
1

1. Introduction
2. Component-Based Development Processes
3. Component Models
4. The CORBA Component Model (CCM)

Chap 7. Component-based Development

Part 7.1 Introduction to Component-based
Development

2

1. Introduction

PrintService
<<interface>>
IRequires

getPDFile()
printerInt()

<<interface>>
IProvides

print()
getQueue()
remove()
transfer()
register()
unregister()

Overview
-Component-based development (CBD) emerged in the late 1990s as
a reuse-based approach to software systems development.

÷It was motivated by the frustration that OO development had not led
to extensive reuse as originally suggested.

-Components are more abstract than object classes and can be
considered to be stand-alone service providers.

÷Components are defined by their interfaces and in general can be thought of
as having two related interfaces: provides and requires.

3

Component Categories and Abstraction
-Software components provide a vehicle for software artifacts reuse, and
thereby may be used at all the levels of the software life cycle: analysis,
design, implementation, and deployment.

-Hence, there are various kinds of software components:
÷Conceptual components: components at the analysis and design level.

÷Implementation components: development work product components
such as source code files, data files etc.

÷Deployment components: involved in an executable system, such as
dynamic libraries and executables.

4

-Components may also exist at different levels of abstraction:

÷Functional abstraction: the component implements a single function
such as a mathematical function. The provides interface is the function.

÷Casual groupings: the component is a collection of loosely related
entities that might be data declarations, functions etc.

÷Data abstractions: the component represents a data abstraction or
class in an OO language; the provides interface consists of operations
to create, modify and access the data.

÷Cluster abstractions: the component is a group of related classes that
work together (called framework); the provides interface is the
composition of the provides interfaces of the objects involved.

÷System abstraction: the component is an entire self-contained system
(also called COTS product); the provides interface is an API defined to
allow programs to access the system commands and operations.

5

Constructs

-Principal constructs used in software component modeling:

«component»
sender : Fax
«component»«component»
sender : Faxsender : Fax

remote:FaxProtremote:remote:FaxProtFaxProt

«component»
receiver : Fax
«component»«component»

receiver : Faxreceiver : Fax
remote:FaxProtremote:remote:FaxProtFaxProt

ConnectorConnectorConnector

÷Component: complex, and physical objects that interact with their
environments through one or more ports.

÷Port: boundary object that implements some of the interfaces through
which a component interacts with its surroundings.

÷Connector: abstraction for communication channels that interconnect two or more ports
of components.

÷Roles: boundary object that implements the interfaces through
which a connector interacts with its surroundings.

÷Protocol: defines the valid sequence of messages between connected ports

6

2. Component-Based Development Processes
-Component-oriented development can be integrated into a system
development process in one of two ways: opportunistic reuse and
development with reuse.

Design System
Architecture

Incorporate
Discovered
Components

Search for
Reusable

Components

Specify
Components

-The specifications are used to find reusable components which are
then incorporated in the architecture.

÷Although this approach may result in significant reuse, it contrasts
with the approach adopted in other engineering disciplines.

Opportunistic Reuse

7

Development with Reuse

Outline system
requirements Modify Requirements

According to Discovered
Components

Search for
Reusable

Components

Design system
Using Reusable

Components

Design/Find
Reusable

components

Architectural
Design

-The system requirements are modified according to the reusable
components available; the design is also based around existing
components.

÷Since this requires some tradeoff, the design is less efficient than a
special purpose design; however, lower costs of development, rapid

delivery, and increased system reliability should compensate for that.

8

3. Component Models
-A software component conforms to a component model and can be

independently deployed and composed without modification
according to a composition standard.

Component Model
-A component model defines a set of standards for component
development, deployment, and evolution.
-The main competing component models currently available include:
÷OMG’s CORBA Component Model (CCM),
÷Microsoft’s Distributed Component Object Model (DCOM)
÷Microsoft DotNET Framework
÷SUN Microsystems JavaBeans and Enterprise JavaBeans (EJB)

9

Basic Elements of a Component Model
-Basic elements of a component model include standards for
interfaces, naming, meta data, customization, composition,
evolution, and deployment.

Packaging implementation and resources needed for
installing and configuring a component.

Packaging and deployment

Rules and services for evolving components.Evolution Support

Interfaces and rules for combining components.Composition

Interfaces for customizing components.Customization

Communication among components from different
vendors, and/or implemented in different languages.

Interoperability

Information about components and interfaces.Meta data

Global unique names for interfaces and components.Naming

Specification of component behavior and interfaces;
definition of an Interface Definition Language (IDL)

Interfaces
DescriptionStandards for

10

Component Model Implementation
-Dedicated set of executable software elements required to support
the execution of components that conform to the model.

-Provide:
÷A run-time environment
÷Basic Services
÷Horizontal services that are useful across multiple domains
÷Vertical services providing functionality for a particular domain

for software components.

11

4. The CORBA Component Model (CCM)
Overview of the CCM
-The goals of the CORBA Component Model (CCM), like any other
component model (e.g., DCOM, EJB etc.) is to facilitate reuse of
CORBA applications.
-The CCM extends the standard CORBA Interface Definition Language
(IDL) by including specific features for component description.

-The CCM also introduces a new declarative language, named the
Component Implementation Definition Language (CIDL), which
is used by code generators to generate code needed to deploy the
components (in containers).

-Developers have to deal only with the development of the components
and their inherent logic and functionality.

12

Developer

Provider

Configurator
Designer

Administrator

Integrator

Functional code IDL/CIDL/PSDL

IDL/CIDL/PSDL
compiler Stubs/

Skeletons

Component
descriptor

Programming
Language Tools

Implementation

CORBA
Component

Package

Softpkg
descriptor Packaging Tool

Default
properties

Assembling Tool

Home
properties

Component
properties

CORBA
Assembly
Package

Assembly description

Deployment Tool

CBD Process using the CCM

13

Component Model
ComponentFacet (supports)

Facets (provides)

Attributes

Receptacles (uses)

Event sink (consumes)

Event source (publishes, emits)

-The CCM defines a component type to represent component instances.
-Component type definitions consist of a collection of ports definitions.
The CCM defines 2 kinds of ports: facets and configuration ports.
÷Facets: consist of a set of interfaces that define the functionality

supported or provided by the component.
÷Configuration ports: correspond to a set of interfaces that specify how a

component may interconnect and communicate with other components.

14

Configuration Ports
Several kinds of ports supported by the CCM, namely receptacle,
attribute, emitter, publisher, and consumer.

-Receptacles: specify the external dependencies of the component,
by describing the interfaces used by the component.

-Attributes: describe the properties of the component, and thereby
serve as medium for their configuration and customization.

-Event sources: specify the events published by the component;
two forms of events can be generated by the component:

÷Publisher: events for which the component is exclusive provider
÷Emitters: events that share event channels with other event sources

-Event sinks: specify the events consumed by the component.

15

CCM Examples

An example CCM Component

16

An example CCM Component With IDL Specification

17

Example of CCM Components Interactions

Note: CCM components interact through port mechanisms

18

Component Container
-Represents the run-time environment of component instances.
÷The CORBA component container implements component access to global

system services such as transactions, security, events, and persistence.
÷The container reuses the existing CORBA infrastructure. In doing so, the inherent
complexity of CORBA is hidden both to the developer and to the container.

-Container and component instances interact through two kinds of
interfaces:

÷Internal API: a set of interfaces provided by the container to
component implementations.

÷Callback Interfaces: a set of interfaces provided by component
implementations to the container.

