problem because its feasible region is not convex:

1

X2
0.9F
0.8f

0.7r

0.6

0.51 A Global Solution Point

0.4r

0.3r

02} Feasible
Region

0.1

m The global solutin of the problem is z* = [0.1340 0.5]%.

m Put the problem in an extended space (dimensional extension)
Let y10 = 21, Yo1 = T2, Y20 = T3, Yoo = 22 and express the problem as

minimize Y19 — 2Y01
subject to: 19 > 0, yo1 >0
—Y20 + 2Y10 — Yoz = 0
Y20 — 2y10 + Yo2 — 2yor +1 >0
(one might add:)  y0 > 0, yo2 > 0

Number of variables: 4, Number of constraints: 6
This is an LP problem whose unique global solution is

y* =10 0.5 0 0"

which gives * = [0 0.5]7.

10



m Now use a further dimensional extension vy, = x125
to allow a semidefinite constraint:

1 1 = T 1 vy ym
0= {z| [l & @)= |21 2} x| = [Y10 Y20 Yn
T2 T T1T2 33% Yo1 Y11 Yoz

This leads to a SDP problem:
minimize Y10 — 2Yo1
subjectto:  y10 > 0, yo1 =2 0, y20 =2 0, y11 = 0,902 > 0
—Y20 + 2Y10 — Yo2 = 0
Y20 — 2y10 + Yoz — 2%01 +1 >0

I yio ym
Yo Y20 Yyir| =0
Yo1r Y Y22
Number of variables: 5, Number of constraints: 8
The unique global solution of the SDP problem is given by

y* = [0.1340 0.5 0.0179 0.0670 0.25]"
which gives 7* = [0.1340 0.5]%.
4. Software for CP (MATLAB-compatible)

e Commercial
Optimization Toolbox (MathWorks) — LP, QP
Robust Control Toolbox (MathWorks) — SDP

e Public-domain
SDPT3 (Cornell, NUS, CMU) — LP, QP SOCP, SDP
SDPA (Tokyo Inst. Tech.) — LP, QP, SOCP, SDP
SeDuMi (J.F. Sturm; McMaster) — LP, QP, SOCP, SDP
http://sedumi.mcmaster.ca
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Part II: Polynomial Optimization Problems (POP)

. Unconstrained and Constrained POP

. Lasserre’s Conversion

. Moments and Moment Matrices

. Connection of Moment Problems to SDP
. Solving POP via SDP Relaxation

. Software and An Example

AN AW

1. Unconstrained and Constrained POP

e Unconstrained POP

minimize p(z) (1)

e Constrained POP

minimize p(z) (2a)

K={xeR":h(x)>0,..., hy(x) >0} (2b)

K is known as a semi-algebraic set.

e LP, QP, SOCP, SDP are subclasses of POP
LP and QP — obvious.

SOCP: ||ATz + b < cf'x+d,
SDP: F(x)=Fy+x1F1+- -+ x,F, =0

<> its principal minors are nonnegative
A - -

polynorr‘lrials inx

e But POP also include a great many nonconvex problems.

— Example (Laurent, 2006)
minimize p(x) = —x7 — 7y
subject to:  my < 227 — 8z + 87 + 2
xo < daf — 3223 + 882F — 96z + 36
0<z;<3,0<2,<4

12



3.5

w
T

25F

-

0.5

— Example
minimize z7Qx + ¢«
subject to: x; € {0, 1}
<= minimize 27Qz + ¢%x
subjectto: z? —x; =0, 1<i<n
<= minimize 27Qz + ¢’z

subjectto: zZ—xz; >0 1<i<n
—224+2;,>0 1<i<n

— Example (Mathematical programming with equilibrium constraints):

minimize (1 + T2 + 41 — 15)? + (71 + 29 + yo — 15)?

subjectto: 0 <z, <10, 0< 2, <10, y; >0, y2 >0
21 = 521 4 200 + 2y1 4+ Sy — 36 > 0
22:2x1+%x2+%y1+2y2—2520
Y121+ Y222 =0

2. Lasserre’s Conversion

In his STAM 2001 paper, Jean B. Lasserre takes a fresh look at the POP problems as minimizing a
linear function of sequence of moments over all probability measures, which in turn connects the
problems to the theory of moment matrices and leads eventually to SDP-relaxation based solution
methods.

13
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e Probability Measures

A probability measure is a real-valued function p on a set S satisfying the following proper-
ties

= n(¢) =0, u(S) =1
— For subsets X and Y with X Y = ¢, (X JY) = u(X) + u(Y)
— For subsets X and Y with X C Y, u(X) < u(Y)

So we see that a probability measure is a nonnegative measure, i.e., (X ) > 0 for any
XcCSs

m Example: Let S be the real line and
_ 1 22
dp = =€ dx
w(S) = [T dp= ﬁ e e dr =1
m Example: Let S be the real line and
dp = 6(x — x*)dx

where §(x) is Dirac’s d-function defined by

5(;5):{0 v 70 /_ooé(x)dle

oo =0

Note
u(S):/OO du:/oo 0z —z")dr =1
We call this i the Dirac measure at x*, having mass 1 at * and mass zero else-
where.
m Example:

T

dp = Z Nid(z — x;)dx

i=1

14



with

A >0 and i)\lzl

=1

This is a nonnegative measure satisfying

/ dp = / i)x,-é(x — x;)dxr = ZT: )\i/ O(x — x;)dx
" "i=1 i=1 Rm
i=1

The points x; are called atoms and the measure is called r-atomic.

e Lasserre’s Observations

~If
* = mij then p* = mi d 3
p" = min p(z)  thenp Join / p(x)dp 3)
~ If
‘= mij then pi, = mi d 4
Pi = minp(z)  then py fin /K p(z)dp 4)
where

P(R™) — all probability measures over R"
P(K') — all probability measures over K

Proof of (3): p(z) > p* forallz € R"
— / p(x)dp > p*/ du = p*

1 du > p* 5
— uerg%gn)/np(x) ©>p (5)

On the other hand, suppose p* is achieved by p(z) at *, i.e., p(z*) = p*. We consider
the Dirac measure du = 6(x — z*)dz and compute

/np(x)du = /np(g;)é(x eV = p(a) = p
Hence

i du < p* 6
Join / pla)du < p (6)

(5) and (6) imply (3).

15



— The significance of (3) and (4) is that the problem of minimizing polynomial p(x)
over a semi-algebraic set is now converted to the problem of minimizing the integral
[ p(z)du over all probability measures.

— Next, the later problem is converted to the optimization over sequences of moments.
3. Moments and Moment Matrices

e Notation

p(z) = Zpaxo‘, x® =a{wd? . (7)
[e%

The order of p(x) is equal to the largest Z a; among all nonzero coefficients p,, in (7).
i=1

e The terms in (7) are arranged according to a basis for d-degree real-valued polynomial p(x) :

2 2 d d
1, @1, o, ..., Ty, X7, T1T2, ..., T1Tp, ..., TL, ..., T, .., Th

e The number of the terms in the basis is called the dimension of the basis and is denoted by

s(d)
n+d (n+d)!
d) = v
s(d) ( d ) nld!
Example:
n d s(d)
2 2 6
3 2 10
5 2 21
10 2 66
10 4 91
10 10 184756
e Writing
/p(x)du = /Zpaxadu = Zpa/xadu = Paba
where

Yo = / zdp
are the moments for the nonnegative measure i, the problems in (3) and (4) become

min x)dp = min oYa ()
)/Rnp()u mi za:py

neP(R™

with {y,} a sequence of moments associated with a representing measure ;. over R"; and

min z)dp = min o U 9
HGP(K)/KZ)( )y {ya}za:p Y ©)

16



with {y,} a sequence of moments associated with a representing measure y over set K.

e In (8) and (9), the probability measures are replaced by the sequence of moments, and the
objective functions are linear functions of {y,} so the question now is how those sequences
{y.} that are associated with nonnegative measures can be characterized. It is at this point
of the development where the theory of moment matrices comes to play an important role.

— Moment matrix M (y)

m Example: n = 2
a = (O'/l? Oég) : (0’ 0)7 (1’ 0)’ (0’ 1)’ (2’ 0), (1’ 1)9 (0’ 2)7 (3’ 0)’ e
%1, my, T, X2, ;To, T T L
{Ya} : Y00, Y10, Yo1, Y20, Y11, Yo2, Ys0, With ygo =1

Yoo Yo Yor Y20 Y11 Yo2 ' Yo
Yo Y20 Y11 Yso Y21 Y12 :
Yor Y11 Yoz Y21 Y12 Yo3
Y20 Yso Y21 Ya0 Y3 Y22
M) = lyn vy vi2 Yt Y22 Yis
Yoz Y12 Yo3 Y22 Y13 Yoda

yﬁ . e . e . e . e . e . e y()(-‘rﬁ

— Truncated moment matrix M;(y)
It starts with a truncated sequence of moments {y, } € s(2t), and can be obtained from

M (y) as a leading principal submatrix of dimension s(t).
m Example: n =2, t = 1:

1 yi0 ym
Ml(y) = Y10 Y20 Y11
Yo1 Y11 Yoz

If dy = §(x — 2*)dx with * = |2} 237 then

1 a3 i 1
_ * x2 * .k _ * * *
Mi(y) = |27 27 x13;2 = |27 | [1 27 23] = 0
* * kK * *

17



If dj = Le~ @423 dz, dx, then
1 [e.e]
le :yOI :ﬁ/_ooxe—m2dxzo
™

= = L /OO 22re " dr =
y20—902—ﬁ_00 =3

yin =0
Hence

=0

ol O

1
Mi(y) = |0
0

v O O

4. Connection of Moment Problems to SDP

e In general, an arbitrary vector p,, of dimension s(t) can be associated with a polynomial of
degree ¢, and we can write

OS/ d/L—/(Zpa )(Zpﬁ«rﬁ>d
B
=D pabs / 2 dp
a B
= PabsYars = P My(y)pa
a 8

Hence

M(y) =0 = M(y) =0

e The Constrained Case

Consider one polynomial constraint: K = {z : h(z) > 0}

— We need to define “shift vector” as h * y whose a-component is Zhﬁyaw
8

— If h(x) is a polynomial of degree 2d or 2d — 1, y € R*?! is the truncated sequence of
moments up to order 2¢ of a nonnegative measure supported by X = {x : h(z) > 0},
then M, _4(h*y) = 0.

This is because

P My_a(hs y)p = /K W) (@) > 0

— In general, for K = {z : hy(xz) >0, ..., h ( ) > 0} where each h;(x) is a polyno-
mial of degree 2d; or 2d; — 1, and y € RS ) is truncated sequence of moments of a
nonnegative measure supported by K, then

Mt(y>t07 Mt—dj(h]*y>t0 1§j§m

18



e In summary,

- mi — i du = min p¥
min p(z) i / p(z)dp = minp"y

where M is the set of sequences y, each of which admits a representing measure.

— mi — mi du = min pT
min p(z) Din /K p(z)dp RN

where M (K') — the set of sequences having respresenting measures supported by set
K.

- yeEM= My =0
Soifwelet M = {y: M(y) = 0}, then M C M.

- ISM:M+?

If yes, then the unconstrained POP becomes an “SDP” problem:

Pt = miréi/{/lnize ply (10)
+

— Itis known that M C M, is proper, so the minimum of (10) offers only a lower bound
of the global minimum p* in (3):

pr<p*

— Also, technical difficulties exist for implementing (10) because M (y) is of infinite di-
mension.

e For constrained POP:
— Let MZ" = {y: M(y) =0, M(h;*y) =0, 1 <j <m},then
M(K) C Mﬁ“t
Thus the minimum of the SDP problem

Py = minimize ply (11)
yeMi”

offers a lower bound for pj in (4):

Pk < Pk

5. Soving POP via SDP Relaxation

19



e Lasserre proposes to deal with the unconstrained POP problem

minimize p(z)

by solving a series of truncated SDP problems
pi=minpy st yo =1, My(y) = 0 (12)
where ¢t > deg(p(x))/2.
e Similarly, the constrained POP migier}}ize p(z) is treated by solving
Pix =minpy sty =1,
Mi(y) = 0, My_q,(hj*y) =0, 1 <j<m (13)
where t > max(dy, di, ..., dp), do = [deg(p)/2], d; = [deg(h;)/2], for1 < j < m.
e Properties of Lasserre’s Solution Method

— For a fixed ¢, (13) is a standard SDP problem and can be solved efficiently.

— Under certain compactness condition on set K, pj, — pj ast — oo, and the conver-
gence sometimes can even be achieved in finite number of steps.

- Optimality certificate: If M,(y) satisfies certain rank condition, then p}, = pj,.

— Under this rank condition, the global minimizers can be constructed.
6. Software and An Example

e Public-domain
GloptiPoly (Henrion and Lasserre)
SparsePOP (Waki, Kim, Kojima, and Muramatsu)
SOSTOOLS (Prajna, Papachristodoulou, and Parrilo)

— All three packages incorporate SeDuMi for solving the SDP problems involved.

e Example (Laurent, 2006)

minimize p(z) = —x; — 2

subject to:  wy < 277 — 873 + 8z + 2
Ty < 4a] — 3223 + 8827 — 9621 + 36
0<z1<3,0<2,<4

e MATLAB code using GloptiPoly

20
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function x

P{l}.c = [0 -1 0 0 0; -1 0 0 0 0]; P{1}.t = "min’;
P{2}.c = [2 =-1; O O0; 8 0; -8 0; 2 01; P{2}.t = ">=";
P{3}.c = [36 —-1; —-96 0; 88 0; —-32 0; 4 01; P{3}.t = "'>=";
P{4}.c [0; 1]; P{4}.t = ">=";
P{5}.c = [3; —-11; P{5}.t = ">=";
P{6}.c = [0 1]; P{6}.t = ">=";
P{7}.c = [4 -11; P{7}.t = ">=";
out = gloptipoly (P, order);
X = out.sol{:};
e Results
Order t | Bound pyx Solution
2 —7.00 none
3 —6.67 none
4 —5.51 [2.3295 3.1785P

: Global minimizer.

21
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e MATLAB code using SparsePOP

function x

o\

o\

o\

o\

o\

<

param.dummy
param.reduceMomentMat SW
[param, SDPobjValue, POP, cpuTime, SeDuMiInfo, SDPinfo]

laurent_ex42_7j (order)

Name of the problem to be solved.

problemName

objPoly
objPoly

objPoly

objPoly

.typeCone
objPoly.
.degree
objPoly.
. supports
objPoly.

dimVar

noTerms

coef

inegPolySys

inegPolySys{1}.
inegPolySys{l}.
ineqgPolySys{l}.
inegPolySys{1l}.
inegPolySys{1l}.
inegPolySys{1}.

inegPolySys

ineqgPolySys{2}.
inegPolySys{2}.
inegPolySys{2}.
inegPolySys{2}.
inegPolySys{2}.
inegPolySys{2}.
lower bounds

lbd = [0,0];
upper bounds
ubd = [3,4];

o

o

typeCone
dimVar
degree
noTerms
supports
coef

typeCone
dimVar
degree
noTerms
supports
coef

for variables x1 and x2

PR R R

1;

o

"laurent_ex42_j.gms’;

0 171,

-11;

= 1;

= 2;

= 4;

= 5;

= [0 0; O 1;
= [2; -1; 8;
= 1;

= 2;

= 4;

= 6;

= [0 0; O 1;
= [36; -1;

for variables x1 and x2

o

param.symbolicMath =

2

_8;

1

-96;

0;

0, 3
21;

0; 2
88;

param.relaxOrder

0;

0;

-32;

4 01;

3 0;
4];

order;

sparsePOP (param, objPoly, inegPolySys, 1bd, ubd) ;

filelId =
printSolution(filelId,printLevel, problemName, param, ...
SDPobjValue, POP, cpuTime, SeDuMiInfo, SDPinfo) ;

X

1;

POP.xVect;

return

printLevel=2;

22
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e Results

Order ¢ | Bound p; i Solution
2 ~7.00 [2.9907 4.0
3 —6.64 [2.6377 4.0]*
4 —5.51 | [2.3295 3.1785]1

*: Not feasible.

1: Global minimizer.
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