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Abstract. In this paper, we present a 3D reconstruction approach of a liver tu-
mour model from a sequence of 2D MR parallel cross-sections, and the integra-
tion of this reconstructed 3D model with a mechanical tissue model. The recon-
struction algorithm uses shape-based interpolation and extrapolation. While in-
terpolation generates intermediate slices between every pair of adjacent input 
slices, extrapolation performs a smooth closing of the external surface of the 
model. Interpolation uses morphological morphing, while extrapolation is based 
on smoothness surface constraints. Local surface irregularities are further 
smoothed with Taubin’s surface fairing algorithm [5]. Since tumour models are 
to be used in a planning and simulation system of image-guided cryosurgery, a 
mechanical model based on a non-linear tensor-mass algorithm was integrated 
with the tumour geometry. Integration allows the computation of fast deforma-
tions and force feedback in the process of cryoprobe insertion. 

1   Introduction 

Widely used medical imaging systems based on MR, X-rays, positron-emission, or 
ultrasound scan 3D anatomic structures in a sequence of 2D parallel image slices. In 
order to visualize, analyze and manipulate this data, one has to deal with the differ-
ence between the inter- and intra-slice resolution. Usually, the intra-slice resolution is 
much higher than the inter-slice resolution, due to technical limitations and/or medical 
reasons (respiratory motion artefact, limited interval of exposure etc.). This is why 
interpolation and/or extrapolation techniques are required to estimate the missing 
slices. While a great variety of interpolation methods are available in the medical 
imaging literature, extrapolation techniques are rare, probably because of the difficulty 
in validating the results.  
Grey-level interpolation techniques [1][2] consist of direct computation of intensity 
for every pixel in the interpolated slice. Since medical imaging applications are 
strongly object-oriented, the main drawback of grey-level interpolation techniques 
consists in the large amount of input data for further segmentation, and errors occur-
ring in segmentation due to prior interpolation. Shape-based interpolation techniques 
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are object-oriented and interpolate the binary object cross-section rather than the grey-
scale intensity values. A general object reconstruction method based on deformable 
meshes is proposed in [3]. There is also a rich literature in spline-based interpolation 
techniques [4]. Mathematical morphology offers a coherent framework for developing 
effective shape-based interpolation algorithms. The morphological morphing trans-
form in [5] interpolates a new group of slices between each two consecutive input 
slices, by performing a gradual shape transition. Our proposed scheme is similar to 
this approach. However, their morphing approach is based on iterative erosion and we 
observed that, in the case of a non-convex initial shape, iterative erosion may divide 
the foreground into disjoint regions, thus hindering a smooth shape transition. Instead, 
we propose a morphing technique based on conditional dilation. Furthermore, we are 
able to obtain an uniform inter-slice resolution by adjusting the lengths of the morph-
ing sequences. 
In this paper, we propose a 3D reconstruction approach using shape-based interpola-
tion and extrapolation. To obtain maximum overlapping between adjacent slices, a 
shape alignment step is necessary prior to morphing. The interpolation process is 
based on morphing, thus performing a smooth transition between every two adjacent 
input slices. Next, a closing surface step is performed using an extrapolation tech-
nique. The 3D reconstructed model integrates the “closing” and “morphing” se-
quences in a coherent manner, featuring an adjustable uniform inter-slice resolution. 
Figure 1 presents the diagram of the proposed reconstruction process. 

 

Figure 1. The diagram of the proposed reconstruction process 

The organization of this paper is as follows. Section 2 presents the proposed 3D re-
construction approach. Section 3 shows and validates our reconstruction results, while 
section 4 describes the integration of the geometric model with a mechanical tissue 
model. Finally, we draw the conclusions and describe future work. 

2   Reconstruction approach 

For every patient, a serial sequence of 2D MR segmented images of transversal liver 
slices is provided. The foreground of each segmented image represents a cross-section 
through the targeted tumour. The used segmentation method has been described in [6]. 
Respiratory movements prevent the slice thickness from being reduced below 10 mm 
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in the abdominal MR image acquisition process. Small liver tumours of 5 mm in di-
ameter (the standard threshold for significant lesions) are therefore visible in only one 
image. Thus, it is impossible to create a 3D model of a smaller tumour using only MR 
images of transversal slices. For tumours of medium size, the number of contributing 
slices is usually three, but in some cases it may be up to four or five. Sequences of 
three segmented MR slices are considered as input data for the reconstruction ap-
proach, as it is the most frequent situation. However, our approach can be easily 
adapted for longer input sequences. In any input cross-section, the interior of the tu-
mour does not contain any holes and is represented by a single compact region. The 
following sub-sections present the main steps of the reconstruction process.  

2.1   Shape alignment  

A morphing process is impossible between two planar (xy) shapes that do not overlap, 
when viewed in the z–direction, thus in the general case shape alignment is necessary 
prior to morphing. In the particular case of liver tumours, their nodular appearance 
always results in a partial overlap between adjacent slices. Thus, shape alignment is 
not absolutely necessary for liver tumours, but plays nevertheless an important role in 
the design of our reconstruction approach because the morphing process obtains best 
results when the common area shared by the two input shapes is maximal. To align 
two shapes we use a simple translation-based method. Only one shape is translated, 
while the other one remains immobile and is considered as reference. The search of 
maximal overlap may result in more than one possible translation. In order to provide 
a unique solution, we minimize the Haussdorff’s distance between the contours of the 
translated and the reference shape.  
Figure 2 presents the results of shape alignment for two configurations of the input 
data. Two displacements are computed, t1 and t3 for objects obj1 and obj3 respec-
tively, considering obj2 as a reference object.  

 

      
 a) b) c) d) e) 

Figure 2. a) An example of  input configuration, containing the initial relative position of 
obj1(top), obj2(middle) and obj3 (bottom) ; b) alignment of obj1 with respect to obj2; c) align-
ment of obj3 with respect to obj2; d) another example of input configuration, containing obj1, 
obj2 and obj3; e) shape alignment of obj1 and obj3 with respect to obj2. 

The aligned sequence of binary objects obj1t, obj2 and obj3t represents the input data 
for the next step, that is the morphological morphing. 
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2.2   Morphological morphing based on conditional dilation 

We propose a new morphing technique based on conditional dilation.  
 
 
Definition : Let A and B be two sets, such that B⊂ A. The conditional dilation of set B 
using the structuring element K with respect to the reference set A is expressed as : 

{ }( ) AKkBKB kA IU ∈=⊕  (1) 

The input data for this morphing technique consists in an initial binary object objA and 
a final binary object objB, located in adjacent slices. The only constraint imposed to 
the input configuration is ∅≠objBobjAI , which is always satisfied after shape 

alignment. Let objint = objBobjAI . The result of this morphing technique is a se-

quence of intermediate binary objects gradually changing their shape from objA to-
wards objB. Figure 3a) contains the contours of objA and objB respectively, while 
figure 3b) highlights the common area of objA and objB.  

 

       

Figure 3. a) the contours of objA and objB ; b) the common area shared by objA and objB. 

In order to gradually transform objA into objB we perform two parallel morphing 
processes based on conditional dilation. These processes transform objint into objA 
and into objB using k1 and k2 iterations respectively. We name obj1(i) and obj2(i) the 
objects generated after i conditional dilations of objint with respect to objA (i<k1) and, 
objB (i<k2) respectively. The morphing process transforms objA into objB by generat-
ing a sequence of intermediate objects objAB as follows : 

( )
( ) ( )

( )
( ) ( )








≤≤∪−
≤≤

≤<≤<∪−
=

122211

212

1221211

 if                            

 if                                                    

or     if          

kikkobjikobj

kikiobj

kkikkiiobjikobj

iobjAB  (2) 

i = 1..max(k1, k2). 
The length of the morphing sequence is equal to the largest number among k1 and k2.  
For input data containing three parallel equidistant tumour slices, two morphing se-
quences are to be integrated in the 3D tumour model : the sequence obj12 of length L12, 
which gradually transforms obj1 into obj2 and the sequence obj23 of length L23 which 
gradually transforms obj2 into obj3. The intermediate objects in the morphing se-
quences are to be located in equidistant planes. Since the lengths L12 and L23 are usu-
ally different, we eliminate 2313 LL −  intermediate objects from the longer sequence. 
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Due to the anisotropy of the conditional dilation, it is possible to encounter very slow 
shape variations between adjacent intermediate objects at some instances of the 
morphing process. In order to achieve a quasi-uniform rate of shape change in the 
sequence of intermediate shapes, we eliminate “redundant” intermediate objects by 
using a distance measure, defined as ( ) ( )2 121  objobjcardobj,objd ∆= where obj1, 

obj2 are adjacent objects in the morphing sequence and ∆ stands for the symmetric 
difference. At iteration k, a redundancy coefficient is assigned to every intermediate 
object of the input sequence : 

( )( ) ( ) ( )( ) ( ) ( )( )( )11 11 −− +−= iobj,iobjdist,iobj,iobjdistminiobjR  (3) 

i = 1..L(k), where L(k) is the length of the input sequence at iteration k. 
The first and the last objects of the input sequence cannot be eliminated, since they 
represent input slices in the reconstruction process. The object with the highest redun-
dancy coefficient is eliminated at the current iteration, and the resulting sequence 
represents the input for the next iteration. The redundancy coefficients are updated at 
each iteration. 
The equal-length constraint for the two morphing sequences results in an uniform 
inter-slice resolution of the 3D reconstructed model. Furthermore, we use the method 
of redundancy coefficients for varying the common length of the morphing sequences. 
Both equal-length sequences can be shortened by eliminating a given number of in-
termediate objects. Thus, we are able to generate 3D tumour models of variable size 
and adjustable inter-slice resolution.  
Once the two morphing sequences are adjusted to the same length, the 3D interpolated 
tumour model is obtained by a simple concatenation of the two sequences. Further-
more, to obtain a tumour model consistent with the input data, we have to reverse the 
shape alignment process. Since translation is reversible, we replace obj1t and obj3t at 
their initial locations. The objects belonging to the morphing sequences are also trans-
lated, in order to perform a smooth transition from obj1 to obj2 and from obj2 to obj3 
respectively.  

2.3   Surface closing 

Due to the finite inter-slice distance, the acquisition process does not offer any infor-
mation about the tumour’s extremities. However, we cannot accept flat-endings in the 
3D reconstructed model. To close the surface, we perform a shape-based extrapolation 
which respects the surface smoothness constraint. We assume that the first and the last 
horizontal cross-sections of the real tumour are one pixel-sized objects, which is a 
reasonable assumption for liver tumours.  
We create two sequences of closing objects located in horizontal slices. These se-
quences gradually shrink obj1 and obj3 towards pixel P1 and P3 respectively. When 
viewed in the z-direction, pixels P1 and P3 are located inside obj1 and obj3 respec-
tively, as shown in Figure 4. The length of a closing sequence is set to (N/2), where N 
is the even-valued length of the morphing sequences. 
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Figure 4. Pixel P1 •  is located inside obj1 (top), while pixel P3 •  is located inside obj3 (bottom) 

To obtain smooth closing, pixels P1 and P3 are chosen to be the centroids of obj1 and 
obj3 respectively. This choice is justified by the fact that real liver tumours are egg-
shaped. The centroid of an object is defined as the pixel inside the object which gen-
erates this object in a minimum number of conditional dilations. 
To generate a closing sequence from an initial 2D object and its centroid, the dis-
tances from the centroid to each pixel in the object’s boundary are computed. We use 
a parametric representation for the contour of the object, which allows the storage of 
the contour pixels in a 1D array. Therefore, the distances from the centroid to the 
contour pixels are as follows : 

( ) ( )( ) ( )( ) ( )Xlength..KkYykXxkDIST  1            22 =−+−=   (4) 

where (x, y) are the coordinates of the centroid and X(k), Y(k) are the coordinates of 
the kth element in the contour parametrisation. These distances are to decrease gradu-
ally towards 0 in N/2 iterations, where N is the length of the morphing sequences. 
More explicitly, we generate N/2 intermediate closing contours which shrink gradually 
towards the centroid. Choosing a linear decreasing pattern leads to an angular, disturb-
ing appearance of the closing parts of the object. Instead, we set the difference be-
tween the distances computed at two successive iterations to be proportional to the 
index of the last iteration :  

( ) ( ) ( ) ( )Xlength..kikDISTkDIST ii  1             1 =∀=− −  (5) 

where i is the index of the iteration, i =1..L/2. 
Next, the closing sequences are concatenated at the corresponding extremities of the 
interpolated 3D tumour model. Furthermore, a surface rendering technique is used to 
generate a triangular mesh on the external surface of the reconstructed tumour model. 

2.4   Surface fairing 

The previously described morphological morphing and surface closing processes 
should result in a 3D object with a smooth surface. However, local irregularities may 
occur. Some possible reasons for their presence are : a) the shape of the elementary 
structuring element in the 2D discrete space used in conditional dilation; b) the con-
straint of integer horizontal displacements in the translation of intermediate cross-
sections; c) the successive elimination of intermediate objects with high-valued redun-
dancy coefficients; d) the fixed length of the closing sequences. 
We consider Taubin’s surface fairing algorithm [7] for its linear complexity and for 
the fact that it moves the vertices of the mesh without changing the connectivity of the 
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faces. The fairing process conserves the number of vertices and faces, thus allowing us 
to compare and measure the smoothness of the faired surface and of the original sur-
face. 

3.   Reconstruction results and geometric evaluation 

The geometric validation of the 3D liver tumour model does not compare this model 
to the real tumour, since there is a big gap between the amount of input information (3 
serial tumour cross-sections) and the amount of output data (2L+1 object cross-
sections, L ≥ 6). As a consequence of undersampling, no technique can guarantee to 
reconstruct the actual anatomy from any set of cross-sections.  However, since it con-
tains the three input cross-sections at the original z-levels as specified in the acquisi-
tion process, the model is coherent with the input data. Taubin’s surface fairing algo-
rithm [5] smoothes the shape of the 2D cross-sections corresponding to the input data, 
but it performs no shrinking or expanding.  
Since the proposed 3D reconstruction approach aims towards a smooth transition 
between adjacent input shapes and towards a smooth 3D surface closing, we propose a 
measure of surface smoothness for result evaluation. For each vertex P, the normals to 
every triangular face containing P are computed, using the classical parametric equa-
tions. 
Among the k normals corresponding to P we arbitrarily choose a reference direction 
(l0, m0, n0), and compute the cosine of the angle between every normal in the set and 

the reference direction. The average value P|cosα  of 11 , ,k- icos i =α  represents a 

local measure of smoothness at vertex P. The local smoothness at P increases when 

P|cosα approaches 1. A global smoothness measure is represented by the histogram 

of local smoothness measures computed over the entire surface. The histogram of a 
smooth surface presents a peak value near 1, and low values elsewhere. 
The input sequence in Figure 5a) was interpolated using morphing based on condi-
tional dilation. Shape-based extrapolation for surface closing was performed after-
wards. The surface fairing process consisted in two iterations of Taubin’s algorithm 
[5]. The results and evaluation of the reconstructed 3D model are shown in Figure 5. 
The reconstructed 3D tumour model presented in Figure 5 shows a reasonable quality 
of surface smoothness even before the fairing process. However, the surface fairing  
considerably improves the surface smoothness without changing the global appear-
ance of the object. 
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a) input configuration, viewed in the z-direction 

   
 b) N=6, before smoothing c) N=6, before smoothing (different view) 

   
 d) N=6, after smoothing, same view as in a) e) N=6, after smoothing, same view as in b) 

   
f) smoothness histogram before smoothing g) smoothness histogram after smoothing 

Figure 5. Results and evaluation for the reconstruction approach using morphing based on 
conditional dilation and shape-based extrapolation; N is the length of the morphing sequence. 

 

4   Mechanical model 

Reconstructed 3D tumour models are to be integrated into a complete system for the 
simulation of cryosurgery of liver cancer. A mechanical model has been developed for 
this simulator and was presented in [8]. In this section we present the integration of 
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this mechanical model with a 3D tumour model reconstructed by the algorithm de-
scribed in section 2. 
Our mechanical model uses on the finite element based tensor-mass algorithm [9], 
which computes forces from a combination of local stiffness tensors attached to every 
mesh element. These tensors depend only on the mesh geometry at rest, and on the 
mechanical properties of the tissue. Therefore they can be computed in a preliminary 
step, while computation in the actual simulation is limited to a linear combination of 
stiffness matrices and displacement vectors, meeting real-time constraints. 
We have previously shown that it is possible to extend the linear tensor-mass model in 
order to simulate different types of non-linear and visco-elastic mechanical properties 
[8][10]. Previous results were obtained using meshes consisting of a regular assembly 
of cubic elements divided into tetrahedrons. We show in this section that the same 
mechanical model can be applied on a non-uniform mesh derived from an recon-
structed 3D tumour model. The mechanical tissue properties used for testing were 
obtained from experimental in vitro compression on deer liver membrane by a biopsy 
needle [8], since no in vivo mechanical data of liver tumour could be measured so far. 
The faired triangular surface mesh obtained in section 3 was first transformed into a 
tetrahedral volume mesh using the Geompack package [11]. Next, compression of this 
mesh was simulated using the mechanical parameters measured experimentally. Figure 
6a) presents five independent experimental force measurements, as well as the simu-
lated force on the reference mesh used to fit our model parameters, and the simulated 
force computed on the non-uniform tumour mesh. 

 

   
 a) b) 

Figure 6. a) Five independent experimental measurements of forces in compression of a deer 
liver sample by a biopsy needle (light grey curves), and simulated forces computed by a non-
linear tensor-mass algorithm on the reference mesh and on a reconstructed 3D tumour model. 
Compression speed was in all cases constant at 10 mm/s. b) Non-linear function introduced 
into the tensor-mass algorithm to obtain the simulated curves in a). Non-linearity is expressed 
as a function of a value quantifying local deformation, which is the ratio of the current tetrahe-
dron mean ratio on the tetrahedron mean ratio at rest. 

Although differences can be observed between the two simulations due to the different 
mesh geometries, accordance between experimental data and both simulations can be 
considered satisfactory. Due to the thin the tumour geometry (approximately 8 mm in 
thickness), forces on the tumour mesh tend to increase more slowly at higher deforma-
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tions, as it becomes almost entirely pierced. This comparison shows that the proposed 
mechanical model can be successfully applied to variable geometries. The accurate 
mechanical parameters of liver tumours remain yet to be determined. 
The tissue model derived from these measurements was highly non-linear. Figure 6b) 
shows the non-linear function introduced into the tensor-mass model to account for 
these properties. For low deformations the Young modulus was E = 3600 Pa, and the 
Poisson coefficient was kept constant at ν = 0.4. 
Figure 7 shows a few deformed mesh configurations at different time steps. The tu-
mour mesh contained 1135 vertices and 3535 tetrahedrons, and a computation rate of 
50 iterations per second was achieved on a 2 GHz Pentium III computer. 

 

 

Figure 7. Deformation of a reconstructed 3D mesh under simulated compression by a biopsy 
needle. The arrow on the second frame shows the position of the needle. Values indicate com-
pression depth, and deformed mesh elements are highlighted. 

Conclusion 

In this paper, we proposed a new 3D reconstruction technique integrating morphologi-
cal morphing between adjacent slices and shape-based extrapolation of extremity 
slices. The presented reconstruction algorithm is appropriate for modelling anatomical 
structures and was successfully integrated with a biomechanical model allowing fast 
computation of deformations and force-feedback. However, the accurate mechanical 
properties of liver tumours in vivo remain to be measured. Future work will focus on 
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the 3D reconstruction of the entire liver and its hepatovascular system from 2D MR 
cross-sections. Furthermore, tumour and liver geometries are to be integrated with 
their specific mechanical and thermal models into a complete planning and simulation 
system for image-guided cryosurgery. 
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