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Abstract — Small nonstationary perturbations in a viscous heat-conducting compressible medium are
analyzed on the basis of the linearization of the complete system of hydrodynamic equations for small
Knudsen numbers (Kn � 1). It is shown that the density and temperature perturbations (elastic pertur-
bations) satisfy the same wave equation which is an asymptotic limit of the hydrodynamic equations far
from the inhomogeneity regions of the medium (rigid, elastic or fluid boundaries) as Ma = v/a → 0,
where v is the perturbed velocity and a is the adiabatic speed of sound. The solutions of the new equa-
tion satisfy the first and second laws of thermodynamics and are valid up to the frequencies determined
by the applicability limits of continuum models. Fundamental solutions of the equation are obtained
and analyzed. The boundary conditions are formulated and the problem of the interaction of a spherical
elastic harmonic wave with an infinite flat surface is solved. Important physical effects which cannot be
described within the framework of the ideal fluid model are discussed.

Keywords: viscosity, heat conduction, compressible fluid, elastic waves, dispersion relation, diffusion,
dissipation, nonequilibrium, induced emission, asymptotic expansions.

Every motion of a compressible continuum, excluding the trivial motion as a rigid body at a velocity con-
stant in magnitude and direction or in rotation at a constant angular velocity, is accompanied by a violation
of its equilibrium state. The hydrodynamic description of processes in systems not very remote from equi-
librium is based on the mass, momentum and energy conservation laws with flux vectors linearly dependent
on the spatial derivatives of the hydrodynamic flow functions: density, velocity, and temperature.

The transport laws were obtained from the solution of the kinetic Boltzmann equation by the Chapman-
Enskog method [1, 2] in the first approximation in the Knudsen number Kn = lm/L � 1, where lm is the
mean molecular free path and L is a characteristic scale on which the hydrodynamic flow functions change
by their characteristic value. This restriction is basic when describing weakly inhomogeneous hydrodynamic
processes. In particular, for a perfect gas with the equation of state p = ρRT under normal conditions the
quantity lm equals about 2 ·10−7 m and the mean free path time, close to the equilibrium establishment time,
is τm ≈ 5 · 10−10 s. This bounds the range of elastic oscillation frequencies from above at about 20 MHz
and the characteristic scales from below at L ≈ 10−4 m. At higher frequencies and lower scales we must
use the equations of hydrodynamics of fast processes, which take into account the time dependence of
the transfer coefficients [3]. Acoustic (sound) oscillations are only a small part of the spectrum of elastic
continuum oscillations (from 20 Hz to 20 kHz). For example, in ordinary industrial aerodynamic plant the
mean-square amplitudes of the fluctuating pressure component amount to 2–4% of the mean static pressure.
The corresponding velocity fluctuation amplitude referred to the speed of sound (acoustic Mach number
Ma) may, under the normal conditions, be equal to 10−4. Since in a viscous fluid on a rigid wall the velocity
vanishes, in the wall layer there always exists a region where the fluctuating velocity component is of the
same order as the mean hydrodynamic velocity. Hence, this region can crucially affect the fluctuating motion
near a wall and especially in the neighborhood of critical points.

In this study we will consider certain features of the propagation of small perturbations in a compressible
medium at rest due to the presence of viscosity and heat conduction. The effects that arise in the presence

0015–4628/05/4003–0403  2005 Springer Science+Business Media, Inc.



404 STOLYAROV

of non-moving boundaries in the medium will be illustrated with reference to the solution of the problem
of the interaction between an elastic spherical wave emitted by a point periodic source and an infinite rigid
plane.

1. One of the simplest nonstationary motions is the small oscillations of a body of finite dimensions
moving in a homogeneous medium at rest at a mean velocity v0 constant in magnitude and direction. At
a large distance from the body there is always a region where the hydrodynamic oscillations, decreasing
as r−2, become fairly small as compared with the elastic nonstationary perturbations, whose amplitude
decreases inversely to the distance from the body (as r−1). The equations of propagation of small nonsta-
tionary perturbations in such a flow have a very simple form and in fact coincide with those considered by
D. I. Blokhintsev [4]. The characteristic linear scale of the wave motion is the wavelength λ and the time
scale is λ /a0. Elementary estimates show that in the hydrodynamic equations the terms nonlinear in the
perturbations are of the order of the acoustic Mach number Ma = v/a0 as compared with the leading linear
terms and the leading viscous terms are of the order of Re−1

a , where the Reynolds number is calculated from
the wavelength and the speed of sound. Therefore, we can neglect the nonlinear terms in the equations but
must retain the leading viscous terms if

Rea ·Ma ∼
λ v
ν

� 1, or λ � ν
v

Under normal conditions, at a sound level of about 160 dB, this estimate gives λ � 0.3 m for the wave-
length and f � 1 kHz for the frequency. The linearized equations of nonstationary motion in a viscous
heat-conducting compressible fluid can thus be considered asymptotic as Ma → 0. For a one-component
perfect gas (in the absence of chemical reactions and phase transfers), neglecting the temperature depen-
dence of the viscosity and thermal conductivity, we can write down the equations of continuum motion as
follows:

dv
dt

+
a2

γ
∇∇∇ p
p

= ν1∇∇∇ (∇∇∇ ·v) − ν∇∇∇ × ∇∇∇ ×v

1
ρ

dρ
dt

+ ∇∇∇ ·v = 0

1
T

dT
dt

= −(γ − 1)∇∇∇ ·v + γν2
∆T
T

+
γ(γ − 1)

a2 Φ

d
dt

=
∂
∂ t

+ v · ∇∇∇ , ν =
η
ρ

, ν1 =
1
ρ

(
4
3

η + ζ
)

, ν2 =
χ

ρcp
=

ν
Pr

(1.1)

Here, Φ is the dissipative function (see, for example, [6]), χ is the thermal conductivity, η is the shear
viscosity, and ζ is the bulk (second) viscosity associated with nonequilibrium processes in the elastic wave.
The need to introduce this quantity for processes with large relaxation times was justified by L. I. Man-
delstam and M. A. Leontovich [5] and discussed in detail in [6]. From Lighthill’s estimates it follows that
the second viscosity is equal to 0.8η for nitrogen N2 and is due to the increased equilibrium establishment
time in a diatomic as compared with a monatomic gas resulting from the presence of rotational degrees of
freedom in diatomic molecules [2].

Let us introduce the following new variables by dividing the pressure, density and temperature by their
characteristic values:

π = ln
p
p0

, σ = ln
ρ
ρ0

, τ = ln
T
T0

, ∇∇∇ π = ∇∇∇ σ + ∇∇∇ τ

v = V0 + vp + vs, vp = −∇∇∇ ϕ , q = ∇∇∇ ·v = −∆ϕ , ψψψ = ∇∇∇ ×vs

d
dt

=
∂
∂ t

+ V0 · ∇∇∇ , a2
0 = γRT0
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In the new variables the linearized equations of disturbed motion can be written in the form:

dψψψ
dt

+ ν∇∇∇ × ∇∇∇ ×ψψψ = 0 (1.2)

dσ
dt

= −q = ∆ϕ(
d
dt

− ν1∆
)

dσ
dt

=
a2

0

γ
(∆σ + ∆τ )

(1.3)

(
d
dt

− γν2∆
)

τ = (γ − 1)
dσ
dt

(1.4)

The equation for the rotational velocity component can be separated and is determined by the pertur-
bations of the other hydrodynamic flow functions via the boundary conditions that follow from Eq. (1.1).
Eliminating the variable τ from (1.3) and (1.4), we obtain the following equation describing the propagation
of small density perturbations σ in a flow with hydrodynamic parameters constant in the mean:(

d
dt

− γν2∆
)[

γ
a2

0

(
d
dt

− ν1∆
)

d
dt

− ∆
]

σ = (γ − 1)∆
dσ
dt

The temperature perturbations τ satisfy the same equation fourth-order in the spatial variables and
second-order in time. The small coefficient of the highest derivative indicates the possible existence of
regions with singular perturbations where the spatial derivatives are maximal (boundary layers, neighbor-
hoods of sharp edges, etc.). The first operator on the right side of the equation is the heat-conduction operator
and the second (in square brackets) is the wave operator with a dissipative term which depends on the shear
and bulk viscosities.

If we neglect the viscosity and the thermal conductivity, we obtain the equation of perturbation propaga-
tion in a constant ideal fluid flow

d
dt

(
γ
a2

0

d2

dt2 − γ∆
)

σ = 0, or

(
1
a2

0

d2

dt2 − ∆
)

σ = F(x − V0t, y, z)

In spite of the presence of a wave operator, this is not a wave equation. It describes density perturbations
that “float” at a constant velocity together with the flow and in a medium at rest, in the absence of gravity
forces, are stationary and satisfy the Poisson equation. This apparent paradox can be attributed to the fact
that the density and temperature perturbations split into two modes, one of which propagates at the speed of
sound while the other is entrained by the flow at its convective velocity.

Let us consider certain features of the simplest solutions in free space in a homogeneous medium at rest.
The equation (

∂
∂ t

− γν2∆
)[

γ
a2

0

(
∂
∂ t

− ν1∆
)

∂
∂ t

− ∆
]

σ − (γ − 1)∆
∂σ
∂ t

= 0 (1.5)

admits particular stationary solutions, namely, spherical waves of the form

σ = A
ei(k·r−ωt)

r
(1.6)

where A is the complex amplitude, ω is the frequency, and k is a wave vector whose modulus satisfies the
dispersion relation

ν2k4(1 − iγε1) − ωk2(i + ε1 + γε2) + i
ω3

a2
0

= 0

ε1 =
ν1ω
a2

0

, ε2 =
ν2ω
a2

0

(1.7)

FLUID DYNAMICS Vol. 40 No. 3 2005



406 STOLYAROV

In somewhat different notation, Eq. (1.7) was obtained by Kirchhoff in 1868. It has two pairs of complex
conjugate roots

k1,2 = ± ω
a0

√
1 − iγε1

+ O(ε2
1 , ε2

2 , ε1ε2) (1.8)

k3,4 = ±
√

ω
ν2

[i − (γ − 1)(ε1 − ε2)] + O(ε2
1 , ε2

2 , ε1ε2) (1.9)

For a Prandtl number Pr = 3/4, ζ = 0.8η , and γ = 1.4

k1,2 ≈±ω
a0

√
1 + i

γω
ρ0a2

0

(
4
3

η + ζ
)

= ±ω
a0

√
1 + i

18.8
Rea

k3,4 ≈±
√

ωρ0Pr

η

[
i − ω

γ − 1
ρ0a2

0

(
4
3

η + ζ − η
Pr

)]
= ±

√
3
4

ω
ν

(
i − 2

Rea

)

Here the Reynolds number Rea is calculated from the shear viscosity η , the wavelength, the density and
the adiabatic speed of sound in the undisturbed medium.

The first pair of complex roots k1,2 (1.8) characterizes the density and temperature modes propagating at
almost the adiabatic speed of sound (damped elastic waves). The damping factor related with the diffusion
processes in the wave is determined by the imaginary part of the wave number and is equal to

α ≈ γω2

2ρ0a3
0

(
4
3

η + ζ
)

while the mechanical energy loss per unit time is 〈dEm/dt〉 ≈ 2α a0〈E〉. The mechanical energy loss in the
wave due to viscous dissipation, absent from the linearized equations, can be approximately estimated by
calculating the mechanical energy dissipated per unit volume in unit time, as for a plane acoustic wave (see
[6]). Correct to higher-order quantities, we obtain the same estimate

〈dEm/dt〉
a0〈E〉 ≈ ω2

ρ0a3
0

[
4
3

η + ζ +
(γ − 1)χ

cp

]

The total mechanical energy loss in the elastic wave is thus twice as great as in a wave without account
for damping. Part of this energy is transformed into elastic oscillation energy: if in Eq. (1.4) we retain the
nonlinear term with viscous dissipation, then on the right side of Eq. (1.5) we must add the nonlinear term

Q = ∆Φ′

Φ′ = γ

[
ν2(∇∇∇ τ )2 + (γ − 1)

ν1

a2
0

(
∂σ
∂ t

)2
]

The second pair of roots k3,4 (1.9) is related with the temperature and density perturbations that remain
in the medium in the form of a nonequilibrium entropy wake after the elastic wave has passed. The cause of
this phenomenon is known [2, 6] and can easily be explained if we consider the wave in the form of a wave
packet [7]. As long as the wave front has not arrived, there are no perturbations in the medium. The acoustic
wave disturbs the thermodynamic equilibrium in the homogeneous medium and produces rapid changes
of different signs in the temperature and density over a wavelength. The transition to an equilibrium state
with an increase in entropy due to viscosity and heat conduction starts inside the wave but does not finish
during its passage. After the wave has gone, in the fluid an entropy wake remains in the form of density and
temperature inhomogeneities distributed over the medium, disturbing its equilibrium state which continues
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to be restored with increase in entropy. In a monochromatic wave that continues for an infinitely long time
the process of the equilibrium disturbance and restoration is continuous. The second term under the root
sign in expression (1.9) characterizes the secondary emission from the wake.

An important consequence of the solution obtained is that within the framework of the continuum equa-
tions there is no paradox of an infinite perturbation propagation velocity, as discussed in [3] in connection
with fast processes with frequencies of the order of a0/lm.

Using the expressions for the complex roots (1.8) and (1.9), we can rewrite the small-perturbation propa-
gation equations in another form equivalent to the initial equation, correct to terms quadratic in ε . Examples
of this sort can be found in monograph [7]. The equation describing the velocity and pressure in an elastic
wave differs from the classical acoustic equation in containing a dissipative term with a higher derivative:

(
1 +

γν1

a2
0

∂
∂ t

)
∆σ − 1

a2
0

∂ 2σ
∂ t2 = 0 (1.10)

Equation (1.10) formally coincides with the equation obtained by Stokes (see [8]), differing only with re-
spect to the larger coefficient associated with damping. The temperature and density perturbations break
down into two components, one of which (wave component) can be described by the above equation and
the other by a diffusion equation which can be written in the form:

ν2∆τd − ∂
∂ t

[
1 − γ − 1

a2
0

(ν1 − ν2)
∂
∂ t

]
τd = 0 (1.11)

Equation (1.11) differs from the classical heat conduction equation with respect to the term containing
the second time derivative with a small coefficient proportional to the bulk viscosity. This equation is of the
elliptic type. It is worth noting that without account for the bulk viscosity at Pr = 3/4 this equation goes over
into the classical heat conduction equation and with no account for viscosity at all (ν1 = 0) into the wave
(telegraph) equation of hyperbolic type to which the equations of hydrodynamics of fast processes reduce
[3].

The general solution of Eq. (1.5) for periodic perturbations can be written following Rayleigh [8]. We
will assume the hydrodynamic functions to be proportional to eint and write down the general solution for
the temperature in the form:

τ = A1q1 + A2q2 (1.12)

where the functions q1 and q2 are solutions of the equations

∆q1 = λ 2
1 q1, λ 2

1 =
n2

a2
0

[
1 − n

a2
0

(ν1 + γν2)
]

∆q2 = λ 2
2 q2, λ 2

2 =
n
ν2

[
1 − n

a2
0

(γ − 1)(ν1 − ν2)
] (1.13)

The perturbed velocity vector is determined by the relations

v = B1∇∇∇ q1 + B2∇∇∇ q2 + A3q (1.14)

where the vector q is a solution of the equations (with constant B1 and B2)

∆q = λ 2
3 q, ∇∇∇ ·q = 0, λ 2

3 =
n
ν

(1.15)

B1 = A1

(
ν − n

λ 2
1

)
, B2 = A2

(
ν − n

λ 2
2

)
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Fig. 1. Point source 1 above an absolutely rigid plane.

The density perturbations can be expressed in terms of the temperature perturbations by the relation (C1
and C2 are constants)

σ = C1q1 + C2q2 (1.16)

C1 = A1
n − γν2λ 2

1

n(γ − 1)
, C2 = A2

n − γν2λ 2
2

n(γ − 1)

These results were applied by Kirchhoff and Rayleigh to the problems of plane wave propagation in
channels and can be used in solving other similar problems.

In conclusion, we note that the elastic waves describe the asymptotic nonstationary hydrodynamic field
far from the source. Therefore, an asymptotic solution can be obtained only correct to certain constants
which can be found from the requirement of matching with the solution near the source. In order to construct
the global solution, we must construct a local solution near the source and then use the method of matched
asymptotic expansions [9] or other asymptotic methods [10].

2. As an example, we will consider the solution of the problem of a spherical wave impinging on an
unbounded rigid wall. The interaction of a plane wave with an absolutely rigid and heat-conducting wall
was considered in detail in [11]. From an analysis of the solution it follows that at angles of incidence close
to 90◦ anomalously high (up to 60%) acoustic absorption should be observed. In [12], where the problem of
the acoustic field of a point source near a rigid boundary was considered without account for heat conduction
or second viscosity, using the reflection coefficient for plane waves taken from [11], the above-mentioned
anomalously high absorption effect was attributed to the existence of a cylindrical (inhomogeneous) wave
which propagates along the plane as in a waveguide and entrains part of the energy emitted from the source.
In the present study we will consider the complete problem of the temperature, density and velocity fields
near a rigid surface without the simplifications used in [12] and will give a somewhat different interpretation
of the resulting effects.

Let us consider the steady-state, that is, lasting for an infinitely long time, field of a spherically symmetric
source located in a homogeneous medium at rest at a distance h from a plane surface and oscillating with
the frequency ω. We will use a cylindrical coordinate system with the symmetry axis perpendicular to the
plane and passing through the source center (see Fig. 1). We will assume that the distance h is much greater
than the characteristic dimension of the source L (h � L) and that the reflection from the plane does not
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affect the source. We will relate the linear dimensions to the scale h, velocities to the speed of sound a0, and
amplitudes to the amplitude in the incident wave. The temperature in the spherical wave can be described
by the function

q0 =
exp{λ1R0 − ikt}

R0
(2.1)

and in the wave reflected from the surface by the function

A1q1 = A1
exp{λ1R1 − ikt}

R1
(2.2)

R0 =
√

r2 + (z − 1)2, R1 =
√

r2 + (z + 1)2, λ1 = ik
√

1 + ik(ε1 + γε2)

ε1 =
ν1

a0h
, ε2 =

ν2

a0h
, k =

ωh
a0

Here, A1 is the complex reflection coefficient. Due to the symmetry of the problem the velocity pertur-
bation field has two components: tangential u parallel to the plane and v normal to it. On the rigid wall we
assign the no-slip conditions and require the heat flux to be equal to zero, and at infinity require the solution
to be bounded. Thus, in the case of a thermally insulated wall, the boundary conditions can be written in the
form:

z = 0, u = v = 0,
∂τ
∂ z

= 0

R → ∞, u → 0, v → 0, τ → 0

In the case of a heat-conducting wall, only the boundary condition for the temperature on the surface will
change:

z = 0, u = v = 0, τ = 0

If the source emission is steady, the problem formulated can be reduced to solving a system of ordinary
differential equations by the Hankel transform method. To do this we introduce the following transforms of
the unknown functions:

Qi =

∞∫

0

rJ0(ξ r)qi dr, T =

∞∫

0

rJ0(ξ r)τ dr, R =

∞∫

0

rJ0(ξ r)σ dr

U =

∞∫

0

rJ1(ξ r)udr, V =

∞∫

0

rJ0(ξ r)vdr

where J0(x) and J1(x) are Bessel functions of zeroth and first order, respectively. Multiplying relations
(1.12)–(1.16) by J0(ξ r), integrating from zero to infinity, and using the well-known relations for Bessel
functions [13] and the expansions of functions (2.1) and (2.2) in cylindrical waves [7], we obtain:

d2Qi

dz2 = αiQi, αi =
√

ξ 2 + λ 2
i , λ 2

1 = −k2[1 + ik(ε1 + γε2)] (2.3)

λ 2
2 = − ik

ε2
[1 + ik(γ − 1)(ε1 − ε2)], λ 2

3 = − ik
ε

, ε =
ν

a0h

Q0 =
exp{α1|z − 1|}

α1
, Q1 =

exp{−α1(z − 1)}
α1

, Q2 = exp(α2z), Q3 = exp(α3z)
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T = Q0 + A1Q1 + A2Q2

U = −b1ξ Q0 − A1b1ξ Q1 − A2b2ξ Q2 − A3
α3

ξ
Q3

V = α1b1Q0 − A1α1b1Q1 + A2α2b2Q2 + A3Q3

R = c1Q0 + A1c1Q1 + A2c2Q2

b1 = ε +
ik
λ 2

1

, b2 = ε +
ik
λ 2

2

, c1 =
k − iγε2λ 2

1

k(γ − 1)
, c2 =

k − iγε2λ 2
2

k(γ − 1)

Using the boundary conditions, we obtain expressions for the coefficients Ai. In the case of a thermally
insulated wall (dTw/dz = 0)

A1 =
1
D

[
α1α3

(
1 − b2

b1

)
− ξ 2

(
1 − α1

α2

b2

b1

)]
, A2 = − 2

α2D
exp{−α1}

A3 = −2b1ξ 2 exp(−α1)
D

(
1− b2

b1

)
, D = α1α3

(
1 − b2

b1

)
+ ξ 2

(
1 +

α1

α2

b2

b1

)

For an absolutely heat-conducting wall (Tw = 0), the expressions for A1, A2, and D change:

A1 =
1
D

[
α3

(
α1 − α2

b2

b1

)
− ξ 2

(
1 − b2

b1

)]
, A2 = −2α3

D
exp{−α1}

D = α3

(
α1 + α2

b2

b1

)
+ ξ 2

(
1 − b2

b1

)

In the leading approximation in εi the expressions for the Hankel transforms of the unknown functions
are as follows:

T =
exp{−α1|z − 1|}

α1
+ A1

exp{−α1(z + 1)}
α1

+ A2 exp{α2z}

U =
iξ exp{−α1|z − 1|}

kα1
+ A1

iξ exp{−α1(z + 1)}
kα1

− A3
α3 exp{α3z}

ξ

V = − iexp{−α1|z − 1|}
k

+ A1
iexp{−α1(z + 1)}

k
+ A3 exp{α3z}

R =
exp{−α1|z − 1|}

α1(γ − 1)
+ A1

exp{−α1(z + 1)}
α1(γ − 1)

− A2 exp{α2z}

where in the case of a thermally insulated wall (dT/dz = 0) the constants are determined by the formulas

A1 =
α1α3 − ξ 2

D
, A2 = − 2ξ 2

α2D
exp{−α1}, A3 =

2iξ 2

kD
exp{−α1}, D = α1α3 + ξ 2

In the case of an absolutely heat-conducting wall (Tw = 0), only the expression for A2 changes:

A2 = −2α3

D
exp{−α1}

The temperature, density and velocity fields are determined by the inverse Hankel transform in accor-
dance with the relations

FLUID DYNAMICS Vol. 40 No. 3 2005



ASYMPTOTIC SOLUTIONS OF THE EQUATIONS 411

τ (r, z; k) =

∞∫

0

ξ J0(ξ r)T (z; k, ξ )dξ , σ(r, z; k) =

∞∫

0

ξ J0(ξ r)R(z; k, ξ )dξ

u(r, z; k) =

∞∫

0

ξ J1(ξ r)U(z; k, ξ )dξ , v(r, z; k) =

∞∫

0

ξ J0(ξ r)V (z; k, ξ )dξ

Far from the wall the reflected temperature field can be expressed by the integral

τ1

∞∫

0

√
ξ 2 + λ 2

1

√
εξ 2 − ik −

√
εξ 2√

ξ 2 + λ 2
1

√
εξ 2 − ik +

√
εξ 2

exp
{
−(z + 1)

√
ξ 2 + λ 2

1

}
ξ J0(ξ r)dξ (2.4)

and the density field differs from (2.4) in the same approximation only with respect to the multiplier (γ −
1)−1.

From the solution there follow the expressions for the induced vorticity field

ψ = (∇ ×v)ϕ = − 2√
ε

∞∫

0

ξ 2J1(ξ r)exp
{
−

√
ξ 2 + λ 2

1

}
√

ξ 2 + λ 2
1

√
εξ 2 − ik +

√
εξ 2

exp

{
z√
ε

√
εξ 2 − ik

}
dξ (2.5)

and for the density gradient normal to the wall

(
∂σ
∂ z

)∣∣∣∣
z=0

=
2γ
√

ε
γ − 1

∞∫

0

ξ 3J0(ξ r)exp
{
−

√
ξ 2 + λ 2

1

}
√

ξ 2 + λ 2
1

√
εξ 2 − ik +

√
εξ 2

dξ (2.6)

where ε = η/ρ0a0h is a small parameter and the quantity λ 2
1 is defined in (2.3) .

The integral expressions (2.4)–(2.6) are very complicated for finding a simple analytical solution as the
integrands have poles and branch points. A similar problem arises, for example, in connection with the
propagation of electromagnetic waves over the earth’s surface [7]. In principle, for arbitrary fixed r, z, and k
a solution can be found by numerical integration, since all the singularities lie outside the real axis and the
integrals exist and converge. We will restrict ourselves to a few qualitative conclusions which can be made
without calculations, on the basis of the form of the solutions obtained.

As follows from expression (2.5), the solution for the vorticity is singular: it tends to infinity as ε → 0
but remains finite for any ε > 0 and exponentially decreases with distance from the wall. These are nothing
other than the transverse shear waves, well-known from hydrodynamics courses, which appear due to the
no-slip boundary condition. The vorticity excited leads to the appearance of a non-zero derivative of the
density normal to the wall (2.6) and, as a result, to secondary induced dipole emission. The temperature
and density variation is determined by a complex reflection coefficient (multiplier of the exponential in
integral (2.4)) which differs considerably from that assumed in [12]. The presence of heat transfer on the
wall (qw �= 0) or the wall elasticity (vw �= 0) may be expected to have a considerable effect on the reflectivity
and the induced emission in the wall region.

Due the linearity of the problem the method developed can be generalized to include an arbitrary distri-
bution of sources for stationary boundary conditions. If the boundary conditions are nonstationary or the
source emission is nonsteady, then instead of the Fourier transform the Laplace transform must be used.

The propagation of perturbations in a moving inhomogeneous medium differs considerably from that
considered. In a viscous heat-conducting fluid, in addition to the effects described by classical acoustics
(interference, diffraction, resonance effects, etc.), novel effects are manifested: density and temperature
perturbations in the entropy wave wake, which are transported at the local flow velocity; secondary emission
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of elastic waves from the flow inhomogeneity region, accompanied by the interaction of the base flow with
the density and temperature perturbations; formation of a nonstationary vortex layer near the homogeneity
boundaries, which inevitably affects the flow development in the boundary layer; heat-transfer effect on
the transformation of an ordered (wave) motion into chaotic (molecular) form. All these problems go well
beyond the framework of a journal paper and need to be discussed separately.

Summary. A linearized equation, the asymptotic limit of the initial hydrodynamic equations for a vis-
cous heat-conducting compressible medium, is derived. Its particular solutions describing the propagation
of elastic waves and the formation of an entropy wake behind them, far from the body and other homo-
geneity boundaries, are analyzed. An analytical expression for the damping coefficient of elastic waves in
a homogeneous medium at rest is found. The solution of the problem of the interaction between a spher-
ical harmonic wave and an infinite flat surface is constructed. Integral expressions for the temperature,
density and velocity fields are obtained. It is shown that in a thin layer near a rigid boundary an induced
nonstationary vortex field and on the boundary a non-zero normal pressure gradient arise.

The results obtained can be applied in the asymptotic analysis of nonstationary boundary layer flows,
for developing methods of delaying or preventing flow transition from the laminar to the turbulent regime,
and for constructing global solutions of nonstationary problems on the basis of the method of matched
asymptotic expansions.
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M. N. Kogan, and I. I. Lipatov) for useful discussions and to the reviewer for his suggestions and careful
reading of the manuscript.
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