Flipped Diversity Aloha in Wireless Networks with Long and Varying Delay

Lei Zheng Lin Cai

Department of Electrical & Computer Engineering
University of Victoria, British Columbia, Canada
{zhengl, cai}@ece.uvic.ca

IEEE GLOBECOM, Dec. 2011

Outline

1 Motivation
 • The Propagation Delay Problem & Challenges
 • Existing Solutions
 • Main Contributions Of The Paper

2 The Flipped Diversity Aloha
 • Our Solution
 • Performance Analysis
 • Simulation Results

3 Summary
The Basic Problem That We Studied

• Medium Access Protocols In Wireless Networks.
 • With coordinator ⟹ such as PCF in IEEE 802.11, TDMA/CDMA based scheduling for Cellular Networks, etc.;
 • Random access (without coordinator) ⟹ such as Aloha, \(p \)-persistent CSMA, DCF in IEEE 802.11, etc.;
 • Most of these protocols are designed without considering the propagation delay.

• Propagation Delay In Wireless Networks.

<table>
<thead>
<tr>
<th>Propagation Distance</th>
<th>Terrestrial</th>
<th>Satellites</th>
<th>Underwater</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propagation Speed</td>
<td>Fast</td>
<td>Fast</td>
<td>Slow</td>
</tr>
<tr>
<td>Propagation Delay</td>
<td>Short</td>
<td>Long</td>
<td>Varying</td>
</tr>
</tbody>
</table>

The Challenges Of The Problem

• Synchronization
 • Scheduling or coordination becomes difficult;
 • Slotted based random access would also fail.

• Communications Efficiency

\[
\text{Throughput}_{\text{estimal}} = \frac{\text{PacketTransmissionDelay}}{\text{RoundTripTime} + \text{PacketTransmissionDelay}}
\]

• Communications Effectiveness
 • CSMA based: Carrier Sensing may not be effective any more;
 • Slotted Aloha degrades to pure Aloha: About 50% throughput loss.
Existing Solutions

- Diversity Slotted Aloha (DSA) [1]
 - Slotted Aloha based;
 - Each Packet is transmitted multiple times.

- Collision Resolution Diversity Slotted Aloha (CRDSA) [2]
 - Extending DSA with Interference Cancellation (IC).

Remarks

- Relying on Time Synchronization;
- Vulnerable to Delay Uncertainty;
- Still Not Efficient.

Figure: Packet decoding in CRDSA.

Our Design Goals & Contributions

- Our Goals of Designing
 - A random access MAC protocol;
 - Be an asynchronous MAC protocol;
 - Be immune to long & varying propagation delay.

- Our Contributions
 - A new random access MAC protocol
 \[\Rightarrow\] The **Flipped Diversity Aloha (FDA)**;
 - Analysis of performance bound;
 - Comprehensive simulations.
Assumptions

- A scenario with one central destination node and multiple uniformly distributed source nodes;
- Single channel & Single half-duplex radio;
- Channel information is known at receiver;
- Protocol channel model.

Zigzag Decoding [3]
- Designed to solve the "Hidden Terminal Problem" in IEEE 802.11.

Zigzag decoding

Remarks

- Diversity Slotted Aloha (DSA) anti-long delay
- Zigzag decoding anti-varying delay
What does "Flipped" mean?

- Diversity Slotted Aloha with Zigzag decoding?
- Packet identifying problem when collision happens;
- Channel estimation error.

Flipped Diversity Aloha (FDA)
To combine Diversity Aloha & Zigzag decoding in a Flipping way.

Cases Study

- Identified Six Resolvable Collision Cases.
 - According to the overlapping of packet collision.

An example, case (a): no collision or two-packet collision

\[P_1 = P_c^2 + 2P_c \left(e^{-\lambda T} - e^{-2\lambda T} \right), \text{ where } P_c = e^{-2\lambda T} \]
Performance Bound

- **Upper Bound For Packet Loss Ratio, PLR_U**
 \[
 PLR_U = 1 - P_s
 \]

- **Lower Bound For Throughput, S_L**
 \[
 PLR_U = \lambda \cdot P_s
 \]

where:

\[
P_s = P_1 + P_2 + P_u \cdot \left(1 + P_r/P_c\right)^2,
\]

\[
P_r = P_c \cdot \sum_{k=1}^{\infty} \left(P_4/P_c + e^{-\lambda T} - e^{-2\lambda T}\right)^k,
\]

\[
P_u = \left[C_2^1 P_3 + C_3^1 P_5 + C_3^1 P_6\right].
\]

Simulation Settings

- Uniformly distributed nodes;
- Uniformly distributed propagation delay;
- Poisson traffic with the aggregated load λ.

Benefits Of "Flipping"

- **Case-I**: throughput contribution from flipping;
- **Case-II**: throughput contribution from Zigzag decoding.

Figure: Analysis throughput.
Results-2

Figure: Simulation throughput.

Figure: Simulation PLR with finite nodes.

Results-3

Definition of Admission Region:

The maximum admissible number of source nodes with given λ.

- Given PLR threshold as 0.1, $\lambda = 0.3$;
- FDA: more than 10 source nodes;
- Pure Aloha or DSA: only one source node.
In this paper, we proposed a **Flipped Diversity Aloha (FDA)**, which is
- combining Diversity Aloha & Zigzag decoding in a flipped way;
- suitable for asynchronous wireless networks;
- immune to impact of duration & variation of propagation delay.

Outlook
- The performance of FDA with signal capture effect;
- An opportunistic channel estimation based on FDA;
- Application of FDA for channel access with limited delay.

For Further Reading

Thanks!

Question/Comment?