Efficient Multi-Receiver Message aggregation for Short Message Delivery in M2M Networks

Lei Zheng and Lin Cai
Dept. of Electrical and Computer Engineering
University of Victoria
British Columbia, Canada

Apr. 9, 2013
Wireless M2M Networks

✓ Environment monitoring
✓ Transportation system
✓ Manufacture management
✓ Power grid, Smart grid
Wireless M2M Networks

- Environment monitoring
- Transportation system
- Manufacture management
- Power grid, Smart grid
Wireless M2M Networks

- Environment monitoring
- Transportation system
- Manufacture management
- Power grid, Smart grid

Massive End Devices!
Messages are short!
The Communication Efficiency

• Communication efficiency can be affected by
 – Protocols overhead
 – Channel access strategy
 – Requirements on reliability: ARQ

• Current solutions
 • Most focus on relieving collision in contention-based channel access
 • For protocol overhead: from view of point-to-point link, such as packets aggregation
Objective & Contribution

• Our Objective
 – To reduce protocol overhead for point to multiple point communications in wireless M2M networks.

• Our contributions
Objective & Contribution

• Our Objective
 – To reduce protocol overhead for **point to multiple point** communications in wireless M2M networks.

• Our contributions

- The **MRMA** protocol, including
 - An **Multi-Receiver Message Aggregation** scheme
 - A **Busy-Tone based Negative-ACK** scheme
 - Performance Optimization: to reduce the per-message overhead
The MRMA Protocol

- Multi-receiver message aggregation (MRMA):

(a). Unicast:

<table>
<thead>
<tr>
<th>Packet Header</th>
<th>Msg</th>
<th>CRC</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N_h) bits</td>
<td>(N_{Msg}) bits</td>
<td>(N_e) bits</td>
</tr>
</tbody>
</table>

(b). Aggregation Broadcast:

<table>
<thead>
<tr>
<th>Packet Header</th>
<th>(Msg_1)</th>
<th>(\cdots)</th>
<th>(Msg_n)</th>
<th>CRC</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N_h) bits</td>
<td>(N_{Msg}) bits</td>
<td>(N_e) bits</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\((n\text{ Messages})\text{ in Total}\)
The MRMA Protocol

• Multi-receiver message aggregation (MRMA):

 (a). Unicast:

<table>
<thead>
<tr>
<th>Packet Header</th>
<th>Msg</th>
<th>CRC</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N_h) bits</td>
<td>(N_{Msg}) bits</td>
<td>(N_c) bits</td>
</tr>
</tbody>
</table>

 (n Messages) in Total

 (b). Aggregation Broadcast:

<table>
<thead>
<tr>
<th>Packet Header</th>
<th>(Msg_1)</th>
<th>\cdots</th>
<th>(Msg_n)</th>
<th>CRC</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N_h) bits</td>
<td>(N_{Msg}) bits</td>
<td>\cdots</td>
<td>(N_{Msg}) bits</td>
<td>(N_c) bits</td>
</tr>
</tbody>
</table>

Per-Message Overhead (PMO)

\[
PMO = \frac{R(\text{Header+CRC}) + (R - 1)\, Msg}{\text{No. of Msg}}
\]

Ratio

\[
\text{Ratio} = \frac{\text{PMO of Broadcast}}{\text{PMO of Unicast}}
\]

Good enough?
The MRMA Protocol

- Multi-receiver message aggregation (MRMA):

(a) Unicast:

(b) Aggregation
Broadcast:

<table>
<thead>
<tr>
<th>Packet Header</th>
<th>Msg</th>
<th>CRC</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N_h) bits</td>
<td>(N_{msg}) bits</td>
<td>(N_c) bits</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Packet Header</th>
<th>(Msg_1)</th>
<th>(\ldots)</th>
<th>(Msg_n)</th>
<th>CRC</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N_h) bits</td>
<td>(N_{msg}) bits</td>
<td>(\ldots)</td>
<td>(N_{msg}) bits</td>
<td>(N_c) bits</td>
</tr>
</tbody>
</table>

Insights:

1. Overhead using aggregation can be larger than that without it
2. There exists an “optimal” aggregation configuration
Multi-receiver message aggregation (MRMA) Scheme:

1. Introducing “Error Detection Code (EDC)” - avoiding unnecessary retransmissions
2. Limiting the no. of messages being aggregated - reducing the protocol overhead

The MRMA Protocol

EDC is similar to CRC, but with different purpose.

Proposing:

1. Introducing “Error Detection Code (EDC)”
 - avoiding unnecessary retransmissions
2. Limiting the no. of messages being aggregated
 - reducing the protocol overhead
The MRMA Protocol

• Busy-Tone NACK Scheme
The MRMA Protocol

- Busy-Tone NACK Scheme

Advantages:
- Shorter acknowledgement time
- Improving the efficiency in acknowledgment
- Better ACK signal quality
- Improving the communication reliability
Performance Optimization

– The key issue to obtain efficiency gain is
 • the number of messages aggregated in one packet
– Model of “Cost” in a K-Message-Aggregation

Metric: channel occupation time

\[
C(M_K) = \frac{C_h(1 + \eta K)}{K} \cdot E[r(M_K)]
\]

\[
E[r(M_K)] = \sum_{r=1}^{R} \left[1 - \prod_{i \in M_K} \left(1 - m_i^{r-1} \right) \right]
\]
Performance Optimization

– The key issue to obtain efficiency gain is
 • the number of messages aggregated in one packet

– Model of “Cost” in a K-Message-Aggregation

Metric: channel occupation time

\[
C(M_K) = \frac{C_h(1 + \eta K)}{K} \cdot E[r(M_K)]
\]

\[
E[r(M_K)] = \sum_{r=1}^{R} \left[1 - \prod_{i \in M_K} (1 - m_i^{r-1}) \right]
\]
Performance Optimization

– Optimal Configuration to reduce the cost when given N messages
 ➢ How many aggregated packets?
 ➢ How to assign messages?

– An integer programming problem
 ➢ to maximize the difference in cost between using Unicast and MRMA

\[
\text{Max: } \sum_{g=1}^{G} \sum_{r=1}^{R} \left\{ C_h(1 + \eta) \sum_{i=1}^{N} \phi_{ig} p_i^{r-1} - C_h(1 + \eta |\mathcal{M}_g|) \left[1 - \prod_{i=1}^{N} (1 - \phi_{ig} m_i^{r-1}) \right] \right\},
\]

\[
\text{s.t.: } \sum_{g=1}^{G} \phi_{ig} = 1, \quad \phi_{ig} \in \{0, 1\}, \quad 1 \leq G \leq N.
\]
Performance Optimization

– Optimal Configuration to reduce the cost when given N messages
 ➢ How many aggregated packets?
 ➢ How to assign messages?
– Two integer programming problems
 ➢ to maximize the difference in cost between using Unicast and MRMA

\[
\begin{align*}
\text{Max:} & \sum_{g=1}^{G} \sum_{r=1}^{R} \left\{ C_h(1 + \eta) \sum_{i=1}^{N} \phi_{ig} p_i^{r-1} - C_h(1 + \eta |\mathcal{M}_g|) \left[1 - \prod_{i=1}^{N} (1 - \phi_{ig} m_i^{r-1}) \right] \right\}, \\
\text{s.t.:} & \sum_{g=1}^{G} \phi_{ig} = 1, \quad \phi_{ig} \in \{0, 1\}, \quad 1 \leq G \leq N.
\end{align*}
\]
Performance Optimization

– Proposing efficiency optimization algorithms

✓ A heuristic algorithm
 ✓ Step 1: an offline table for optimal (local) aggregation size “K-BER” in homogeneous MER case;

✓ Step 2: A greedy algorithm for the heterogeneous MER case.

✓ Complexity: $O(N)$

Algorithm 3 Greedy algorithm for heterogeneous BER case

| Input: $\{R, p_i, m_i, N\}$, |
| 1: Sorting all receivers descendant according to m_i, $\mathcal{M} = \{m_i\mid i = 1, 2, \ldots, N\}, g = 1.$ |
| 2: while $\mathcal{M} \neq \emptyset$ do |
| 3: Searching item $\{m_1, n^*\}$ in the Opt-Aggregation table, |
| 4: $\mathcal{M}_g = \{m_1, \ldots, m_{n^*}\}, \mathcal{M} = \mathcal{M} \setminus S_g, g = g + 1,$ |
| 5: end while |
| 6: $G = g,$ |
| Output: $\{\mathcal{M}_g\}$ $(g = 1, 2, \ldots, G).$ |
Performance Evaluation

• Numerical Results:
 – Performance metric: per-message overhead

Homogeneous BER case

Heterogeneous BER case
BER ∈ (0, 10^{-2})

MRMA can achieve about 40% efficiency gain over Unicast
Summary

➢ To improve the efficiency for point to multi-point communications,

✓ we proposed a Multi-Receiver Message Aggregation Protocol, including
 ✓ the message aggregation scheme,
 ✓ transmission acknowledgement scheme;

✓ optimization problem were formulated and algorithms were proposed for “optimal” aggregation configuration.
Thanks!

Questions/Comments?

zhengl@ece.uvic.ca