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Abstract

This paper presents an integrated region-based and
gradient-based supervised method for segmentation of a
patient magnetic resonance images (MRI) of the shoulder
joint. The method is noninvasive, anatomy-based and re-
quires only simple user interaction. It is generic and easily
customizable for a variety of routine clinical uses in ortho-
pedic surgery.

1 Introduction

The shoulder joint has the widest range of motion of any
joint in the human body. This joint is actually a complex
set of bones and soft tissues. It contains several bones, with
numerous articular surfaces, ligaments, tendons, and neu-
rovascular structures. Shoulder pain, with or without dys-
function, is a common problem, but the clinical signs are
often subtle. Conventional imaging (plain film radiography,
scintigraphy, conventional tomography, and arthrography)
frequently proves to be inadequate or equivocal in deter-
mining the source of the pain. With their high-resolution,
high-contrast, and multi-planar imaging capabilities, mag-
netic resonance imaging (MRI) and computed tomography
(CT) can be used to overcome this problem.

In many cases, the source of shoulder pain is due to dis-
location or luxation of the humerus and scapula bones. In an
attempt to assist radiological diagnosis we developed a seg-
mentation algorithm for the detection of the planar contours
of the humerus bone in a sequence of successive slices of
a three-dimensional (3-D) image of the shoulder. After de-
tection, a stack of planar contours is obtained for the bone,
which describes its boundary surface and from which the
orientation and location of the bone, can be determined. Our
aim is to use this information for visualization and also for
quantification of the location and orientation of the humerus
head bone when the arm is placed in different postures.

Most segmentation methods can be divided primarily

into region-based and gradient-based approaches. Region-
based methods [4, 5, 7] rely on the homogeneity of spa-
tially localized features such as gray level intensity, texture
and other pixel statistics. Homogeneity does not necessar-
ily mean identical pixel values within a particular region;
it rather means that the variation within a region is of a
smaller extent than that between regions. The advantage
of such methods is that since they rely directly on the gray
level image, they are less sensitive to noise than methods
that use derivative information. Also, if the high frequency
information in an image is either missing or is unreliable,
the segmented images remain relatively unaffected.

Shape variations, on the other hand, can be better han-
dled using a deformable boundary finding framework [1, 2,
6] when we consider such variations to be generally around
an average shape and such information can easily be incor-
porated as priors.

Our ultimate goal is to develop a framework for integrat-
ing boundary finding and region-based segmentation. This
would lead to a system where the two modules would op-
erate respectively so that at each step the outputs of each
module are updated using information from the outputs of
both the modules from the previous iteration. The main ob-
jective we present in this paper is aimed at using the re-
sults of boundary finding to assist region-based segmenta-
tion. Unlike most of the other existing methods [11, 3], it
integrates boundary-based segmentation with region grow-
ing rather than edge detection, thereby making it resistant
to the problems of false and broken edges while at the same
time having well localized boundaries.

2 Description of algorithm

2.1 Choosing the best frame in sequence

In order to choose the best frame in a sequence of im-
ages, one image in the sequence must be selected where
the shape of the object appears clearly (see Figure 1 for di-
agram of the approach). The contrast between object and
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Figure 1. Diagram of the whole algorithm

background should be significantly different. In our case,
the frame in the middle of the sequence is usually the de-
sired one.

2.2 Applying brightness adjust and image
enhancement

Since MR images can be obtained using several differ-
ent methods, the brightness of the resulting images may
vary. Thus, image brightness must be adjusted. In general,
the manipulation of gray scale images in terms of a transfer
function relating the stored brightness value for each pixel
to a displayed value. In some cases, it is advantageous
to use transfer functions that are not one-to-one: several
stored values are displayed with the same brightness val-
ues, so that other stored values can be spread further apart
to increase their visual difference. A non-linear relationship
can expand one portion of the gray scale range while press-
ing another. The most common kinds of transfer functions
are shown in Figure 2. These are curves of displayed vs.
stored brightness following simple mathematical relation-
ships such as power law curves.

Gamma(γ) is in fact a rather mathematical entity, an
expression of power law. If γ is less than 1, the mapping
is weighted toward higher (brighter) output values. If γ
is greater than 1, the mapping is weighted toward lower
(darker) output values. The user must input the value of
γ to adjust the brightness (as default γ = 1).

After adjusting the brightness, the given image is en-
hanced through the application of top-hat and its inverse
transformation. For the top-hat transformation, let us first
consider f ∈ Pi to be a picture and structuring element B
to be the unit disk. Now consider f − fρB . This quan-
tity is again a picture, composed of the residual from the
opening by ρB and f . It extracts topographical peaks, isth-
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Figure 2. Examples of different transfer func-
tions

(a) (b)

Figure 3. Manipulation of the brightness ad-
just. (a) An original image. (b) An image after
the application of a positive gamma function
(γ =3)

muses and capes. More precisely, consider all of disk ρBy

containing the point x. With each of them associate the
sharpest drop from x to any point of ρBy . The largest of
these sharpest drops is f − fρB(x). In the reciprocal repre-
sentation Xt(f − fρB(x)) is the set of points x such that in
every ρBy containing x, the maximum drop is equal to at
least i. We obtain the relation:

Xi0(f − fρB) =
imax−i0⋃

i=0

[Xi+i0(f)/Xi+1(fρB)] (1)

with 0 ≤ i ≤ imax

which represents the original algorithm given by Meyer
[10], when he proposed the top-hat transformation. Since
his pioneering work, thousands of experiments have proven
the power of the algorithm for contrast extraction in pic-
tures.

The top-hat image contains the topographical peaks,
isthmuses and capes of objects that fit the structuring ele-
ment ρB. The bottom-hat transform, the inverse transform
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of the top-hat transform, shows the gaps between the object
and other parts of the image. In order to maximize the con-
trast between the objects and the gaps that separate them
from each other, we add the top-hat image to the original
image, and then subtract the ”bottom-hat” image from the
result. The impact of this process also reduces the noise
around the object. The example in Figure 4 shows a T1
shoulder image (a) original. Image (b) illustrates the top-hat
applied. Images (c) shows the bottom hat transform applied
on original image. And (d) is the image after this enhance-
ment. We can easily observe that the form of the humerus
is clearer and sharper when compared to the original.

(a) (b)

(c) (d)

Figure 4. Application of a top hat filter. (a) An
original image. (b) Image after the application
of the top hat filter. (c) Bottom hat applied
image. (d) Image after enhancement

2.3 Calculating the average acutance and
finding the ”best” contour

An isointensity contour map [12] provides the contours
(256 levels) of the entire image (Figure 5). The contour map
of the humerus is the subset of this image. To extract the
isointensity contour map of the humerus, the user is asked
to choose one point located in the humerus, called the ref-
erence pixel. This information is necessary to locate the
humerus in the image. Then all isointensity contours con-
taining that point are collected and a set of contours is built.
Among these contours, the goal is to extract only one con-
tour that represents the humerus exactly.

The humerus is usually brighter than the background.
Then only the average acutance of the contours which con-

tain the reference pixel is determined. On the direction per-
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Figure 5. An image with its iso-intensity con-
tour map

pendicular to the contour at each point j, the acutance aj is
calculated. The acutance aj of a point j on contour is then
defined as

aj =
k∑

i=1

|Ii − Ei| (2)

where Ii is the value of the intensity of pixel within the con-
tour and Ei is the value of the intensity of the pixel outside
the contour the exterior one. And average acutance A of
contour is

A =
1
N

N∑
j=1

aj (3)

Now, the contour with the maximum average acutance A is
the desired contour.

2.4 Using the previous contour to find
contour on the successive frame

The contour that was found in the previous step, is now
projected on to the adjacent frame, as shown in Figure 6.
The normal line of each point on the contour is then drawn.

2.4.1 The gradient of the contour

First an image from the contour is generated and a blur fil-
ter is applied. This provides an image as shown in Figure
8. After computing the gradient of this image, 2 images
FX and FY are obtained which have the same size as the
original image. Let FX , FY be the gradient maps of the
image.

FX corresponds to ∂I/∂x, the differences in the x (col-
umn) direction.

FY corresponds to ∂I/∂y, the differences in the y (row)
direction. Normalizing FX, FY provides:

(fx, fy) =
(fx, fy)

max fx, fy
(4)

Consider that (x0, y0) is the point on the contour. The
segment of normal line of the contour at (x0, y0) is defined

3

Fourth Canadian Conference on Computer and Robot Vision(CRV'07)
0-7695-2786-8/07 $20.00  © 2007



Figure 6. Diagram demonstrating the deter-
mination of the boundary with a given point
procedure

Figure 7. Diagram illustrating the procedure
of finding the contour with a contour initial

Figure 8. An image generated from a contour

(a) (b)

Figure 9. Gradient maps of image. (a) Row di-
rection derivatives FX. (b) Column direction
derivatives FY

by two points (x1, y1) and (x2, y2):

x1 = x0 + d ∗ fx; y1 = y0 + d ∗ fy (5)

and

x2 = x0 − d ∗ fx; y2 = y0 − d ∗ fy (6)

where d is the length of the normal. This method not only
provides 8 possible directions but also gives a precise direc-
tion of the normal at each point on the contour.

2.4.2 Analyzing the intensity along the normals of the
contour

The profile of the image intensity along the normal line is
now analyzed.

By calculating the derivative of the profile intensity, one
obtains the slopes (minimums and maximums local). The
frontier of the object will fall on the pixel in which the max-
imum slope is found.

Here, we put a constraint called the distance constraint.
We suppose that the curvature of the boundary of the object
is approximately uniform. Consequently, the distance be-
tween 2 found-points from 2 successive analyzes is not far.
In the profile corresponding to the currently analysed point,
there may be several local maxima of the slope. The local
maximum which respects the distance constraint is chosen.
When a point that should be the edge is identified, then the
distance from this point to the previous point is verified. If
this distance satisfies the distance constraint, then the point
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Figure 10. Analyze the image intensity along
a segment. (a) Image of light object on a dark
background with a normal section shown; (b)
The profile of image intensity along a normal
section

is kept. If not, then the next lower slope is examined to find
the other point.

2.4.3 Linking the points

The previous process leads to a set of data points. The
method of fitting that set of data points with a B-spline
curve will now be discussed. Consider n+1 data points D0,
D1, . . ., Dn which are to be fitted with a B-spline curve of
degree p. First a set of parameters must be found that can
”fix” these points at certain values. More precisely, if the
data points are D0, D1, . . ., Dn, then n + 1 parameters t0,
. . ., tn in the domain of the curve must be found so that data
point Dk corresponds to parameter tk for k between 0 and
n. This means that if C(u) is a curve that passes through
all data points in the given order, then Dk = C(tk) for all
0 ≤ k ≤ n. Thus seven data points (i.e., n = 6) and seven
parameters must be found to set up the desired correspon-
dence.

The simplest way to select parameters is using the uni-
formly spaced method. Suppose the domain is [a, b] and
n + 1 uniformly spaced parameters are required. The first
and the last parameters must be a and b because the curve
must pass through the first and the last data points. There-
fore, t0 = a and tn = b, since n + 1 points divide the
interval [a, b] into n subinterval evenly, a and b included.
The length of this interval is b − a, so the length of each
subinterval must be (b− a)/n.

While the uniformly spaced method is simple, it is
known to generate some unpleasant results. For example,
when data points are not uniformly spaced, using uniformly

spaced parameters could generate erratic shapes such as big
bulges, sharp peaks and loops. Fortunately, our data points
from the previous process are quite uniformly spaced, this
problem will be verified with the results at next step.

Once a set of parameters is obtained, a knot vector can
be generated. For a B-spline curve of degree p, m+1 knots
are requires, where m = n + p + 1.

Thus, the first internal knot is the average of p parameters
t1, t2, . . . , tp; the second internal knot is the average of the
next p parameters, t2, t3, . . . , tp+1.

Having generated a knot vector, the only missing part is
a set of n + 1 control points. Suppose that C is the interpo-
lating B-spline curve of degree p.

This B-spline curve has n + 1 unknown control points,
since parameter tk corresponds to data point Dk.

Since matrix D contains the input data points and matrix
N is obtained by evaluating B-spline basic function at the
given parameters, D and N are both known, and the only
unknown is matrix P . The above is simply a system of lin-
ear equation with unknown P , solving for P yields the con-
trol points and the desired B-spline interpolation curve be-
comes available. In our experiments, the set of data points,
the parameters, are equally or almost equally spaced and
short spaced, the interpolation curves have to stretch a little
longer for the shorter chords. This situation worsens with
the higher degree curves because the higher degree curves
provide more freedom to wiggle.

2.4.4 Smoothing

The response data is specified by input data S using the
moving average method. The number of data points in the
average (the span) is five. F is the smoothed response data.
Note that the predictor data need not be specified if it is
sorted and uniform.

The first four elements of F are given by

F1 = S1

F2 = (S1 + S2 + S3)/3
F3 = (S1 + S2 + S3 + S4 + S5)/5
F4 = (S2 + S3 + S4 + S5 + S6)/5

Ft =
1
5

t+2∑
i=t−2

Si

and continue to end.

2.4.5 Similarity

Given two contours defined by their curvilinear coordinates
C1(rj) and C2(si), a metric distance, e(C1(rj), C2(si)),
between the two curves is defined. V. Chalana [9] proposed
a methodology using the distance to the closest point (DCP)
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for a point si to the contour C1 as

d(si, Ci) = min
j

‖rj − si‖ (7)

The Hausdorff distance between the two contours is de-
fined as the maximum of the DCP’s between the two con-
tours

e(C1, C2) = max{max
i
{d(si, C1)},max

j
{d(rj , C2)}}

(8)
The closest point distance associates each point on both

curves to a point on the other curve, and the Hausdorff
distance finds the largest distance between the associated
points.

Instead of using the DCP and the Hausdorff distance [1],
the displacement vector is calculated base on the Euclidean
distance transform on one contour to overlay of the second
contour. Each point si on C2 has a normal and the intersec-
tion of this normal with contour C1 is determined. These
points of intersection with the points si define a set of cor-
respondence between the two contours. The distance from
each point si on C2 to its correspondence point on contour
C1 is calculated as

dC1(si, ri) = ‖si − ri‖ (9)

Then the boundary is traced and the distance values are
integrated.

This calculation is not symmetric, since the distances
from C1 to C2 are not the same as C2 to C1. Therefore a
common average is derived by combining the two averages.
The mean absolute distance, as opposed to binary overlap,
does not depend on the object size.

This calculation is conducted iteratively for every frame.
Typically the procedure converges in less than four itera-
tions. Each time a contour is obtained from the iteration, it
is compared to the previous contour, and a decision is made
as to whether the analysis of this frame should be continued
or if one should proceed with the next frame.

In order to do this, a threshold is given to stop the iter-
ation. If the similarity that was calculated above is smaller
than the threshold, the procedure will proceed to next frame.
In our experiments, this threshold has been set equal to 1
pixel.

In addition to computing common average distance (as
discussed above), a mean standard error of distance is also
defined. If it is larger than 1 pixel, the procedure will be
repeated irrespective of the value of similarity.

2.5 Region growing

The region growing algorithm has two objectives: to
add missing pixels to the region and remove false pixels
from the region. Having obtained the last contour, the pixel

aggregation procedure mentioned in [3] is then conducted
with the seed pixels which are pixels on that contour. The
pixel aggregation process iteratively not only adds to the re-
gion the neighboring pixels satisfying similarity constraints
but also subtracts from the region the pixels and its neigh-
borhoods which do not satisfy similarity constraints and
stops when no candidate pixel satisfies this constraint.

These similarity constraints can be defined as follows by

Highthreshold = 0.7(µ− tσn) (10)
Lowthreshold = 0.65(µ− tσn) (11)

where m is the mean value of the region and sn is the
standard error of the mean, σn = σ/

√
n , σ is the standard

deviation and n is the number of pixels in the region. The t
value comes from a table of t values (Student’s t test). The
following diagram illustrates the algorithm.

Figure 11. Region growing diagram

2.6 User’s decision function

Occasionally, some unpleasant results are obtained, such
as in the Figure 12.

Figure 12. Example of an unexpected result

In this case, user input is required to overcome this prob-
lem. The user is provided with 3 options: ”Re-initialize”,
”Cutting”, and ”Continue”. ”Re-initialize” - allows the user
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to discard the information from the preceding frame and ini-
tialize the procedure at the present frame as described in
section 2.3.

”Cutting” - will be described in the next section.
”Continue”- allows the user to accept the result and con-

tinue the process to the next frame.
The whole procedure is described by the illustration in

Figure 13.

Figure 13. The user’s function diagram

2.7 Cutting the contour with 2 points and
linking these points with the spline

If the user wishes to cut the contour, he will be asked
to pick 2 points on the contour. Here, we encounter one
problem: with these 2 points, the contour will be separated
into 2 parts; the computer does not know which part shall
be kept as the final contour. Thus the center of the contour
must be determined and only the part which contains the
center must be kept.

The center of the contour is defined by

xc =
1
N

N∑
i=1

xi yc =
1
N

N∑
i=1

yi

where N is the number of points on the contour and xi

represents the point i on contour. Then the two points are
connected with the B-spline interpolation.

Figure 14. Contour after using cutting’s func-
tion

3 Experimental results and evaluation

Experiments were carried out with the T1-weighted 1.5
Tesla images of the shoulder to verify the performance of
the above mentioned method. This method is implemented
in Matlab in Windows 2000 platform. The images were
acquired on a General Electric Sigma Horizon open field
MR system at the Intervention Magnetic Resonance Imag-
ing Unit of the Centre Hospitalier Universitaire de Québec
(CHUQ). The reference segmentations were taken by a ra-
diologist.

For the purpose of evaluation, a traditional measure of
volumetric overlap was used between two regions in the
same way as used in [8]. Consider S as the region gener-
ated by our segmentation algorithm and R as the reference
region. Images are analysed pixel by pixel to determine the
false positives, false negatives, true positive and true nega-
tive pixel.

Let NP be the number of false positive pixels, NN the
number of false negative pixels, NR the total number of ref-
erence pixels and NS the total number of subject pixels.
Then consider the following correspondence measure:

C(S, R) = 1− NN + NP

NR + NS
(12)

where NS + NN = NR + NP The measure gives a score
of 1 for perfect agreement and 0 for complete disagreement.
The Figure 15 shows a graphical representation of the cor-
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Figure 15. Correspondence measure be-
tween automatic and manual segmentation
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(a) (b)

Figure 16. Result of humerus segmentation
generated by experts and this algorithm. (a)
A contour generated by this algorithm. (b) A
contour generated by an expert

respondence measure computed for a whole database. As
demonstrated in this figure, the results of the algorithm and
the human tracings are in close agreement. The average
value of the measure computed over the entire database is
96.32%. Figure 16 demonstrates the result of the final con-
tour of the humerus generated by the algorithm and experts
alternatively.

4 Conclusion

The algorithm proposed here has the ability to perform
on images with no specific symmetry and it can also isolate
the bony region of MRI slices with a high level of noise,
which will prove useful in many tasks of early vision. The
experimental results indicate that this method yields excel-
lent performances when compared to manual segmentation
performed by radiologists.

While this work has focused on a 2D approach concep-
tually, future work will involve carrying the approach over
to 3-D.
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