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1. Optimization Problems

• Unconstrained Optimization

minimize
x∈Rn

f(x)

– Example: Solve polynomial system

p1(x) = 0, p2(x) = 0, . . . , pm(x) = 0 (1)
(1) ⇔ p2

1(x) = 0, p2
2(x) = 0, . . . , p2

m(x) = 0 (2)

(2) ⇔ f(x) =
m∑

i=1

p2
i (x) = 0

x∗ is a solution of (1) iff the global minimum of f(x) is zero and x∗ is a global
minimizer.

• Constrained Optimization

minimize f(x) (3a)
subject to: ai(x) = 0, i = 1, . . . , p (3b)

cj(x) ≥ 0, j = 1, . . . , q (3c)

– Feasible region and feasible points

K = {x : ai(x) = 0 for 1 ≤ i ≤ p, cj(x) ≥ 0 for 1 ≤ j ≤ q}
(3) ⇔ minimize

x∈K
f(x) (4)

Example: Minimum distance between two ellipses
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minimize f(x) = (x1 − x3)
2 + (x2 − x4)

2

subject to:
1

4
x2

1 + x2
2 −

1

2
x1 ≤

3
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8
(x2

3 + x2
4) +

3

4
x3x4 −

11

2
x3 −

13

2
x4 ≤ −35
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Example: Optimum data detection in wireless communications

minimize xT Qx + pT x (Q � 0)

subject to: xi ∈ {0, 1}, i = 1, . . . , n

m
minimize xT Qx + pT x

subject to: x2
i − xi = 0, i = 1, . . . , n

• Convex Programming (CP)

minimize f(x) (5a)
subject to: ai(x) = 0 i = 1, . . . , p (5b)

cj(x) ≥ 0 j = 1, . . . , q (5c)

where f(x) is convex
ai(x) are linear, 1 ≤ i ≤ p
−cj(x) are convex, 1 ≤ j ≤ q

– A CP problem minimizes a convex objective function over a convex feasible region.

Example:
minimize −x1 − x2

subject to: x2
1 + x2

2 ≤ 1

The objective function is convex and the feasible region is convex (−c1(x) = x2
1 +x2

2 − 1 convex),
hence a CP problem.

• Why convex programming?

CP has several desirable properties:
Globlaness and uniqueness of solution; convexity of solution set; Karush-Kuhn-Tucker
(KKT) conditions.
For CP problem (5), the KKT conditions are both necessary and sufficient:
Suppose x∗ is a minimizer of (5) that is regular for the constraints active at x∗, then
(a) ai(x

∗) = 0 for 1 ≤ i ≤ p
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(b) cj(x
∗) ≥ 0 for 1 ≤ j ≤ q

(c) ∃λ∗
i and µ∗

j such that

∇f(x∗) =

p
∑

i=1

λ∗
i∇ai(x

∗) +

q
∑

j=1

µ∗
j∇cj(x

∗)

(d)µ∗
jcj(x

∗) = 0 for 1 ≤ j ≤ q (complementarity conditions)
(e) µ∗

j ≥ 0 for 1 ≤ j ≤ q

There exists a nice duality theory

There exist efficient solvers.

• Classification of CP problems

Linear programming (LP)

minimize cT x

subject to: Ax ≥ b

Convex quadratic programming (QP)

minimize xT Qx + qT x + K (Q � 0)

subject to: Ax ≥ b

Second-order cone programming (SOCP)

minimize bT x

subject to: ‖Aix + bi‖ ≤ cT
i x + di, i = 1, . . . , q

Semidefinite programming (SDP)

minimize cT x

subject to: F (x) = F0 +

q
∑

i=1

xiFi � 0

(F0, Fi are symmetric matrices)

• Relations of SDP with LP, QP, and SOCP

LP:

minimize cT x

subject to: Ax ≥ b

Write Ax ≥ b as

−b + Ax = −b + [a1 . . . an]x = −b +

n∑

i=1

aixi ≥ 0

5



⇐⇒ diag{−b}
︸ ︷︷ ︸

F0

+

n∑

i=1

xi diag{ai}
︸ ︷︷ ︸

Fi

� 0

⇐⇒ F0 +

n∑

i=1

xiFi � 0

SOCP

minimize bT x

subject to: ‖Aix + bi‖ ≤ cT
i x + di 1 ≤ i ≤ q

Note:

||u|| ≤ t ⇐⇒
[
tI u
uT t

]

� 0

Hence ‖Aix + bi‖ ≤ cT
i x + di

⇐⇒
[
(cT

i x + di)I Aix + bi

(Aix + bi)
T cT

i x + di

]

� 0

LP ⊂ QP ⊂ SOCP ⊂ SDP

LPCP SDP SOCP
Convex
QP

2. Wolfe’s Theorem on Duality
Consider the general CP problem (as the primal problem)

(P) minimize f(x)

subject to: ai(x) = aT
i x − bi = 0, i = 1, . . . , p

cj(x) ≥ 0, j = 1, . . . , q

Define its Lagrangian

L(x, λ, µ) = f(x) −
p
∑

i=1

λiai(x) −
q
∑

j=1

µjcj(x)
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• The dual of problem (P) can be created by the following theorem due to P. Wolfe (1961):

Let x∗ be a minimizer of (P) and λ∗, µ∗ be the associated Lagrange multipliers. Assume
x∗ is a regular point of the constraints. Then (x∗, λ∗, µ∗) also solves the dual problem

(D) maximize
x,λ,µ

L(x, λ, µ)

subject to: ∇L(x, λ, µ) = 0

µ ≥ 0

In addition, f(x∗) = L(x∗, λ∗, µ∗)

Problem (P)

Problem (D)

minimizing  f(x)

maximizing  L(x, λ, µ)

f(x*) =  L(x*, λ*, µ*)

• Define duality gap δ(x, λ, µ) = f(x) − L(x, λ, µ)

Wolfe’s theorem says δ ≥ 0 for feasible x, λ, µ,

and δ = 0 at (x∗, λ∗, µ∗).

In fact, for a feasible set (x, λ, µ)

δ = f(x) − L(x, λ, µ) =

p
∑

i=1

λiai(x) +

q
∑

j=1

µjcj(x)

=

q
∑

j=1

µjcj(x) ≥ 0

and δ reduces to zero at (x∗, λ∗, µ∗) because of the complementarity conditions

µ∗
jcj(x

∗) = 0, j = 1, . . . , q

• Example: Linear programming

(P) minimize cT x (Engineering)
subject to: Ax ≥ b
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L(x, λ, µ) = cT x − (Ax − b)T µ

(D) maximize cT x − (Ax − b)T µ

subject to: c − AT µ = 0, µ ≥ 0

m
(D) maximize bT µ (Math)

subject to: AT µ = c, µ ≥ 0

3. Semidefinite Programming (SDP)

• Why is SDP popular?

– SDP is a class of CP problems (theoretical tractability)

– LP, QP, SOCP are subclasses of SDP

– SDP arises in a number of important applications in science and engineering

– Efficient SDP solvers are available

• Examples

Let A(x) = A0 + x1A1 + · · · + xnAn

– Find x∗ = [x∗
1 . . . x∗

n]T that minimizes the largest eigenvalue of A(x), i.e., find x∗ to
solve

minimize
x

max λ[A(x)]

A(x) is symmetric

=⇒ A(x) = UT






λmax 0
. . .

0 λmin




U

with U orthogonal ⇒ tI − A(x) = t · UT IU − A(x)

= UT






t − λmax 0
. . .

0 t − λmin




U

Hence tI − A(x) � 0 iff t ≥ λmax

The value of t satisfying tI − A(x) � 0 provides at right upper bound for λmax

This is an SDP problem:
minimize t

subject to: tI − A(x) � 0
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– Find x∗ that minimizes the 2-norm of A(x), i.e., find x∗ to solve

minimize
x

max λ1/2[AT (x)A(x)]

We need to solve

minimize t

subject to: t2I − AT (x)A(x) � 0

which can be converted into the SDP problem

minimize t

subject to:

[

tI A(x)

AT (x) tI

]

� 0

• Duality

– the primal SDP assumes the form

(P ) minimize cT x

subject to: F (x) = F0 +

n∑

i=1

xiFi � 0

– the Lagrangian:

L(x, Y ) = cT x − Y · (F0 +
n∑

i=1

xiFi)

where the inner product A · B = trace(AB) =
∑

i

∑

j aijbij

– the Wolfe dual:

maximize cT x − Y · F0 −
n∑

i=1

xi(Y · Fi)

subject to: ∇xL(x, Y ) = 0

Y � 0

=⇒ (D) maximize −Y · F0

subject to: Y · Fi = ci, 1 ≤ i ≤ n

Y � 0

– Duality gap:

δ = cT x + Y · F0 =

n∑

i=1

cixi + Y · F0 =

n∑

i=1

xi(Y · Fi) + Y · F0

= Y · (F0 +
n∑

i=1

xiFi) = Y · F (x) ≥ 0
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– Example

minimize x1 − 2x2

subject to: x1 ≥ 0, x2 ≥ 0

(x1 − 1)2 + x2
2 ≤ 1

(x1 − 1)2 + (x2 − 1)2 ≥ 1

Number of variables: 2, Number of constraints: 4

This is a nonconvex problem because its feasible region is not convex:
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1

Feasible

Region

A  Global Solution Point

x1

x2

The global solutin of the problem is x∗ = [0.1340 0.5]T .
Put the problem in an extended space (dimensional extension)
Let y10 = x1, y01 = x2, y20 = x2

1, y02 = x2
2 and express the problem as

minimize y10 − 2y01

subject to: y10 ≥ 0, y01 ≥ 0

−y20 + 2y10 − y02 ≥ 0

y20 − 2y10 + y02 − 2y01 + 1 ≥ 0

(one might add:) y20 ≥ 0, y02 ≥ 0

Number of variables: 4, Number of constraints: 6
This is an LP problem whose unique global solution is

y∗ = [0 0.5 0 0]T

which gives x̃∗ = [0 0.5]T .
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Now use a further dimensional extension y11 = x1x2

to allow a semidefinite constraint:

0 �





1
x1

x2



 [1 x1 x2] =





1 x1 x2

x1 x2
1 x1x2

x2 x1x2 x2
2



 =





1 y10 y01

y10 y20 y11

y01 y11 y02





This leads to a SDP problem:
minimize y10 − 2y01

subject to: y10 ≥ 0, y01 ≥ 0, y20 ≥ 0, y11 ≥ 0, y02 ≥ 0

−y20 + 2y10 − y02 ≥ 0

y20 − 2y10 + y02 − 2y01 + 1 ≥ 0




1 y10 y01

y10 y20 y11

y01 y11 y22



 � 0

Number of variables: 5, Number of constraints: 8
The unique global solution of the SDP problem is given by

y∗ = [0.1340 0.5 0.0179 0.0670 0.25]T

which gives x̃∗ = [0.1340 0.5]T .

4. Software for CP (MATLAB-compatible)

• Commercial
Optimization Toolbox (MathWorks) — LP, QP
Robust Control Toolbox (MathWorks) — SDP

• Public-domain
SDPT3 (Cornell, NUS, CMU) — LP, QP SOCP, SDP
SDPA (Tokyo Inst. Tech.) — LP, QP, SOCP, SDP
SeDuMi (J.F. Sturm; McMaster) — LP, QP, SOCP, SDP
http://sedumi.mcmaster.ca
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Part II: Polynomial Optimization Problems (POP)

1. Unconstrained and Constrained POP
2. Lasserre’s Conversion
3. Moments and Moment Matrices
4. Connection of Moment Problems to SDP
5. Solving POP via SDP Relaxation
6. Software and An Example

1. Unconstrained and Constrained POP

• Unconstrained POP

minimize
x∈Rn

p(x) (1)

• Constrained POP

minimize
x∈K

p(x) (2a)

K = {x ∈ Rn : h1(x) ≥ 0, . . . , hm(x) ≥ 0} (2b)

K is known as a semi-algebraic set.

• LP, QP, SOCP, SDP are subclasses of POP

LP and QP — obvious.

SOCP: ‖AT
i x + bi‖ ≤ cT

i x + di

⇐⇒ ‖AT
i x + bi‖2 ≤ (cT

i x + di)
2, cT

i x + di ≥ 0

SDP: F (x) = F0 + x1F1 + · · · + xnFn � 0

⇐⇒ its principal minors
︸ ︷︷ ︸

polynomials in x

are nonnegative

• But POP also include a great many nonconvex problems.

– Example (Laurent, 2006)

minimize p(x) = −x1 − x2

subject to: x2 ≤ 2x4
1 − 8x3

1 + 8x2
1 + 2

x2 ≤ 4x4
1 − 32x3

1 + 88x2
1 − 96x1 + 36

0 ≤ x1 ≤ 3, 0 ≤ x2 ≤ 4
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– Example

minimize xT Qx + qT x

subject to: xi ∈ {0, 1}
⇐⇒ minimize xT Qx + qT x

subject to: x2
i − xi = 0, 1 ≤ i ≤ n

⇐⇒ minimize xT Qx + qT x

subject to: x2
i − xi ≥ 0 1 ≤ i ≤ n

−x2
i + xi ≥ 0 1 ≤ i ≤ n

– Example (Mathematical programming with equilibrium constraints):

minimize (x1 + x2 + y1 − 15)2 + (x1 + x2 + y2 − 15)2

subject to: 0 ≤ x1 ≤ 10, 0 ≤ x2 ≤ 10, y1 ≥ 0, y2 ≥ 0

z1 = 8
3
x1 + 2x2 + 2y1 + 8

3
y2 − 36 ≥ 0

z2 = 2x1 + 5
4
x2 + 5

4
y1 + 2y2 − 25 ≥ 0

y1z1 + y2z2 = 0

2. Lasserre’s Conversion
In his SIAM 2001 paper, Jean B. Lasserre takes a fresh look at the POP problems as minimizing a
linear function of sequence of moments over all probability measures, which in turn connects the
problems to the theory of moment matrices and leads eventually to SDP-relaxation based solution
methods.
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CP
SDP

POP

Nonconvex

• Probability Measures

A probability measure is a real-valued function µ on a set S satisfying the following proper-
ties

– µ(φ) = 0, µ(S) = 1

– For subsets X and Y with X
⋂

Y = φ, µ(X
⋃

Y ) = µ(X) + µ(Y )

– For subsets X and Y with X ⊆ Y , µ(X) ≤ µ(Y )

So we see that a probability measure is a nonnegative measure, i.e., µ(X) ≥ 0 for any
X ⊆ S

Example: Let S be the real line and

dµ = 1√
π
e−x2

dx

µ(S) =
∫∞
−∞ dµ = 1√

π

∫∞
−∞ e−x2

dx = 1

Example: Let S be the real line and

dµ = δ(x − x∗)dx

where δ(x) is Dirac’s δ-function defined by

δ(x) =

{
0 x 6= 0
∞ x = 0

∫ ∞

−∞
δ(x)dx = 1

Note

µ(S) =

∫ ∞

−∞
dµ =

∫ ∞

−∞
δ(x − x∗)dx = 1

We call this µ the Dirac measure at x∗, having mass 1 at x∗ and mass zero else-
where.

Example:

dµ =
r∑

i=1

λiδ(x − xi)dx
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with

λi > 0 and
r∑

i=1

λi = 1

This is a nonnegative measure satisfying
∫

Rn

dµ =

∫

Rn

r∑

i=1

λiδ(x − xi)dx =

r∑

i=1

λi

∫

Rn

δ(x − xi)dx

=

r∑

i=1

λi = 1

The points xi are called atoms and the measure is called r-atomic.

• Lasserre’s Observations

– If

p∗ = min
x∈Rn

p(x) then p∗ = min
µ∈P(Rn)

∫

Rn

p(x)dµ (3)

– If

p∗K = min
x∈K

p(x) then p∗K = min
µ∈P(K)

∫

K

p(x)dµ (4)

where

P(Rn) — all probability measures over Rn

P(K) — all probability measures over K

Proof of (3): p(x) ≥ p∗ for all x ∈ Rn

=⇒
∫

Rn

p(x)dµ ≥ p∗
∫

Rn

dµ = p∗

=⇒ min
µ∈P(Rn)

∫

Rn

p(x)dµ ≥ p∗ (5)

On the other hand, suppose p∗ is achieved by p(x) at x∗, i.e., p(x∗) = p∗. We consider
the Dirac measure dµ = δ(x − x∗)dx and compute

∫

Rn

p(x)dµ =

∫

Rn

p(x)δ(x − x∗)dx = p(x∗) = p∗

Hence

min
µ∈P(Rn)

∫

Rn

p(x)dµ ≤ p∗ (6)

(5) and (6) imply (3).
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– The significance of (3) and (4) is that the problem of minimizing polynomial p(x)
over a semi-algebraic set is now converted to the problem of minimizing the integral
∫

p(x)dµ over all probability measures.

– Next, the later problem is converted to the optimization over sequences of moments.

3. Moments and Moment Matrices

• Notation

p(x) =
∑

α

pαxα, xα = xα1

1 xα2

2 . . . xαn

n (7)

The order of p(x) is equal to the largest
n∑

i=1

αi among all nonzero coefficients pα in (7).

• The terms in (7) are arranged according to a basis for d-degree real-valued polynomial p(x) :
1, x1, x2, . . . , xn, x2

1, x1x2, . . . , x1xn, . . . , x2
n, . . . , xd

1, . . . , xd
n

• The number of the terms in the basis is called the dimension of the basis and is denoted by
s(d)

s(d) =

(
n + d

d

)

=
(n + d)!

n!d!

Example:

n d s(d)

2 2 6
3 2 10
5 2 21
10 2 66
10 4 91
10 10 184756

• Writing
∫

p(x)dµ =

∫
∑

α

pαxαdµ =
∑

α

pα

∫

xαdµ =
∑

α

pαyα

where

yα =

∫

xαdµ

are the moments for the nonnegative measure µ, the problems in (3) and (4) become

min
µ∈P(Rn)

∫

Rn

p(x)dµ = min
{yα}

∑

α

pαyα (8)

with {yα} a sequence of moments associated with a representing measure µ over Rn; and

min
µ∈P(K)

∫

K

p(x)dµ = min
{yα}

∑

α

pαyα (9)
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with {yα} a sequence of moments associated with a representing measure µ over set K.

• In (8) and (9), the probability measures are replaced by the sequence of moments, and the
objective functions are linear functions of {yα} so the question now is how those sequences
{yα} that are associated with nonnegative measures can be characterized. It is at this point
of the development where the theory of moment matrices comes to play an important role.

– Moment matrix M(y)

Example: n = 2
α = (α1, α2) : (0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2), (3, 0), . . .
xα : 1, x1, x2, x2

1, x1x2, x2
2, x3

1, . . .
{yα} : y00, y10, y01, y20, y11, y02, y30, with y00 = 1

M(y) =






















y00 y10 y01 y20 y11 y02 · · · yα · · ·
y10 y20 y11 y30 y21 y12 · · · ...

y01 y11 y02 y21 y12 y03 · · · ...

y20 y30 y21 y40 y31 y22 · · · ...

y11 y21 y12 y31 y22 y13 · · · ...

y02 y12 y03 y22 y13 y04 · · · ...
...

...
... · · · · · · · · · ...

...
yβ · · · · · · · · · · · · · · · · · · yα+β
...

...






















– Truncated moment matrix Mt(y)

It starts with a truncated sequence of moments {yα} ∈ s(2t), and can be obtained from
M(y) as a leading principal submatrix of dimension s(t).

Example: n = 2, t = 1:

M1(y) =





1 y10 y01

y10 y20 y11

y01 y11 y02





If dµ = δ(x − x∗)dx with x∗ = [x∗
1 x∗

2]
T then

M1(y) =





1 x∗
1 x∗

2

x∗
1 x∗2

1 x∗
1x

∗
2

x∗
2 x∗

1x
∗
2 x∗2

2



 =





1
x∗

1

x∗
2



 [1 x∗
1 x∗

2] � 0
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If dµ = 1
π
e−(x2

1
+x2

2
)dx1dx2 then

y10 = y01 =
1√
π

∫ ∞

−∞
xe−x2

dx = 0

y20 = y02 =
1√
π

∫ ∞

−∞
x2xe−x2

dx =
π

2

y11 = 0
Hence

M1(y) =





1 0 0
0 π

2
0

0 0 π
2



 � 0

4. Connection of Moment Problems to SDP

• In general, an arbitrary vector pα of dimension s(t) can be associated with a polynomial of
degree t, and we can write

0 ≤
∫

p2(x)dµ =

∫
(
∑

α

pαxα

)

·
(
∑

β

pβxβ

)

dµ

=
∑

α

∑

β

pαpβ

∫

xα+βdµ

=
∑

α

∑

β

pαpβyα+β = pT
αMt(y)pα

Hence

Mt(y) � 0 =⇒ M(y) � 0

• The Constrained Case

Consider one polynomial constraint: K = {x : h(x) ≥ 0}

– We need to define “shift vector” as h ∗ y whose α-component is
∑

β

hβyα+β

– If h(x) is a polynomial of degree 2d or 2d − 1, y ∈ Rs(2t) is the truncated sequence of
moments up to order 2t of a nonnegative measure supported by K = {x : h(x) ≥ 0},
then Mt−d(h ∗ y) � 0.
This is because

pT Mt−d(h ∗ y)p =

∫

K

h(x)p2(x)dµ ≥ 0

– In general, for K = {x : h1(x) ≥ 0, . . . , hm(x) ≥ 0} where each hj(x) is a polyno-
mial of degree 2dj or 2dj − 1, and y ∈ Rs(2t) is truncated sequence of moments of a
nonnegative measure supported by K, then

Mt(y) � 0, Mt−dj
(hj ∗ y) � 0 1 ≤ j ≤ m
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• In summary,

– min
x∈Rn

p(x) = min
µ∈P(Rn)

∫

Rn

p(x)dµ = min
y∈M

pT y

where M is the set of sequences y, each of which admits a representing measure.

– min
x∈K

p(x) = min
µ∈P(K)

∫

K

p(x)dµ = min
y∈M(K)

pT y

where M(K) — the set of sequences having respresenting measures supported by set
K.

– y ∈ M ⇒ M(y) � 0

– y ∈ M(K) ⇒ Mt(y) � 0, Mt−dj
(hj ∗ y) � 0

So if we let M+ = {y : M(y) � 0}, then M ⊆ M+.

– Is M = M+?
If yes, then the unconstrained POP becomes an “SDP” problem:

p̂∗ = minimize
y∈M+

pT y (10)

– It is known that M ⊂ M+ is proper, so the minimum of (10) offers only a lower bound
of the global minimum p∗ in (3):

p̂∗ ≤ p∗

– Also, technical difficulties exist for implementing (10) because M(y) is of infinite di-
mension.

• For constrained POP:

– Let Mput
+ = {y : M(y) � 0, M(hj ∗ y) � 0, 1 ≤ j ≤ m}, then

M(K) ⊂ Mput
+

Thus the minimum of the SDP problem

p̂∗K = minimize
y∈Mput

+

pT y (11)

offers a lower bound for p∗
K in (4):

p̂∗K ≤ p∗K

5. Soving POP via SDP Relaxation
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• Lasserre proposes to deal with the unconstrained POP problem

minimize
x∈Rn

p(x)

by solving a series of truncated SDP problems

p∗t = min pT y s.t. y0 = 1, Mt(y) � 0 (12)

where t ≥ deg(p(x))/2.

• Similarly, the constrained POP minimize
x∈K

p(x) is treated by solving

p∗tK = min pT y s.t. y0 = 1,

Mt(y) � 0, Mt−dj
(hj ∗ y) � 0, 1 ≤ j ≤ m (13)

where t ≥ max(d0, d1, . . . , dm), d0 = ddeg(p)/2e, dj = ddeg(hj)/2e, for 1 ≤ j ≤ m.

• Properties of Lasserre’s Solution Method

– For a fixed t, (13) is a standard SDP problem and can be solved efficiently.

– Under certain compactness condition on set K, p∗
tK → p∗K as t → ∞, and the conver-

gence sometimes can even be achieved in finite number of steps.

– Optimality certificate: If Mt(y) satisfies certain rank condition, then p∗
tK = p∗K .

– Under this rank condition, the global minimizers can be constructed.

6. Software and An Example

• Public-domain

GloptiPoly (Henrion and Lasserre)

SparsePOP (Waki, Kim, Kojima, and Muramatsu)

SOSTOOLS (Prajna, Papachristodoulou, and Parrilo)

– All three packages incorporate SeDuMi for solving the SDP problems involved.

• Example (Laurent, 2006)

minimize p(x) = −x1 − x2

subject to: x2 ≤ 2x4
1 − 8x3

1 + 8x2
1 + 2

x2 ≤ 4x4
1 − 32x3

1 + 88x2
1 − 96x1 + 36

0 ≤ x1 ≤ 3, 0 ≤ x2 ≤ 4

• MATLAB code using GloptiPoly
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function x = laurent_ex42_f(order)

P{1}.c = [0 -1 0 0 0; -1 0 0 0 0]; P{1}.t = ’min’;
P{2}.c = [2 -1; 0 0; 8 0; -8 0; 2 0]; P{2}.t = ’>=’;
P{3}.c = [36 -1; -96 0; 88 0; -32 0; 4 0]; P{3}.t = ’>=’;
P{4}.c = [0; 1]; P{4}.t = ’>=’;
P{5}.c = [3; -1]; P{5}.t = ’>=’;
P{6}.c = [0 1]; P{6}.t = ’>=’;
P{7}.c = [4 -1]; P{7}.t = ’>=’;
out = gloptipoly(P,order);
x = out.sol{:};

• Results

Order t Bound p̂tK Solution

2 −7.00 none

3 −6.67 none

4 −5.51 [2.3295 3.1785]†

†: Global minimizer.
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• MATLAB code using SparsePOP

function x = laurent_ex42_j(order)

% Name of the problem to be solved.
problemName = ’laurent_ex42_j.gms’;

% objPoly
objPoly.typeCone = 1;
objPoly.dimVar = 2;
objPoly.degree = 1;
objPoly.noTerms = 2;
objPoly.supports = [1 0; 0 1];
objPoly.coef = [-1; -1];

% ineqPolySys
ineqPolySys{1}.typeCone = 1;
ineqPolySys{1}.dimVar = 2;
ineqPolySys{1}.degree = 4;
ineqPolySys{1}.noTerms = 5;
ineqPolySys{1}.supports = [0 0; 0 1; 2 0; 3 0; 4 0];
ineqPolySys{1}.coef = [2; -1; 8; -8; 2];

% ineqPolySys
ineqPolySys{2}.typeCone = 1;
ineqPolySys{2}.dimVar = 2;
ineqPolySys{2}.degree = 4;
ineqPolySys{2}.noTerms = 6;
ineqPolySys{2}.supports = [0 0; 0 1; 1 0; 2 0; 3 0; 4 0];
ineqPolySys{2}.coef = [36; -1; -96; 88; -32; 4];

% lower bounds for variables x1 and x2
lbd = [0,0];

% upper bounds for variables x1 and x2
ubd = [3,4];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Default values of parameters
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
param.dummy = 0; param.symbolicMath = 0;
param.reduceMomentMatSW = 1; param.relaxOrder = order;
[param,SDPobjValue,POP,cpuTime,SeDuMiInfo,SDPinfo] = ...

sparsePOP(param,objPoly,ineqPolySys,lbd,ubd);
fileId = 1; printLevel=2;
printSolution(fileId,printLevel,problemName,param,...

SDPobjValue,POP,cpuTime,SeDuMiInfo,SDPinfo);
x = POP.xVect; return
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• Results

Order t Bound p̂tK Solution

2 −7.00 [2.9907 4.0]∗

3 −6.64 [2.6377 4.0]∗

4 −5.51 [2.3295 3.1785]†

∗: Not feasible.

†: Global minimizer.
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